JPS5828547A - Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine - Google Patents

Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Info

Publication number
JPS5828547A
JPS5828547A JP56117144A JP11714481A JPS5828547A JP S5828547 A JPS5828547 A JP S5828547A JP 56117144 A JP56117144 A JP 56117144A JP 11714481 A JP11714481 A JP 11714481A JP S5828547 A JPS5828547 A JP S5828547A
Authority
JP
Japan
Prior art keywords
cylinder
fuel injection
intake
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56117144A
Other languages
Japanese (ja)
Other versions
JPH0245026B2 (en
Inventor
Hidetaka Nohira
野平 英隆
Hideaki Matsui
英昭 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56117144A priority Critical patent/JPS5828547A/en
Publication of JPS5828547A publication Critical patent/JPS5828547A/en
Publication of JPH0245026B2 publication Critical patent/JPH0245026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent fuel from deterioration of its distribution and improve the performance by actuating fuel injection valves in each air cylinder in compliance with ignition sequence of each air cylinder, in an engine which has adopted an induced turbulence genrating system equipped with small diameter of jet ports in the air inlet port. CONSTITUTION:In a four-cylinder engine, air inlet throttle valves 40a-40d are respectively provided in air inlet paths 15a-15d to each air cylinder branched from a surge tank 14, small diameter of jet ports 44a-44d which have their opening into an air inlet port 24, and fuel injection valves 34a-34d are installed on the downstream side of the throttle valves 40a-40d. And, each fuel injection valve 34a-34d is actuated in compliance with the determined ignition sequence by means of an injection valve driving circuit 56. And said driving circuit 56 determines the injection rate by means of air flow rate signals from an air-flow meter 18 and ignition signals, and it is controlled by means of an electronic control unit 26 to give fuel injection commande signals as output.

Description

【発明の詳細な説明】 本発明は火花点火式内燃機関の燃料供給技術に係り、よ
り詳しくは、多気筒内燃機関の電子制御式燃料噴射シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply technology for a spark-ignition internal combustion engine, and more particularly to an electronically controlled fuel injection system for a multi-cylinder internal combustion engine.

火花点火式内燃機関の燃料供給方式−こは大別して気化
器による方式と燃料噴射弁による方式がある。後者は比
較的最近開発された技術で、排気ガス対策その他諸種の
見地から近年注目されている。
Fuel supply systems for spark ignition internal combustion engines can be roughly divided into two types: a system using a carburetor and a system using a fuel injection valve. The latter is a relatively recently developed technology that has been attracting attention in recent years from various viewpoints including exhaust gas countermeasures.

すなわち、火花点火式内燃機関に2ける燃料噴射方式の
主たる利点は、各気筒の吸気ポートごとに夫々−個の溶
料噴射弁を設は各噴射弁には互いに等量の燃料を噴射さ
せることにより各燃焼室への燃料供給量を均一化するこ
とができるので、気化器による方式に固有の燃料の気筒
間分配の問題が解決され、その結果エンジンをより稀薄
(リーン)な燃焼用混合物で運転することを可能にして
I(C。
In other words, the main advantage of the fuel injection method for spark ignition internal combustion engines is that by providing one solvent injection valve for each intake port of each cylinder, each injection valve injects the same amount of fuel. This equalizes the amount of fuel delivered to each combustion chamber, solving the fuel distribution problems inherent in carburetor systems and allowing the engine to run with a leaner combustion mixture. Allows you to drive I(C.

COのような有害な未燃成生物の発生を低減することが
できることにある。燃料噴射弁の作動方式には噴射弁か
ら連続的に燃料を噴出させる連続噴射方式と間欠的に噴
射を行わせるパルス噴射方式とがある。後者の方式にお
いてはソレノイドにより開閉する・1磁式燃料噴射弁が
使用され、このソレノイドは一般にマイクロコンピュー
タを内置した電子制御ユニットからのパルスの形の噴射
指令によりて励起されるようになりている。かかる方式
は電子制御式燃料噴射方式(EFI)といわれるもので
、本発明が対象とする技術もこれに属する。従来の電子
制御式燃料噴射方式においては、燃料噴射時期はすべて
の燃料噴射弁について同時、すなわち燃料が一斉に噴射
されるようになっており(同時噴射方式)、噴射の回数
はエンジンの各作動サイクル当り1回もしくは2回であ
る。
It is possible to reduce the generation of harmful unburned organisms such as CO. There are two types of operating methods for fuel injection valves: a continuous injection method in which fuel is continuously injected from the injector, and a pulse injection method in which fuel is injected intermittently. In the latter method, a single magnetic fuel injection valve is used that is opened and closed by a solenoid, and this solenoid is generally excited by injection commands in the form of pulses from an electronic control unit containing a microcomputer. . Such a method is called an electronically controlled fuel injection method (EFI), and the technology to which the present invention is directed also belongs to this. In conventional electronically controlled fuel injection systems, the fuel injection timing is set at the same time for all fuel injection valves, that is, the fuel is injected all at once (simultaneous injection system), and the number of injections depends on each engine operation. Once or twice per cycle.

他方、燃料噴射方式であるか気化器方式であるかを問わ
ず今日のエンジンに2いては、高負荷高速運転時に2け
る出力をできるだけ大きくするために吸気ポートのプロ
フィルは一般に比較的直径が大きくて真直ぐな通気抵抗
の小さい形状に設計されている。ところが、吸気ボート
の形状をこのようにした場合には低速低負荷運転時およ
び低速高負荷運転時に燃焼室内に吸入される混合気中に
十分な乱流が発生せず、火炎伝播速度を高めることがで
きない。低速低負荷運転時に吸気混合気に強度の乱流を
発生させる手法としては、吸気ボートをヘリカル形状に
したり或いはシュラウド弁を用いたりして燃焼室内憂こ
強制的に旋回流を発生させる手法があるが、これらの手
法においては吸入混合気流に対する通気抵抗が増大する
ため高速高負荷運転時憂こおける充填効率が低下すると
いう問題がある。そこで、気化器方式のエンジンにおい
て、主吸気絞弁の下流番こおいて吸気マニホルドの各分
校管内の各吸気通路にji2の吸気絞弁を個々に設けろ
と共に、吸気弁近傍において各気筒の吸気ボート門番こ
開口する小径の噴流ポートを各気筒ごとに設け、上記噴
流ポートを共通の連通管によって互いに連通し、もって
機関の低速運転時において成る気筒が吸気行程になった
時には吸気行程にない他の気筒の吸気ボートから吸気を
誘引して該吸気行程にある気筒の吸気ボートに該噴流ポ
ートから空気を噴出せしめて燃焼寥内に強度の乱流を発
生させ、これによって低速運転時のEnd改善を行いつ
つ高速運転時の出力を確保することが提案されている←
特開昭55−25547 )。この方式を以下では便宜
上張誘引乱流発生方式と略称することとする。
On the other hand, in today's engines, whether fuel-injected or carburetor-based, the intake port profile is generally relatively large in diameter to maximize power output during high-load, high-speed operation. It is designed to have a straight shape with low ventilation resistance. However, when the intake boat is shaped like this, sufficient turbulence is not generated in the mixture sucked into the combustion chamber during low-speed, low-load operation and low-speed, high-load operation, which increases the flame propagation speed. I can't. As a method of generating strong turbulence in the intake air-fuel mixture during low-speed, low-load operation, there is a method of forcibly generating a swirling flow in the combustion chamber by making the intake boat into a helical shape or using a shroud valve. However, these methods have the problem that the charging efficiency during high-speed, high-load operation decreases because the ventilation resistance to the intake air mixture increases. Therefore, in a carburetor type engine, an intake throttle valve of ji2 should be individually installed in each intake passage in each branch pipe of the intake manifold downstream of the main intake throttle valve, and the intake port of each cylinder should be installed near the intake valve. A small-diameter jet port with a gate opening is provided for each cylinder, and the jet ports are communicated with each other through a common communication pipe, so that when the cylinder is in the intake stroke during low-speed operation of the engine, other ports that are not in the intake stroke are Intake air is induced from the intake boat of the cylinder, and the air is jetted from the jet port to the intake boat of the cylinder in the intake stroke to generate strong turbulence in the combustion chamber, thereby improving End during low-speed operation. It is proposed to secure output during high-speed operation while doing so←
JP-A-55-25547). For convenience, this method will be abbreviated as the tension-induced turbulent flow generation method hereinafter.

ところで、従来の気化器を有するエンジンに上記強誘引
乱流発生方式を応用する場合には、噴流ポートは気化器
の主絞り弁の下流にあ′す、気化器において均質な混合
気が形成されるため、混合気が各噴流ポートに分流して
も各気筒間の燃料分配の悪化は生じない。ところが、吸
気マニホールドの各分校管又は個々の吸気ボートに燃料
を同時噴射する燃料噴射方式と上記強誘引乱流発生方式
とを組合せると、気筒間の燃料分配が悪化し、誘引乱流
による燃焼改善効果が気筒間の空燃比の変動に減殺され
てエンジンのトルク変動が増大するという不具合があっ
た。
By the way, when applying the forcibly induced turbulence generation method to an engine with a conventional carburetor, the jet port is located downstream of the main throttle valve of the carburetor, and a homogeneous air-fuel mixture is formed in the carburetor. Therefore, even if the air-fuel mixture is divided into each jet port, the fuel distribution between the cylinders will not deteriorate. However, when a fuel injection method that simultaneously injects fuel into each branch pipe of the intake manifold or each intake boat is combined with the above-mentioned forced turbulence generation method, the fuel distribution between the cylinders deteriorates, resulting in combustion caused by the induced turbulence. There was a problem in that the improvement effect was offset by the variation in air-fuel ratio between cylinders, resulting in an increase in engine torque variation.

本発明は上記不具合を解消することを目的とするもので
ありて、電子制御式燃料噴射システムを上記強誘引乱流
発生方法と組合せたときにも燃料分配の悪化しない燃料
供給装置を提供することにようて、高速高負荷運転時の
出力を確保するとともに低速低負荷運転時および低速高
負荷運転時のトルク変動を防止しより稀薄(リーン)な
燃焼用混合物でエンジンを運転することを可能にして燃
費の改善と有害排出ガス成分の低減を実現することを目
的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a fuel supply device that does not cause deterioration in fuel distribution even when an electronically controlled fuel injection system is combined with the above-mentioned forcibly induced turbulent flow generation method. This ensures output during high-speed, high-load operation, prevents torque fluctuations during low-speed, low-load operation, and low-speed, high-load operation, and enables the engine to operate with a leaner combustion mixture. The aim is to improve fuel efficiency and reduce harmful exhaust gas components.

本発明は、上記燃料分配の悪化は、一定時期に同時噴射
され各気筒の吸気ポート内に滞留している燃料が成る気
筒が吸気行程になった時に噴流ポートならびに連通管を
介して廻り込んでその気筒に吸入されその結果後続して
順次吸気行程に入る他の気筒の吸入燃料量が漸減するこ
とによるものであるという知見に立脚するもので、本発
明はかかる事態を防止するため、各気筒の燃料噴射弁を
点火順序に従って順次作動させる同期独立噴射方式とす
ることを提案するものである。
According to the present invention, the deterioration in fuel distribution is caused by fuel injected simultaneously at a certain time and staying in the intake ports of each cylinder entering the cylinder through the jet port and the communication pipe when the cylinder enters the intake stroke. This is based on the knowledge that this is due to the fact that the amount of fuel sucked into that cylinder gradually decreases as a result of the amount of fuel sucked into the other cylinders that subsequently enter the intake stroke. This proposal proposes a synchronous independent injection system in which the fuel injection valves are operated sequentially according to the ignition order.

以下、添付図面を参照して実施例を説明する。Hereinafter, embodiments will be described with reference to the accompanying drawings.

第1図は本発明の電子制御式燃料噴射システムを臭えた
エンジンの全体配置を示す図、第2図は第1図のI−1
断面図である。図は4気筒エンジンを示すもので、周知
のようにシリンダボア21〜2dを形成したシリンダブ
ロック4の上には動弁系と吸排気ポートを具えたシリン
ダヘッド6が装着してあり、シリンダボア2とその中で
往復動するピストン8とシリンダヘッド6との間lこは
燃焼室10が形成されている。シリンダヘッド6の側面
には吸気マニホールド12およびサージタンク14が順
次に固着されており、この吸気マニホールド12はシリ
ンダヘッド6に接する基部13と該基部から延長する4
つの分校管15a〜15mとから成る、吸入空気はエア
クリーナ16、吸入空気流量を計渕するためのエア70
−メータ18、スロットルバルブ2oを具えたスロット
JL’ ホ7’ −22を経てサージタンク14に導か
れ、そこから吸気マニホールド12を介してシリンダヘ
ッド6内に形成された吸気ポート24を経て燃焼室10
に吸入されるようになっている。26はマイクロコンビ
エータを内蔵した周知の電子制御ユニット(ECU)で
、エアフローメータ1Bからの吸気量信号、エアフロー
メータに設けた吸気温センサ28からの吸気温信号、ス
ロットルポジシ3ンセンサ30からの信号、冷却水温セ
ンサ32からの信号、エンジン回転数センサ(図示せず
)からの信号、等を入力して燃料噴射量を演算し燃料噴
射指令信号を出力するためのものである。各溶料噴射弁
34には燃料ポンプ(図示せず)から燃料ホース36お
よびデリベリパイプ3Bを経て燃料が供給される、燃料
噴射弁34はソレノイドを有する公知の電磁式噴射弁で
、電子制御ユニット26からの噴射指令信号に応じて燃
料を吸気ポート24番こ向りて噴射する。
Fig. 1 is a diagram showing the overall layout of an engine incorporating the electronically controlled fuel injection system of the present invention, and Fig. 2 is a diagram showing the I-1 of Fig. 1.
FIG. The figure shows a four-cylinder engine, and as is well known, a cylinder head 6 equipped with a valve train and intake and exhaust ports is mounted on a cylinder block 4 that has cylinder bores 21 to 2d. A combustion chamber 10 is formed between a piston 8 and a cylinder head 6 that reciprocate therein. An intake manifold 12 and a surge tank 14 are fixed to the side surface of the cylinder head 6 in this order.
The intake air consists of two branch pipes 15a to 15m, an air cleaner 16 for intake air, and an air 70 for measuring the intake air flow rate.
- It is led to the surge tank 14 through a slot JL'7'-22 with a meter 18 and a throttle valve 2o, and from there it passes through an intake manifold 12 and an intake port 24 formed in the cylinder head 6 into the combustion chamber. 10
It is designed to be inhaled. Reference numeral 26 denotes a well-known electronic control unit (ECU) with a built-in micro combinator, which receives the intake air amount signal from the air flow meter 1B, the intake temperature signal from the intake air temperature sensor 28 provided in the air flow meter, and the signal from the throttle position sensor 30. , a signal from the cooling water temperature sensor 32, a signal from an engine rotation speed sensor (not shown), etc. are inputted to calculate the fuel injection amount and output a fuel injection command signal. Each solvent injection valve 34 is supplied with fuel from a fuel pump (not shown) through a fuel hose 36 and a delivery pipe 3B.The fuel injection valve 34 is a known electromagnetic injection valve having a solenoid, and The fuel is injected toward the intake port 24 in response to an injection command signal from the intake port 24.

各吸気マニホルド分校管15には落2の吸気絞す弁40
 a〜40dが設けてあり、これらは共通の軸42によ
り連動されるようになっている。軸42はたとえばアク
セルペダル(図示せず)にリンクされて8つ、エンジン
の低負荷運転時には第2絞り弁40を回動して分校管1
5内の主空気通路を実質上遮断し得るようになっている
。一方シリンダヘッド6には、吸気ボート24に略々平
行に小径の噴流ボー)44a〜44dが各気筒ごとに形
成されている。これらの噴流ポートは、第2図に断面を
示しかつ第1図に点線で示したところから明らかなよう
に、吸気弁46の周縁に対して略々後1方向に吸気ボー
ト24の終端部近傍に開口しており、空気がこれらの噴
流ポート44から噴射された時には炉焼室内薯こ強度の
乱流が発生せられるようになりている。各噴流ポート4
4は吸気マニホルド12の基部13内に形成した長手方
向に延長する連通路48(第2図参照)によって互いに
連通している。このような溝底であるから、エンジンの
低速運転時に第2絞4P40 a〜40dが全閉された
時において成る気質が吸気行程に入った時には、その気
筒の噴流ボート44には連通路48ならびに吸気工程に
ない他の気筒の噴流ボートを経由して当該他の気筒の吸
気ボートから混合気が誘引され、吸気行程にある気筒の
吸気ボートにその噴流ポートから噴出せられる。このた
め、その気筒の燃焼室内には強度の乱流が発生する・こ
の関係は他の気筒が順次吸気行程に入りた時も同様であ
る。111図下方に参照番号50で示したのはディスト
リビユータで、その回転軸には8つの突起を有する1形
の点火パルス発生用ロータと1つの突起を有する気筒判
別ロータが取付けてあり、他方、ディストリビュータ5
0のハウジングには上記各ロータIζ対応する位置にお
いて点火パルス検出センサ52および気筒判別センサ5
4が設電されている。
Each intake manifold branch pipe 15 has a droplet 2 intake throttle valve 40.
a to 40d are provided, which are linked by a common shaft 42. For example, eight shafts 42 are linked to an accelerator pedal (not shown), and rotate the second throttle valve 40 to open the branch pipe 1 during low-load operation of the engine.
The main air passage within 5 can be substantially blocked. On the other hand, in the cylinder head 6, small-diameter jet bows 44a to 44d are formed approximately parallel to the intake boat 24 for each cylinder. As is clear from the cross section shown in FIG. 2 and the dotted line in FIG. When air is injected from these jet ports 44, strong turbulent flow is generated within the furnace. Each jet port 4
4 communicate with each other through a longitudinally extending communication passage 48 (see FIG. 2) formed in the base 13 of the intake manifold 12. Because of such a groove bottom, when the engine enters the intake stroke when the second throttles 4P40a to 40d are fully closed during low-speed engine operation, the jet boat 44 of that cylinder has the communication passage 48 and Air-fuel mixture is induced from the intake boat of the other cylinder via the jet boat of the other cylinder that is not in the intake stroke, and is ejected from the jet port to the intake boat of the cylinder that is in the intake stroke. Therefore, strong turbulence occurs in the combustion chamber of that cylinder. This relationship is the same when the other cylinders sequentially enter their intake strokes. At the bottom of Figure 111, the reference number 50 indicates a distributor, and its rotating shaft has a type 1 ignition pulse generation rotor with eight protrusions and a cylinder discrimination rotor with one protrusion. , distributor 5
0 housing includes an ignition pulse detection sensor 52 and a cylinder discrimination sensor 5 at positions corresponding to each rotor Iζ.
4 is installed.

本発明に従い、各燃料噴射弁34a〜34dは噴射弁駆
動回路56によって点火順序に従りて順次に作動せられ
る6第3図はこの噴射弁駆動回路56を含む電子制御式
燃料噴射装置のブロック図で、ディストリビユータ50
の点火パルス検出センサ52(第1図参照)は波形整形
器582よびフリップ70ツブ60を介して電子制御ユ
ニット26およびシフトレジスタ62の一方の入力端子
に接続されている。一方、ディス) IJビーータ50
に設けた気筒判別センサ54は他の波形整形器64を介
してシフトレジスタ62の他方の入力端午に接続されて
いる。電子制御ユニット26の燃料噴射指令信号出力部
およびシフトレジスタ62の出力部はANDゲート66
 a 〜66 dの入力部に夫々接続されている。各A
NDゲート66a〜66dは抵抗を介してトランジスタ
681〜68dのベースに接続されている。各トランジ
スタ681〜68dのコレクタは各燃料噴射弁のソレノ
イド70a〜7(lを介して電源に接続され、エミッタ
は接地されている。なお、ソレノイド7゜aは111番
気筒に、70bk’;1第2番気筒に、7゜Cは第3番
気筒に、70dj’!第4番気筒に夫々対応している。
According to the present invention, each of the fuel injection valves 34a to 34d is operated sequentially according to the firing order by an injection valve drive circuit 56.6 FIG. 3 is a block diagram of an electronically controlled fuel injection system including this injection valve drive circuit 56. In the figure, the distributor 50
The ignition pulse detection sensor 52 (see FIG. 1) is connected to the electronic control unit 26 and one input terminal of the shift register 62 via a waveform shaper 582 and a flip 70 knob 60. On the other hand, Dis) IJ beater 50
The cylinder discrimination sensor 54 provided in the shift register 62 is connected to the other input terminal of the shift register 62 via another waveform shaper 64. The fuel injection command signal output section of the electronic control unit 26 and the output section of the shift register 62 are connected to an AND gate 66.
They are connected to input sections a to 66d, respectively. Each A
ND gates 66a-66d are connected to the bases of transistors 681-68d via resistors. The collectors of the transistors 681 to 68d are connected to the power supply via the solenoids 70a to 7(l) of each fuel injection valve, and the emitters are grounded. 7°C corresponds to the No. 2 cylinder, 7°C corresponds to the No. 3 cylinder, and 70dj'! corresponds to the No. 4 cylinder.

次に纂4図以下の図面を参照してこの電子制御式燃料噴
射装置の作動を説明する。エンジンのクランク軸に連動
してディストリビユータ5oの点火パルス発生用ロータ
が回転するlこ伴い点火パルス検出センサ52は電気信
号を出力する。この電気信号を波形整形器58で整形し
てIF5図(a)のパルス信号を得る。このパルス信号
を7リツプ70ツブ60で分周してg4図(b)のパル
ス信号を得てこれをシフトレジスタ62の一方の端子に
入力する。シフトレジスタの他方の端子には気筒判別セ
ンサ54からの信号をシフトパルスとして入力する。こ
のため第4図(b)のパルス信号は順次右方にシフトさ
れ、シフトレジスタ62は各ANDゲート66に対して
第4図(c)〜(f)のいずれか対応するパルス信号を
出力する。他方、電子制御ユニット26は周知の如くエ
ア70メータ18からの信号と点火信号によって噴射量
を決定し、ANDゲート66に向って篤4図(g)に示
した燃料噴射指令信号を出力している。したがりて、各
ANDゲート66a〜66dはIF5図(a) 〜(f
)のパルスと同図(g)のパルスが重複する時期にのみ
@11の信号を出力する。この出力信号にトリツガされ
て各トランジスタのコレクタとエミッタが導通し、燃料
噴射弁のソレノイド70a〜704に電流が流れて燃料
が噴射される。籐3図において燃料噴射弁のソレノイド
は上よりagl、纂3、IF4、第2気筒のものに対応
して8つ、各気筒の点火もこの順序で行われるので、燃
料の噴射も点火順序に従りて行われろことになる。この
状態は従来の方式による場合と対比して示した85図の
噴射タイミングチャートから明らかであろう。
Next, the operation of this electronically controlled fuel injection system will be explained with reference to the following drawings. As the ignition pulse generating rotor of the distributor 5o rotates in conjunction with the crankshaft of the engine, the ignition pulse detection sensor 52 outputs an electrical signal. This electric signal is shaped by a waveform shaper 58 to obtain a pulse signal shown in IF5 diagram (a). This pulse signal is frequency-divided by 7 rip 70 lub 60 to obtain the pulse signal shown in FIG. 4(b), which is input to one terminal of the shift register 62. A signal from the cylinder discrimination sensor 54 is input as a shift pulse to the other terminal of the shift register. Therefore, the pulse signals in FIG. 4(b) are sequentially shifted to the right, and the shift register 62 outputs a corresponding pulse signal to each AND gate 66 in any one of FIG. 4(c) to (f). . On the other hand, as is well known, the electronic control unit 26 determines the injection amount based on the signal from the air meter 18 and the ignition signal, and outputs the fuel injection command signal shown in FIG. 4(g) to the AND gate 66. There is. Therefore, each AND gate 66a to 66d corresponds to the IF5 diagram (a) to (f
The signal @11 is output only when the pulse shown in ) and the pulse shown in (g) of the figure overlap. Triggered by this output signal, the collector and emitter of each transistor are brought into conduction, current flows through the solenoids 70a to 704 of the fuel injection valves, and fuel is injected. In Figure 3, there are 8 fuel injector solenoids corresponding to those in the AGL, 3rd, IF4, and 2nd cylinders from the top, and each cylinder is ignited in this order, so the fuel injection is also in the ignition order. Therefore, it will be done accordingly. This state will be clear from the injection timing chart in FIG. 85, which shows a comparison with the conventional method.

従来の電子制御式燃料噴射システムlこ上記強誘引乱流
発生方式を組合せた場合には噴流ポートおよび連通路を
介して燃料が廻り込むので各気筒の空燃比はII!6図
(a)に示すように変動があつた。
When the conventional electronically controlled fuel injection system is combined with the above-mentioned forced attraction turbulence generation method, the fuel circulates through the jet port and the communication passage, so the air-fuel ratio of each cylinder is II! There were fluctuations as shown in Figure 6(a).

本発明は各気筒の燃料噴射弁を点火順序に従って順次作
動させるので成る気筒が吸気行程にある時他の気筒の吸
気ポートから噴流ポートおよび連通路を介して廻り込ん
でくる混合気の条件はとの気筒についても同等の条件と
なる。このため、各気筒の空燃比は第6図(b) gこ
示したよう番こ均一となり、低速低負荷運転時および低
速高負荷運転時にトルク変動を最小にすることができる
The present invention sequentially operates the fuel injection valves of each cylinder according to the ignition order, so that when a cylinder is in its intake stroke, the conditions of the air-fuel mixture coming from the intake port of another cylinder through the jet port and the communication passage are as follows. The same conditions apply to the cylinders. Therefore, the air-fuel ratio of each cylinder becomes uniform as shown in FIG. 6(b), and torque fluctuations can be minimized during low-speed, low-load operation and during low-speed, high-load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子制御式燃料噴射装置を備えた4気筒エンジ
ンの全体配置図、第2図は第1図の1−■断面図、鎮3
図は噴射弁駆動回路のブロック図、纂4図はパルス信号
の経時変化を示す波形図、纂5図は噴射タイミングチャ
ート、纂6図は空燃比の変動を比較するグラフである。 12・・・I&fiマニホールド、15・・・吸気マニ
ホールド分校管、20.・・スロットルバルブ、24・
・・吸気ポート、26・・・電子制御ユニット、34・
・燃料噴射弁、40・・・第2吸気絞弁、44・・・噴
流ポート、48・・連通路、56・・・噴射弁駆動回路
、60・・7リツプ70ツブ、62・・シフトレジスタ
、66・・・ANDゲート、68・・・トランジスタ、
70・・・燃料噴射弁のソレノイド。 特許出顯人 トヨタ自動車工業株式会社 特許出願代理人 弁理士  青 木   朗 弁理士 西舘和之 弁理士 吉田正行 弁理士  山 口 昭 之 第4図 (9) −−r1−一「1−−F−−−ロu第51!i
0 第6図 気量ilF号       気筒番号
Figure 1 is an overall layout of a four-cylinder engine equipped with an electronically controlled fuel injection system, Figure 2 is a sectional view taken along line 1-■ in Figure 1, and
Figure 4 is a block diagram of the injection valve drive circuit, Figure 4 is a waveform diagram showing changes in pulse signals over time, Figure 5 is an injection timing chart, and Figure 6 is a graph comparing air-fuel ratio fluctuations. 12...I&fi manifold, 15...Intake manifold branch pipe, 20.・・Throttle valve, 24・
...Intake port, 26...Electronic control unit, 34.
・Fuel injection valve, 40...Second intake throttle valve, 44...Jet port, 48...Communication path, 56...Injection valve drive circuit, 60...7 lip 70 knob, 62...shift register , 66...AND gate, 68...transistor,
70...Fuel injection valve solenoid. Patent Issuer Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Masayuki Yoshida Akira Yamaguchi Figure 4 (9) --r1-1 "1--F- --Ro u No. 51!i
0 Figure 6 Volume ilF Cylinder number

Claims (1)

【特許請求の範囲】[Claims] 多気筒内燃機関の主吸気絞弁の下流において各吸気通路
に第2の吸気絞弁を夫々設けると共に、吸気弁近傍にお
いて各気筒の吸気ポート内に開口する小径の噴流ボート
を各気筒ごとに設け、上記噴流ボートを共通の連通管に
よって互いに連通し、もって機関の低速運転時に3いて
成る気筒が吸入行程になりだときには吸入行程にない他
の気筒の吸気ポートから吸気を誘引して該吸入行程にあ
る気筒の吸気ポートに該噴流ボートから吸気を噴出せし
め得るようにした多気筒内燃機関のための電子制御式燃
料噴射装置において、各気筒の燃料噴射弁は各気筒の点
火順序に従りて順次に作動させるようにしたことを特徴
とする多気筒内燃機関の電子制御式燃料噴射装置。
A second intake throttle valve is provided in each intake passage downstream of the main intake throttle valve of a multi-cylinder internal combustion engine, and a small diameter jet boat that opens into the intake port of each cylinder is provided for each cylinder near the intake valve. , the jet boats are communicated with each other through a common communication pipe, so that when the three cylinders are on the suction stroke when the engine is running at low speed, intake air is induced from the intake ports of other cylinders that are not on the suction stroke to complete the suction stroke. In an electronically controlled fuel injection device for a multi-cylinder internal combustion engine, the fuel injection valve of each cylinder is configured to inject intake air from the jet boat into the intake port of the cylinder located in the cylinder, and the fuel injection valve of each cylinder is configured to An electronically controlled fuel injection system for a multi-cylinder internal combustion engine, characterized in that the fuel injection system operates sequentially.
JP56117144A 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine Granted JPS5828547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117144A JPS5828547A (en) 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117144A JPS5828547A (en) 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5828547A true JPS5828547A (en) 1983-02-19
JPH0245026B2 JPH0245026B2 (en) 1990-10-08

Family

ID=14704543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117144A Granted JPS5828547A (en) 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364499A (en) * 2003-06-04 2004-12-24 Lg Electronics Inc Outer stator of motor for linear compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152712A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Injection type fuel feeder for 6-cylinder engine
JPS5525547A (en) * 1978-08-10 1980-02-23 Toyota Motor Corp Suction device of multicylinder internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152712A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Injection type fuel feeder for 6-cylinder engine
JPS5525547A (en) * 1978-08-10 1980-02-23 Toyota Motor Corp Suction device of multicylinder internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364499A (en) * 2003-06-04 2004-12-24 Lg Electronics Inc Outer stator of motor for linear compressor

Also Published As

Publication number Publication date
JPH0245026B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
US4612903A (en) Induction system for internal combustion engine having multiple inlet valves
US6634333B2 (en) Direct injection type internal combustion engine
JP5362028B2 (en) Internal combustion engine
JP3250475B2 (en) Control device for in-cylinder injection type internal combustion engine
JPH076395B2 (en) Internal combustion engine intake system
US20140165960A1 (en) Variable intake manifold for internal combustion engine and variable air intake device using the same
JP3511384B2 (en) Engine intake system
JPS6056261B2 (en) Fuel-injected multi-cylinder internal combustion engine
JP2009002191A (en) Intake control device of internal combustion engine
JPS5828547A (en) Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine
EP0235814A1 (en) Fuel injecting apparatus for internal combustion engine
JPH10339225A (en) Intake device for on vehicle internal combustion engine
JP3386588B2 (en) Engine intake control device
JPS5828550A (en) Electronically controlled fuel injector for multicylinder internal combustion engine with auxiliary intake passages
JPS5828548A (en) Electronically controlled fuel injector for multicylinder internal-conbustion engine
JPH0245029B2 (en)
JPH11351012A (en) Direct cylinder injection type spark ignition engine
JPH10231729A (en) Intake device for internal combustion engine
JPH0486351A (en) Fuel injection method of engine
JP2001295712A (en) Intake system structure of internal combustion engine with egr device
JP2882265B2 (en) Intake device for internal combustion engine
JPH06213081A (en) Exhaust gas recirculation system of engine
JPS59147867A (en) Fuel injection type internal-combustion engine
JPS6079136A (en) Intake system for engine
JPS6036724A (en) Intake apparatus for internal combustion engine