JPS5828652A - Continuous spectral measurement system - Google Patents

Continuous spectral measurement system

Info

Publication number
JPS5828652A
JPS5828652A JP12718281A JP12718281A JPS5828652A JP S5828652 A JPS5828652 A JP S5828652A JP 12718281 A JP12718281 A JP 12718281A JP 12718281 A JP12718281 A JP 12718281A JP S5828652 A JPS5828652 A JP S5828652A
Authority
JP
Japan
Prior art keywords
wavelength
sensor
wheel
output
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12718281A
Other languages
Japanese (ja)
Inventor
Yuji Nakanishi
裕治 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIKOU SEIKI SANGYO KK
Original Assignee
EIKOU SEIKI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIKOU SEIKI SANGYO KK filed Critical EIKOU SEIKI SANGYO KK
Priority to JP12718281A priority Critical patent/JPS5828652A/en
Publication of JPS5828652A publication Critical patent/JPS5828652A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators

Abstract

PURPOSE:To measure with uniform sensitivity in the measurement of every each wavelength component, by constituting a spectral system so as to rotate many filters on a concentric circle at high speeds and marking the detector into one. CONSTITUTION:Light including the plural wavelength bands is introduced by a collimeter or an optical fiber, etc. and is radiated to a filter wheel 2 arranged plural optical filters 1 passing through each wavelength band on the circumference of a concentric circle in a spectral apparatus. Also, a sensor 4 detecting the position of the filter is provided on one place of the fringe of the wheel 2 and a pulse signal is taken out from the sensor 4 at every one revolution of the wheel 2 and is sent to a sampling gate control circuit 5. Hereby, measurement is performed with uniform sensitivity at the measurement of every each wavelength.

Description

【発明の詳細な説明】 本発明は多数の波長成分よりなり各成分の強度(放射)
が速く変化する光の連続測定方式に係る。
[Detailed Description of the Invention] The present invention consists of a large number of wavelength components and the intensity (radiation) of each component.
This method involves continuous measurement of light that changes rapidly.

我々の日常経験する現象の中で上記のような性質の光測
定をなすことが望まれていた。例えば火災の監視(温度
測定)、日射測定或いはその他オン・ラインに於ける分
光分析とか比色定量分析等が望まれていたが、従来の方
式ではこれを満足に達成する方式は開発されてなかった
It has been desired to perform optical measurements of the above-mentioned nature in phenomena that we experience on a daily basis. For example, fire monitoring (temperature measurement), solar radiation measurement, and other online spectroscopic and colorimetric analyzes have been desired, but no conventional methods have been developed to satisfactorily achieve this. Ta.

従来のこの種の測光装置を分類すると、分光系を一定速
度で駆動しておき各波長成分を1つの固定の検知器を経
て出力を取や出す方式、或いはその逆に分光系を固定し
ておいて検知器の方を走査する方式、測定する波長毎に
複数筒の分光系を備え、これらに対応して複数筒の検知
器を組合せ同時測定を行う方式と3つに分類されるが、
第1、第2の方式については、現在の技術では全波長域
にわた抄1秒以内に走査することは不可能に近く、可能
であったとしても装置の価格から見て実用的でない。簡
単にいえば各波長成分から同時に光量(放射量)のデー
タを取出すことは原理的にも実用的にも不可能といえる
Conventional photometric devices of this type can be categorized as either methods in which the spectroscopic system is driven at a constant speed and each wavelength component is output through one fixed detector, or vice versa, the spectroscopic system is fixed. There are three types of methods: a method in which the detector is scanned at the same time as the detector, and a method in which a multiple-tube spectroscopic system is provided for each wavelength to be measured, and correspondingly multiple detectors are combined to perform simultaneous measurements.
Regarding the first and second methods, with the current technology, it is almost impossible to scan the entire wavelength range within one second, and even if it were possible, it would be impractical considering the cost of the device. Simply put, it is impossible both in principle and in practice to extract light amount (radiation amount) data from each wavelength component simultaneously.

第3の方式に於いては、各波長成分毎に検出器を必要と
し、これら検出器の感度常数を一致させることが必要で
あり、製電の大型化は避は得ない。
In the third method, a detector is required for each wavelength component, and it is necessary to match the sensitivity constants of these detectors, which inevitably leads to an increase in the size of electrical manufacturing.

そこで本発明はこの第3の方式を改変し、分光系を多数
のフィルタを同心円上で高速に回転させるように構成し
、検出器を1つにし、各波長成分毎に同時観測を具現化
した装置である。父上記フィルタを同心円に配列したフ
ィルタホイールのブランク部分を利用して同一機能を果
す多数の周囲回路各々の零点調整することもでき、長期
連続測定に安定した結果をもたらす。
Therefore, the present invention modified this third method, configured the spectroscopic system to rotate many filters concentrically at high speed, reduced the number of detectors to one, and realized simultaneous observation of each wavelength component. It is a device. It is also possible to adjust the zero point of each of a large number of surrounding circuits that perform the same function by using the blank part of the filter wheel in which the above-mentioned filters are arranged in concentric circles, providing stable results for long-term continuous measurements.

本発明実施例を図面について説明する。Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明実施例装置全体のブロック図であり、複
数の波長帯域を含んだ光はコリメータ或いはオプティカ
ルファイバ等で導き入れ各々の波長帯域を通す光学フィ
ルタ1の複数個を同心円の円周上に配置したフィルタホ
イール2に照射する。
FIG. 1 is a block diagram of the entire apparatus according to an embodiment of the present invention, in which light containing a plurality of wavelength bands is guided through a collimator or an optical fiber, and a plurality of optical filters 1 passing through each wavelength band are arranged in concentric circles. The filter wheel 2 placed above is irradiated.

このホイール2を回転しつつホイール2の後で且つ光学
フィルタ1を通過した光をセンサ3で受ける。センサ3
からの電流出力を電圧出力に変換す、るl−Vコンバー
タ8を通して得られる出力は各波長帯域λ1、λ2、λ
3、・λ4毎に時間に対し第2図aに示すように各波長
成分に対して異った出力のパルス列が得られる。このサ
ンプルされた各パルス信号は各波長帯域に対応させて設
けた複数個のサンプルホールド回路SH1、SH2、S
H3及びsH4より成るサンプルホールド回路列6に印
加せられるが、との印加は下記のようにサンプリングr
−)回路5の制御の下でなされる。
While rotating the wheel 2, a sensor 3 receives light that has passed through the optical filter 1 after the wheel 2. sensor 3
The output obtained through the l-V converter 8, which converts the current output from the
As shown in FIG. 2a, a pulse train with a different output is obtained for each wavelength component every 3.λ4 as shown in FIG. 2a. Each sampled pulse signal is processed by a plurality of sample and hold circuits SH1, SH2, and S provided corresponding to each wavelength band.
is applied to the sample and hold circuit array 6 consisting of H3 and sH4.
-) under the control of circuit 5.

フィルタホイール2.の周縁の1ケ所にフィルタの位置
を検出する七/す4を設は該センサ4からホイール2の
1回転毎にパルス信号(第2図b)をとりこれをサンプ
リングr−)制御回路5に送る。この回路では予め定め
られたフィルタの位置に対応せしめたプログラムに依り
各フィルタが順次その入射光束の中心に来た時各フィル
タに対応したサンプルホルダ回路のP −) Gを順次
閉いてセンサ3からの出力信号を入力せしめる。この人
力せられたサンプルホルダ回路は次のサンプルホールド
回路列スが発生されるまで入力信号を保持する。第2図
Cはサンプルr−)制御回路5から出力されるサンプル
ホールド/臂ルスを示し、各サンプルホルダ回路SH1
、SH2・・・・・・SH4の各ゲートG1、G2・・
・・・・G4 の何れか1つに上記したプログラムに従
い印加される。
Filter wheel 2. A sensor 4 for detecting the position of the filter is provided at one location on the periphery of the wheel 2. A pulse signal (FIG. 2b) is collected from the sensor 4 every rotation of the wheel 2, and the signal is sampled and sent to the control circuit 5. send. In this circuit, when each filter sequentially comes to the center of the incident light flux according to a program that corresponds to a predetermined filter position, P-)G of the sample holder circuit corresponding to each filter is sequentially closed and the sensor 3 is input the output signal. This manually powered sample holder circuit holds the input signal until the next sample and hold circuit sequence is generated. FIG. 2C shows the sample hold/arm output from the sample r-) control circuit 5, and each sample holder circuit SH1
, SH2...... Each gate G1, G2... of SH4
... is applied to any one of G4 according to the above program.

つまり、青波長成分λ1 のみをサンプル゛するように
プログラムされている時にはλ1 のためのす/デルホ
ルダ回路s+1のグー) 01のみにサンプk 票−ル
ドパルスが印加される。波長成分λ1の入射が時々刻々
変化し今例えばホイール20次の回転で僅かに増加した
とするとサンプルホールド回路SH1の出力は階段状に
変化し、第2図CのようKなる。
In other words, when it is programmed to sample only the blue wavelength component λ1, the sampling pulse is applied only to the gate holder circuit s+1 for λ1. If the incidence of the wavelength component λ1 changes from moment to moment and increases slightly with, for example, the 20th rotation of the wheel, the output of the sample-and-hold circuit SH1 changes stepwise and becomes K as shown in FIG. 2C.

サンプルホールド回路SH1の出力はこれを利用に便な
らしめるため次段のロー/fスフイルタLPF1を通す
ことにより平滑され、第2図dに示すように階段部の平
滑化された連続波形を得る。伺ローパスフィルタ7もサ
ンプルホールド回路列6と同様に各波長成分の数に対応
して複数個用意しておく。
For convenience, the output of the sample-and-hold circuit SH1 is smoothed by passing it through a low/f filter LPF1 in the next stage to obtain a smoothed continuous waveform with a stepped portion as shown in FIG. 2d. Similar to the sample and hold circuit array 6, a plurality of low-pass filters 7 are prepared corresponding to the number of each wavelength component.

このように構成することにより他の波長成分λ2・・・
・・・λ4各々についてもサンプリングゲート制御回路
からの制御によりλ1と同様に時々刻々変化する入射を
アナログ値として取抄出すことができ第1図に於いてこ
れらの出力を21′・・・・・・24′として示す。こ
れらの出力は第2図dに示されたように連続波型として
得られこれが本発明の大きな特徴である。
With this configuration, other wavelength components λ2...
...For each of λ4, the ever-changing incidence can be extracted as an analog value in the same way as for λ1 by controlling the sampling gate control circuit, and these outputs are expressed as 21' in Fig. 1. ...shown as 24'. These outputs are obtained in the form of continuous waves as shown in FIG. 2d, which is a major feature of the present invention.

次に本発明の他の特徴である零点自動補正について述べ
る。自動補正回路は一−■コンノ肴−タ8とサンプルホ
ールド回路6との間にコンデンサ9を直列に介挿し、こ
の出力側をアナログスイッチlOを経て接地する。この
スイッチ10を接地する時期はサンプリングr−)制御
回路5が取り入れたフィルターホイールの特定の位置信
号即ち入射光がフィルターホイールを通過し得すセンサ
3の出力が当然KOとなるべき筈の時期の信号によりア
ナログスイッチ10を閉に駆動する。この特定の位置信
号の取り出し方は2通に考えられる。
Next, automatic zero point correction, which is another feature of the present invention, will be described. The automatic correction circuit has a capacitor 9 inserted in series between the 1-2 controller 8 and the sample-hold circuit 6, and its output side is grounded through an analog switch 1O. The timing for grounding this switch 10 is based on sampling r-) when the specific position signal of the filter wheel taken in by the control circuit 5, that is, the output of the sensor 3 when the incident light can pass through the filter wheel, should naturally become KO. The signal drives analog switch 10 closed. There are two possible ways to extract this specific position signal.

第1に光学フィルタの1つを光を透過しないいわゆるブ
ランクにしておくことであり、この構成により取〉出さ
れた位置信号を第2図・に示す。第2に光学フィルタ同
志の間の光不透過部分をセンナ4が通過した時KAパル
ス得る方法であり、この構成によシ取り出された位置信
号を第2図fK示す。
First, one of the optical filters is left blank so that no light passes through it, and the position signal extracted by this configuration is shown in FIG. The second method is to obtain a KA pulse when the sensor 4 passes through a light-opaque portion between optical filters, and the position signal extracted by this configuration is shown in FIG. 2fK.

光学フィルタを通過する入力光がない時01−v:F7
パータ8のオフセット電圧はコノデン?9に充電される
が、上記2つの中いずれかのa4ルス列O信号でアナロ
グスイッチ10をオンにすればコンデンサ90出力端は
アースされ正しく電圧OK補正され、真に光学フィルタ
通過光に対応したアナ四ダ出力が取〕出せるととになる
When there is no input light passing through the optical filter 01-v:F7
Is the offset voltage of Part 8 Konode? 9, but if you turn on the analog switch 10 with the A4 pulse train O signal from either of the above two, the output terminal of the capacitor 90 will be grounded and the voltage will be corrected correctly, making it truly compatible with the light passing through the optical filter. It becomes possible to obtain an output of 40%.

以上のように本発明分光測定方式に於いて拡少〈共フィ
ルタホイール01回転IC1回、多くは各フィルタ間K
tkて1回の割合で1−Vコンバータのオフセット電圧
をOK補正しているOで、各波長成分毎の測定に於いて
一様な感度での測定が回向上記実施例に於いては波長帯
域は4つ示したがこの数は限定されない。位置センサ4
は光透過式でなくて反射式でも磁気センサでもよいし又
各光学フィルタ毎に設けてもよい。
As described above, in the spectroscopic measurement method of the present invention, the magnification is
In the above embodiment, the offset voltage of the 1-V converter is corrected at a rate of tk, so that measurement with uniform sensitivity is possible in the measurement of each wavelength component. Although four bands are shown, this number is not limited. position sensor 4
may be a reflective type or a magnetic sensor instead of a light transmitting type, or may be provided for each optical filter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を示すデ四ツク図、第2図は第1
図回路を説明するパルス波形図である。 1・・・光学フィルタ、2・・・フィルタホイール、3
・・・セッサ、4・・・光学フィルタ位置センナ、5・
・・サンプリンダゲート制御回路、6・・・サンプルホ
ルダ回路列、9・・・コンデンサ、10・・・アナログ
スイッチ
Figure 1 is a four-dimensional diagram showing an embodiment of the present invention, and Figure 2 is a diagram showing the embodiment of the present invention.
FIG. 3 is a pulse waveform diagram illustrating the circuit shown in FIG. 1... Optical filter, 2... Filter wheel, 3
...Sensor, 4...Optical filter position sensor, 5.
... Sampler gate control circuit, 6... Sample holder circuit row, 9... Capacitor, 10... Analog switch

Claims (1)

【特許請求の範囲】[Claims] 連続的に強度の変化する光を波長成分毎に分ける複数筒
の光学フィルタを同心円上に多数配列して回転フィルタ
ーホイールを構成し、該光学フィルタの後に単−個の光
センサを、又光学フィルタの位置を検出して出力を発す
る位置センサを設け、上記光センナより得られる各波長
成分別出力は上記位置センサ出力信号により同期されて
各々の波長成分に対応して設けたサンプルホルダに入力
され、これらサンプルホルダの出力を各々ロー/ヤスフ
ィルタを通すととKより連続直流出力として取り出す連
続分光測定方式。
A rotating filter wheel is constructed by concentrically arranging a large number of optical filters with multiple cylinders that separate light whose intensity changes continuously into wavelength components. A position sensor is provided that detects the position of the optical sensor and outputs an output, and the output for each wavelength component obtained from the optical sensor is synchronized with the position sensor output signal and input to a sample holder provided corresponding to each wavelength component. , a continuous spectroscopic measurement method in which the outputs of these sample holders are passed through a row/yass filter and extracted as a continuous DC output from K.
JP12718281A 1981-08-13 1981-08-13 Continuous spectral measurement system Pending JPS5828652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12718281A JPS5828652A (en) 1981-08-13 1981-08-13 Continuous spectral measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12718281A JPS5828652A (en) 1981-08-13 1981-08-13 Continuous spectral measurement system

Publications (1)

Publication Number Publication Date
JPS5828652A true JPS5828652A (en) 1983-02-19

Family

ID=14953699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12718281A Pending JPS5828652A (en) 1981-08-13 1981-08-13 Continuous spectral measurement system

Country Status (1)

Country Link
JP (1) JPS5828652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278887A (en) * 1989-04-20 1990-11-15 Matsushita Electric Ind Co Ltd Method and apparatus for analyzing of composition of laser medium gas
JP2003090794A (en) * 2001-09-20 2003-03-28 Furuno Electric Co Ltd Colorimetric absorbance measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955386A (en) * 1972-04-27 1974-05-29
JPS5053079A (en) * 1972-09-21 1975-05-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955386A (en) * 1972-04-27 1974-05-29
JPS5053079A (en) * 1972-09-21 1975-05-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278887A (en) * 1989-04-20 1990-11-15 Matsushita Electric Ind Co Ltd Method and apparatus for analyzing of composition of laser medium gas
JP2003090794A (en) * 2001-09-20 2003-03-28 Furuno Electric Co Ltd Colorimetric absorbance measuring apparatus

Similar Documents

Publication Publication Date Title
US4076421A (en) Spectrophotometer with parallel sensing
EP0497434B1 (en) A dual beam full spectrum multichannel spectrophotometer
KR0151711B1 (en) Multichannel optical monitoring system
JPS61193032A (en) Instantaneous reading multichannel polychromatic spectrophotometry and device thereof
JP2609616B2 (en) Photometer and light measurement method
CA2479334A1 (en) High speed analyzer using near infrared radiation transmitted through thick samples of optically dense material
US4281897A (en) Photometric system including a time-division optical attenuator
US3071037A (en) Ratio measuring spectrophotometer
JPS5828652A (en) Continuous spectral measurement system
EP0440443A2 (en) Multispectral reflectometer
JPS5957123A (en) Apparatus for measuring surface color of moving object
JPS61165608A (en) Film thickness measuring apparatus
JPS58102114A (en) Spectrophotometer device
JPS62157537A (en) Signal processing method for spectrometer
JPH064292Y2 (en) Multi-signal voltage acquisition circuit
SU947651A1 (en) Spectrophotometer
JPS58111728A (en) Optical measuring device
US3673420A (en) Thickness control system for multi-layer optical thin film work
JP2000266601A (en) Multi-channel spectroscope
JP2000504841A (en) Detector
JPS5992318A (en) Spectrometry method
RU30433U1 (en) Atomic emission multichannel spectrometer
JPH041291B2 (en)
RU1790743C (en) Automatic multichannel spectral ratio pyrometer
RU2051338C1 (en) Atom-emission multichannel spectrometer