JPH0245026B2 - - Google Patents

Info

Publication number
JPH0245026B2
JPH0245026B2 JP56117144A JP11714481A JPH0245026B2 JP H0245026 B2 JPH0245026 B2 JP H0245026B2 JP 56117144 A JP56117144 A JP 56117144A JP 11714481 A JP11714481 A JP 11714481A JP H0245026 B2 JPH0245026 B2 JP H0245026B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
fuel
port
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56117144A
Other languages
Japanese (ja)
Other versions
JPS5828547A (en
Inventor
Hidetaka Nohira
Hideaki Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56117144A priority Critical patent/JPS5828547A/en
Publication of JPS5828547A publication Critical patent/JPS5828547A/en
Publication of JPH0245026B2 publication Critical patent/JPH0245026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は火花点火式内燃機関の燃料供給技術に
係り、より詳しくは、多気筒内燃機関の電子制御
式燃料噴射システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply technology for a spark-ignition internal combustion engine, and more particularly to an electronically controlled fuel injection system for a multi-cylinder internal combustion engine.

火花点火式内燃機関の燃料供給方式には大別し
て気化器による方式と燃料噴射弁による方式があ
る。後者は比較的最近開発された技術で、排気ガ
ス対策その他諸種の見地から近年注目されてい
る。すなわち、火花点火式内燃機関における燃料
噴射方式の主たる利点は、各気筒の吸気ポートご
とに夫々一個の燃料噴射弁を設け各噴射弁には互
いに等量の燃料を噴射させることにより各燃焼室
への燃料供給量を均一化することができるので、
気化器による方式に固有の燃料の気筒間分配の問
題が解決され、その結果エンジンをより稀薄(リ
ーン)な燃焼用混合物で運転することを可能にし
てHC、COのような有害な未燃成生物の発生を低
減することができることにある。燃料噴射弁の作
動方式には噴射弁から連続的に燃料を噴射させる
連続噴射方式と間欠的に噴射を行わせるパルス噴
射方式とがある。後者の方式においてはソレノイ
ドにより開閉する電磁式燃料噴射弁が使用され、
このソレノイドは一般にマイクロコンピユータを
内蔵した電子制御ユニツトからのパルスの形の噴
射指令によつて励起されるようになつている。か
かる方式は電子制御式燃料噴射方式(EFI)とい
われるもので、本発明が対象とする技術もこれに
属する。従来の電子制御式燃料噴射方式において
は、燃料噴射時期はすべての燃料噴射弁について
同時、すなわち燃料が一斉に噴射されるようにな
つており(同時噴射方式)、噴射の回数はエンジ
ンの各作動サイクル当り1回もしくは2回であ
る。
Fuel supply methods for spark ignition internal combustion engines can be roughly divided into two types: a method using a carburetor and a method using a fuel injection valve. The latter is a relatively recently developed technology that has been attracting attention in recent years from various viewpoints including exhaust gas countermeasures. In other words, the main advantage of the fuel injection method in spark-ignition internal combustion engines is that one fuel injection valve is provided for each intake port of each cylinder, and each injection valve injects the same amount of fuel into each combustion chamber. It is possible to equalize the fuel supply amount of
The problem of fuel distribution between cylinders inherent in carburetor systems is resolved, allowing the engine to operate with a leaner combustion mixture and eliminating harmful unburned compounds such as HC and CO. The reason is that it can reduce the occurrence of living organisms. There are two types of operating methods for fuel injection valves: a continuous injection method in which fuel is continuously injected from the injector, and a pulse injection method in which fuel is injected intermittently. The latter method uses an electromagnetic fuel injection valve that is opened and closed by a solenoid.
This solenoid is generally energized by injection commands in the form of pulses from an electronic control unit containing a microcomputer. This method is called an electronically controlled fuel injection method (EFI), and the technology targeted by the present invention also belongs to this. In conventional electronically controlled fuel injection systems, the fuel injection timing is set at the same time for all fuel injection valves, that is, the fuel is injected all at once (simultaneous injection system), and the number of injections depends on each engine operation. Once or twice per cycle.

他方、燃料噴射方式であるか気化器方式である
かを問わず今日のエンジンにおいては、高負荷高
速運転時における出力をできるだけ大きくするた
めに吸気ポートのプロフイルは一般に比較的直径
が大きくて真直ぐな通気抵抗の小さい形状に設計
されている。ところが、吸気ポートの形状をこの
ようにした場合には低速低負荷運転時および低速
高負荷運転時に燃焼室内に吸入される混合気中に
十分な乱流が発生せず、火炎伝播速度を高めるこ
とができない。低速低負荷運転時に吸気混合気に
強度の乱流を発生させる手法としては、吸気ポー
トをヘリカル形状にしたり或いはシユラウド弁を
用いたりして燃焼室内に強制的に旋回流を発生さ
せる手法があるが、これらの手法においては吸入
混合気流に対する通気抵抗が増大するため高速高
負荷運転時における充填効率が低下するという問
題がある。そこで、気化器方式のエンジンにおい
て、主吸気絞弁の下流において吸気マニホルドの
各分枝管内の各吸気通路に第2の吸気絞弁を個々
に設けると共に、吸気弁近傍において各気筒の吸
気ポート内に開口する小径の噴流ポートを各気筒
ごとに設け、上記噴流ポートを共通の連通管によ
つて互いに連通し、もつて機関の低速運転時にお
いて或る気筒が吸気行程になつた時には吸気行程
にない他の気筒の吸気ポートから吸気を誘引して
該吸気行程にある気筒の吸気ポートに該噴流ポー
トから空気を噴出せしめて燃焼室内に強度の乱流
を発生させ、これによつて低速運転時の燃焼改善
を行いつつ高速運転時の出力を確保することが提
案されている(特開昭55−25547)。この方式を以
下では便宜上強誘引乱流発生方式と略称すること
とする。
On the other hand, in today's engines, whether fuel-injected or carburetor-based, the intake port profile is generally relatively large in diameter and straight in order to maximize power output during high-load, high-speed operation. Designed to have a shape with low ventilation resistance. However, when the intake port is shaped like this, sufficient turbulence is not generated in the air-fuel mixture sucked into the combustion chamber during low-speed, low-load operation and low-speed, high-load operation, which increases the flame propagation speed. I can't. Methods for generating strong turbulence in the intake air-fuel mixture during low-speed, low-load operation include creating a helical intake port or using a shroud valve to forcefully generate a swirling flow within the combustion chamber. However, these methods have a problem in that the charging efficiency during high-speed, high-load operation decreases because the ventilation resistance to the intake air mixture increases. Therefore, in a carburetor type engine, a second intake throttle valve is individually provided in each intake passage in each branch pipe of the intake manifold downstream of the main intake throttle valve, and a second intake throttle valve is individually provided in each intake passage in each branch pipe of the intake manifold, and a second intake throttle valve is installed in each intake port of each cylinder near the intake valve. Each cylinder is provided with a small-diameter jet port that opens into the cylinder, and the jet ports are communicated with each other through a common communication pipe, so that when a certain cylinder enters the intake stroke during low-speed operation of the engine, the jet port enters the intake stroke. Intake air is induced from the intake ports of other cylinders that are currently in the intake stroke, and the air is jetted from the jet ports to the intake ports of the cylinders that are in the intake stroke, thereby generating strong turbulence in the combustion chamber, thereby causing a strong turbulent flow during low-speed operation. It has been proposed to secure output during high-speed operation while improving combustion of the engine (Japanese Patent Laid-Open No. 55-25547). For convenience, this method will be abbreviated as the forcible attraction turbulence generation method hereinafter.

ところで、従来の気化器を有するエンジンに上
記強誘引乱流発生方式を応用する場合には、噴流
ポートは気化器の主絞り弁の下流にあり、気化器
において均質な混合気が形成されるため、混合気
が各噴流ポートに分流しても各気筒間の燃料分配
の悪化は生じない。ところが、吸気マニホールド
の各分枝管又は個々の吸気ポートに燃料を同時噴
射する燃料噴射方式と上記強誘引乱流発生方式と
を組合せると、気筒間の燃料分配が悪化し、誘引
乱流による燃焼改善効果が気筒間の空燃比の変動
に減殺されてエンジンのトルク変動が増大すると
いう不具合があつた。
By the way, when applying the above forced turbulence generation method to an engine with a conventional carburetor, the jet port is located downstream of the main throttle valve of the carburetor, and a homogeneous air-fuel mixture is formed in the carburetor. Even if the air-fuel mixture is divided into each jet port, the fuel distribution between the cylinders will not deteriorate. However, when a fuel injection method that simultaneously injects fuel into each branch pipe of the intake manifold or individual intake ports is combined with the above-mentioned forced turbulence generation method, the fuel distribution between the cylinders deteriorates and the induced turbulence There was a problem in that the combustion improvement effect was attenuated by the fluctuations in the air-fuel ratio between cylinders, resulting in increased engine torque fluctuations.

本発明は上記不具合を解消することを目的とす
るものであつて、電子制御式燃料噴射システムを
上記強誘引乱流発生方法と組合せたときにも燃料
分配の悪化しない燃料供給装置を提供することに
よつて、高速高負荷運転時の出力を確保するとと
もに低速低負荷運転時および低速高負荷運転時の
トルク変動を防止しより稀薄(リーン)な燃焼用
混合物でエンジンを運転することを可能にして燃
費の改善と有害排出ガス成分の低減を実現するこ
とを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a fuel supply device that does not cause deterioration in fuel distribution even when an electronically controlled fuel injection system is combined with the above-mentioned forcibly induced turbulent flow generation method. This ensures output during high-speed, high-load operation, prevents torque fluctuations during low-speed, low-load operation, and low-speed, high-load operation, and enables the engine to operate with a leaner combustion mixture. The aim is to improve fuel efficiency and reduce harmful exhaust gas components.

本発明は、上記燃料分配の悪化は、一定時期に
同時噴射され各気筒の吸気ポート内に滞留してい
る燃料が或る気筒が吸気行程になつた時に噴流ポ
ートならびに連通管を介して廻り込んでその気筒
に吸入されその結果後続して順次吸気行程に入る
他の気筒の吸入燃料量が漸減することによるもの
であるという知見に立脚するもので、本発明はか
かる事態を防止するため、多気筒内燃機関の主吸
気絞弁の下流において各吸気通路に第2の吸気絞
弁を設けると共に、吸気弁近傍において各気筒の
吸気ポート内に開口する小径の噴流ポートを各気
筒ごとに設け、上記噴流ポートを共通の連通管に
よつて互いに連通し、もつて上記第2の吸気絞弁
をほぼ全閉とする機関の低速運転時において或る
気筒が吸入行程になつたときには吸入行程にない
他の気筒の吸気ポートから吸気を誘引して上記吸
入行程にある気筒の吸気ポートに上記噴流ポート
から吸気を噴出させるようにし、さらに、各気筒
の上記吸気ポート内の上記第2の吸気絞弁と上記
噴流ポートの開口との間に開口するように各気筒
のための燃料噴射弁をそれぞれ設けると共に、上
記各気筒の燃料噴射弁が各気筒の点火順序に従つ
て順次に作動するように構成したことを特徴とす
る多気筒内燃機関の電子制御式燃料噴射装置を提
案するものである。
According to the present invention, the above deterioration in fuel distribution is caused by fuel that is injected simultaneously at a certain time and remains in the intake port of each cylinder, and when a certain cylinder enters the intake stroke, it circulates through the jet port and the communication pipe. This is based on the knowledge that this is due to the fact that the amount of fuel sucked into that cylinder and as a result, the amount of fuel sucked into the other cylinders that subsequently enter the intake stroke sequentially decreases gradually. A second intake throttle valve is provided in each intake passage downstream of the main intake throttle valve of the internal combustion engine, and a small diameter jet port that opens into the intake port of each cylinder near the intake valve is provided for each cylinder. The jet ports are communicated with each other through a common communication pipe, and the second intake throttle valve is almost fully closed.When the engine is operated at low speed, when a certain cylinder is in the suction stroke, other cylinders are not in the suction stroke. The intake air is induced from the intake ports of the cylinders so that the intake air is jetted from the jet ports to the intake ports of the cylinders in the intake stroke, and the second intake throttle valves in the intake ports of each cylinder A fuel injection valve is provided for each cylinder so as to open between the opening of the jet port, and the fuel injection valve of each cylinder is configured to operate sequentially according to the ignition order of each cylinder. The present invention proposes an electronically controlled fuel injection device for a multi-cylinder internal combustion engine characterized by the following features.

以下、添付図面を参照して実施例を説明する。 Hereinafter, embodiments will be described with reference to the accompanying drawings.

第1図は本発明の電子制御式燃料噴射システム
を具えたエンジンの全体配置を示す図、第2図は
第1図の−断面図である。図は4気筒エンジ
ンを示すもので、周知のようにシリンダボア2a
〜2dを形成したシリンダブロツク4の上には動
弁系と吸排気ポートを具えたシリンダヘツド6が
装着してあり、シリンダボア2とその中で往復動
するピストン8とシリンダヘツド6との間には燃
焼室10が形成されている。シリンダヘツド6の
側面には吸気マニホールド12およびサージタン
ク14が順次に固着されており、この吸気マニホ
ールド12はシリンダヘツド6に接する基部13
と該基部から延長する4つの分枝管15a〜15
dとから成る。吸入空気はエアクリーナ16、吸
入空気流量を計測するためのエアフローメータ1
8、スロツトルバルブ20を具えたスロツトルボ
デー22を経てサージタンク14に導かれ、そこ
から吸気マニホールド12を介してシリンダヘツ
ド6内に形成された吸気ポート24を経て燃焼室
10に吸入されるようになつている。26はマイ
クロコンピユータを内蔵した周知の電子制御ユニ
ツト(ECU)で、エアフローメータ18からの
吸気量信号、エアフローメータに設けた吸気温セ
ンサ28からの吸気温信号、スロツトルポジシヨ
ンセンサ30からの信号、冷却水温センサ32か
らの信号、エンジン回転数センサ(図示せず)か
らの信号、等を入力して燃料噴射量を演算し燃料
噴射指令信号を出力するためのものである。各燃
料噴射弁34には燃料ポンプ(図示せず)から燃
料ホース36およびデリベリパイプ38を経て燃
料が供給される。燃料噴射弁34はソレノイドを
有する公知の電磁式噴射弁で、電子制御ユニツト
26からの噴射指令信号に応じて燃料を吸気ポー
ト24に向つて噴射する。
FIG. 1 is a diagram showing the overall arrangement of an engine equipped with an electronically controlled fuel injection system according to the present invention, and FIG. 2 is a sectional view taken along the line taken from FIG. 1. The figure shows a four-cylinder engine, and as is well known, cylinder bore 2a
A cylinder head 6 equipped with a valve train and an intake/exhaust port is mounted on the cylinder block 4 forming the cylinder bore 2, and a cylinder head 6 is provided between the cylinder bore 2, the piston 8 that reciprocates therein, and the cylinder head 6. A combustion chamber 10 is formed. An intake manifold 12 and a surge tank 14 are sequentially fixed to the side surface of the cylinder head 6, and the intake manifold 12 has a base 13 that contacts the cylinder head 6.
and four branch pipes 15a to 15 extending from the base.
It consists of d. An air cleaner 16 is used for intake air, and an air flow meter 1 is used to measure intake air flow rate.
8. The air is introduced into the surge tank 14 through the throttle body 22 equipped with the throttle valve 20, and from there is inhaled into the combustion chamber 10 via the intake manifold 12 and through the intake port 24 formed in the cylinder head 6. It's summery. 26 is a well-known electronic control unit (ECU) with a built-in microcomputer, which receives the intake air amount signal from the air flow meter 18, the intake temperature signal from the intake air temperature sensor 28 provided in the air flow meter, and the signal from the throttle position sensor 30. , a signal from the cooling water temperature sensor 32, a signal from an engine rotation speed sensor (not shown), etc. are inputted to calculate the fuel injection amount and output a fuel injection command signal. Each fuel injection valve 34 is supplied with fuel from a fuel pump (not shown) via a fuel hose 36 and a delivery pipe 38. The fuel injection valve 34 is a known electromagnetic injection valve having a solenoid, and injects fuel toward the intake port 24 in response to an injection command signal from the electronic control unit 26.

各吸気マニホルド分枝管15には第2の吸気絞
り弁40a〜40dが設けてあり、これらは共通
の軸42により連動されるようになつている。軸
42はたとえばアクセルペダル(図示せず)にリ
ンクされており、エンジンの低負荷運転時には第
2絞り弁40を回動して分枝管15内の主空気通
路を実質上遮断し得るようになつている。一方シ
リンダヘツド6には、吸気ポート24に略々平行
に小径の噴流ポート44a〜44dが各気筒ごと
に形成されている。これらの噴流ポートは、第2
図に断面を示しかつ第1図に点線で示したところ
から明らかなように、吸気弁46の周縁に対して
略々接線方向に吸気ポート24の終端部近傍に開
口しており、空気がこれらの噴流ポート44から
噴射された時には燃焼室内に強度の乱流が発生せ
られるようになつている。各噴流ポート44は吸
気マニホルド12の基部13内に形成した長手方
向に延長する連通路48(第2図参照)によつて
互いに連通している。このような構成であるか
ら、エンジンの低速運転時に第2絞弁40a〜4
0dが全閉された時において或る気筒が吸気行程
に入つた時には、その気筒の噴流ポート44には
連通路48ならびに吸気行程にない他の気筒の噴
流ポートを経由して当該他の気筒の吸気ポートか
ら混合気が誘引され、吸気行程にある気筒の吸気
ポートにその噴流ポートから噴出せられる。この
ため、その気筒の燃焼室内には強度の乱流が発生
する。この関係は他の気筒が順次吸気行程に入つ
た時も同様である。第1図下方に参照番号50で
示したのはデイストリビユータで、その回転軸に
は8つの突起を有する星形の点火パルス発生用ロ
ータと1つの突起を有する気筒判別ロータが取付
けてあり、他方、デイストリビユータ50のハウ
ジングには上記各ロータに対応する位置において
点火パルス検出センサ52および気筒判別センサ
54が設置されている。
Each intake manifold branch pipe 15 is provided with a second intake throttle valve 40a to 40d, which are linked by a common shaft 42. The shaft 42 is linked, for example, to an accelerator pedal (not shown), and is configured to rotate the second throttle valve 40 to substantially block the main air passage in the branch pipe 15 during low load operation of the engine. It's summery. On the other hand, in the cylinder head 6, small-diameter jet ports 44a to 44d are formed approximately parallel to the intake port 24 for each cylinder. These jet ports are
As is clear from the cross section shown in the figure and the dotted line in FIG. 1, the intake port 24 opens near the terminal end in a direction approximately tangential to the periphery of the intake valve 46, and air flows through these ports. When injected from the jet port 44, strong turbulence is generated within the combustion chamber. Each jet port 44 communicates with one another by a longitudinally extending communication passage 48 (see FIG. 2) formed in the base 13 of the intake manifold 12. With such a configuration, the second throttle valves 40a to 4 are closed during low speed operation of the engine.
When a certain cylinder enters the intake stroke when 0d is fully closed, the jet port 44 of that cylinder receives air from the other cylinder via the communication passage 48 and the jet port of the other cylinder that is not in the intake stroke. The air-fuel mixture is drawn from the intake port and is ejected from the jet port to the intake port of the cylinder that is on the intake stroke. Therefore, strong turbulence occurs within the combustion chamber of that cylinder. This relationship holds true even when the other cylinders sequentially enter their intake strokes. At the bottom of FIG. 1, the reference number 50 indicates a distributor, and its rotating shaft has a star-shaped ignition pulse generation rotor with eight protrusions and a cylinder discrimination rotor with one protrusion. On the other hand, an ignition pulse detection sensor 52 and a cylinder discrimination sensor 54 are installed in the housing of the distributor 50 at positions corresponding to the respective rotors.

本発明に従い、各燃料噴射弁34a〜34dは
噴射弁駆動回路56によつて点火順序に従つて順
次に作動せられる。第3図はこの噴射弁駆動回路
56を含む電子制御式燃料噴射装置のブロツク図
で、デイストリビユータ50の点火パルス検出セ
ンサ52(第1図参照)は波形整形器58および
フリツプフロツプ60を介して電子制御ユニツト
26およびシフトレジスタ62の一方の入力端子
に接続されている。一方、デイストリビユータ5
0に設けた気筒判別センサ54は他の波形整形器
64を介してシフトレジスタ62の他方の入力端
子に接続されている。電子制御ユニツト26の燃
料噴射指令信号出力部およびシフトレジスタ62
の出力部はANDゲート66a〜66dの入力部
に夫々接続されている。各ANDゲート66a〜
66dは抵抗を介してトランジスタ68a〜68
dのベースに接続されている。各トランジスタ6
8a〜68dのコレクタは各燃料噴射弁のソレノ
イド70a〜70dを介して電源に接続され、エ
ミツタは接地されている。なお、ソレノイド70
aは第1番気筒に、70bは第2番気筒に、70
cは第3番気筒に、70dは第4番気筒に夫々対
応している。
In accordance with the present invention, each fuel injector 34a-34d is operated sequentially by an injector drive circuit 56 according to the firing order. FIG. 3 is a block diagram of an electronically controlled fuel injection system including this injection valve drive circuit 56, in which the ignition pulse detection sensor 52 of the distributor 50 (see FIG. 1) is connected via a waveform shaper 58 and a flip-flop 60. It is connected to one input terminal of the electronic control unit 26 and the shift register 62. On the other hand, data streamer 5
The cylinder discrimination sensor 54 provided at 0 is connected to the other input terminal of the shift register 62 via another waveform shaper 64. Fuel injection command signal output section of electronic control unit 26 and shift register 62
The output portions of are connected to the input portions of AND gates 66a to 66d, respectively. Each AND gate 66a~
66d is a transistor 68a to 68 via a resistor.
connected to the base of d. Each transistor 6
Collectors 8a to 68d are connected to a power source via solenoids 70a to 70d of each fuel injection valve, and emitters are grounded. In addition, solenoid 70
a is for the first cylinder, 70b is for the second cylinder, 70
c corresponds to the third cylinder, and 70d corresponds to the fourth cylinder.

次に第4図以下の図面を参照してこの電子制御
式燃料噴射装置の作動を説明する。エンジンのク
ランク軸に連動してデイストリビユータ50の点
火パルス発生用ロータが回転するに伴い点火パル
ス検出センサ52は電気信号を出力する。この電
気信号を波形整形器58で整形して第4図aのパ
ルス信号を得る。このパルス信号をフリツプフロ
ツプ60で分周して第4図bのパルス信号を得て
これをシフトレジスタ62の一方の端子に入力す
る。シフトレジスタの他方の端子には気筒判別セ
ンサ54からの信号をシフトパルスとして入力す
る。このため第4図bのパルス信号は順次右方に
シフトされ、シフトレジスタ62は各ANDゲー
ト66に対して第4図c〜fのいずれか対応する
パルス信号を出力する。他方、電子制御ユニツト
26は周知の如くエアフロメータ18からの信号
と点火信号によつて噴射量を決定し、ANDゲー
ト66に向つて第4図gに示した燃料噴射指令信
号を出力している。したがつて、各ANDゲート
66a〜66dは第4図c〜fのパルスと同図g
のパルスが重複する時期にのみ“1”の信号を出
力する。この出力信号にトリツガされて各トラン
ジスタのコレクタとエミツタが導通し、燃料噴射
弁のソレノイド70a〜70dに電流が流れて燃
料が噴射される。第3図において燃料噴射弁のソ
レノイドは上より第1、第3、第4、第2気筒の
ものに対応しており、各気筒の点火もこの順序で
行われるので、燃料の噴射も点火順序に従つて行
われることになる。この状態は従来の方式による
場合と対比して示した第5図の噴射タイミングチ
ヤートから明らかであろう。
Next, the operation of this electronically controlled fuel injection system will be explained with reference to the drawings from FIG. 4 onwards. As the ignition pulse generation rotor of the distributor 50 rotates in conjunction with the crankshaft of the engine, the ignition pulse detection sensor 52 outputs an electrical signal. This electrical signal is shaped by a waveform shaper 58 to obtain the pulse signal shown in FIG. 4a. This pulse signal is divided by the flip-flop 60 to obtain the pulse signal shown in FIG. 4b, which is input to one terminal of the shift register 62. A signal from the cylinder discrimination sensor 54 is input as a shift pulse to the other terminal of the shift register. Therefore, the pulse signals of FIG. 4b are sequentially shifted to the right, and the shift register 62 outputs to each AND gate 66 one of the corresponding pulse signals c to f of FIG. On the other hand, as is well known, the electronic control unit 26 determines the injection amount based on the signal from the air flow meter 18 and the ignition signal, and outputs the fuel injection command signal shown in FIG. 4g to the AND gate 66. . Therefore, each AND gate 66a-66d corresponds to the pulses c-f in FIG.
A signal of "1" is output only when the pulses overlap. Triggered by this output signal, the collector and emitter of each transistor are brought into conduction, and current flows through the solenoids 70a to 70d of the fuel injection valve, injecting fuel. In Figure 3, the solenoids of the fuel injection valves correspond to those of the first, third, fourth, and second cylinders from the top, and since each cylinder is ignited in this order, fuel injection is also performed in the ignition order. This will be done in accordance with. This condition will be clear from the injection timing chart in FIG. 5, which is shown in comparison with the conventional method.

第5図aは従来の方式による場合で、360゜間隔
の同じ時期に全気筒に対して一斉に燃料噴射を行
つているが、本発明の図示実施例の場合は、第5
図bのように、各気筒の燃料噴射弁を180゜間隔
で、各気筒の点火順序に従つて順次に作動させる
ことにより、各気筒の吸気行程と燃料の噴射時期
とを合せることを可能としている。
Fig. 5a shows a conventional system in which fuel is injected to all cylinders at the same time at 360° intervals, but in the illustrated embodiment of the present invention, the fifth
As shown in Figure b, by sequentially operating the fuel injection valves of each cylinder at 180° intervals according to the ignition order of each cylinder, it is possible to synchronize the intake stroke and fuel injection timing of each cylinder. There is.

従来の電子制御式燃料噴射システムに上記強誘
引乱流発生方式を組合せた場合には噴流ポートお
よび連通路を介して燃料が廻りこむ気筒(第5図
aに例示したクランク角180゜、540゜、900゜のよう
に、燃料噴射開始からおよそ180゜の期間内に吸気
行程が来る気筒)と、燃料の廻りこみのない気筒
(第5図aに例示したクランク角360゜、720゜のよ
うに、燃料噴射開始からおよそ180゜以上の期間経
過後に吸気行程が来る気筒)との空燃比は、第6
図aに示すように変動があつた。本発明は各気筒
の燃料噴射弁を点火順序に従つて順次作動させる
ので或る気筒が吸気行程にある時他の気筒の吸気
ポートから噴流ポートおよび連通路を介して廻り
込んでくる混合気の条件はどの気筒についても同
等の条件となる。このため、各気筒の空燃比は第
6図bに示したように均一となり、低速低負荷運
転時および低速高負荷運転時にトルク変動を最小
にすることができる。
When the above-mentioned forcibly induced turbulent flow generation method is combined with a conventional electronically controlled fuel injection system, the cylinders into which the fuel circulates through the jet ports and communication passages (crank angles of 180° and 540° as shown in Figure 5a) , 900°, where the intake stroke occurs within a period of approximately 180° from the start of fuel injection), and cylinders where fuel does not circulate (such as the crank angles of 360° and 720° illustrated in Figure 5a). The air-fuel ratio with the cylinder (in which the intake stroke comes after approximately 180° or more from the start of fuel injection) is 6th.
There were fluctuations as shown in Figure a. The present invention sequentially operates the fuel injection valves of each cylinder according to the ignition order, so when a certain cylinder is in the intake stroke, the air-fuel mixture coming from the intake port of the other cylinder via the jet port and the communication passage is The conditions are the same for all cylinders. Therefore, the air-fuel ratio of each cylinder becomes uniform as shown in FIG. 6b, and torque fluctuations can be minimized during low-speed, low-load operation and during low-speed, high-load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電子制御式燃料噴射装置を備えた4気
筒エンジンの全体配置図、第2図は第1図の−
断面図、第3図は噴射弁駆動回路のブロツク
図、第4図はパルス信号の経時変化を示す波形
図、第5図は噴射タイミングチヤート、第6図は
空燃比の変動を比較するグラフである。 12…吸気マニホールド、15…吸気マニホー
ルド分枝管、20…スロツトルバルブ、24…吸
気ポート、26…電子制御ユニツト、34…燃料
噴射弁、40…第2吸気絞弁、44…噴流ポー
ト、48…連通路、56…噴射弁駆動回路、60
…フリツプフロツプ、62…シフトレジスタ、6
6…ANDゲート、68…トランジスタ、70…
燃料噴射弁のソレノイド。
Figure 1 is an overall layout of a four-cylinder engine equipped with an electronically controlled fuel injection system, and Figure 2 is the same as in Figure 1.
Figure 3 is a block diagram of the injection valve drive circuit, Figure 4 is a waveform diagram showing changes in pulse signals over time, Figure 5 is an injection timing chart, and Figure 6 is a graph comparing air-fuel ratio fluctuations. be. 12... Intake manifold, 15... Intake manifold branch pipe, 20... Throttle valve, 24... Intake port, 26... Electronic control unit, 34... Fuel injection valve, 40... Second intake throttle valve, 44... Jet port, 48 ...Communication path, 56...Injection valve drive circuit, 60
...Flip-flop, 62...Shift register, 6
6...AND gate, 68...transistor, 70...
Fuel injection valve solenoid.

Claims (1)

【特許請求の範囲】[Claims] 1 多気筒内燃機関の主吸気絞弁の下流において
各吸気通路に第2の吸気絞弁を設けると共に、吸
気弁近傍において各気筒の吸気ポート内に開口す
る小径の噴流ポートを各気筒ごとに設け、上記噴
流ポートを共通の連通管によつて互いに連通し、
もつて上記第2の吸気絞弁をほぼ全閉とする機関
の低速運転時において或る気筒が吸入行程になつ
たときには吸入行程にない他の気筒の吸気ポート
から吸気を誘引して上記吸入行程にある気筒の吸
気ポートに上記噴流ポートから吸気を噴出させる
ようにし、さらに、各気筒の上記吸気ポート内の
上記第2の吸気絞弁と上記噴流ポートの開口との
間に開口するように各気筒のための燃料噴射弁を
それぞれ設けると共に、上記各気筒の燃料噴射弁
が各気筒の点火順序に従つて順次に作動するよう
に構成したことを特徴とする多気筒内燃機関の電
子制御式燃料噴射装置。
1 A second intake throttle valve is provided in each intake passage downstream of the main intake throttle valve of a multi-cylinder internal combustion engine, and a small diameter jet port that opens into the intake port of each cylinder is provided for each cylinder near the intake valve. , the jet ports are communicated with each other by a common communication pipe,
When the second intake throttle valve is substantially fully closed during low-speed operation of the engine, when a certain cylinder enters the intake stroke, intake air is induced from the intake ports of other cylinders that are not in the intake stroke to complete the intake stroke. The intake air is ejected from the jet port to the intake port of the cylinder located in the cylinder, and each cylinder is configured to open between the second intake throttle valve in the intake port of each cylinder and the opening of the jet port. Electronically controlled fuel for a multi-cylinder internal combustion engine, characterized in that fuel injection valves are provided for each cylinder, and the fuel injection valves of each cylinder are configured to operate sequentially according to the ignition order of each cylinder. Injection device.
JP56117144A 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine Granted JPS5828547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117144A JPS5828547A (en) 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117144A JPS5828547A (en) 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5828547A JPS5828547A (en) 1983-02-19
JPH0245026B2 true JPH0245026B2 (en) 1990-10-08

Family

ID=14704543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117144A Granted JPS5828547A (en) 1981-07-28 1981-07-28 Electronically controlled fuel injection equipment in multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5828547A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529901B1 (en) * 2003-06-04 2005-11-22 엘지전자 주식회사 The linear motor of a linear compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152712A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Injection type fuel feeder for 6-cylinder engine
JPS5525547A (en) * 1978-08-10 1980-02-23 Toyota Motor Corp Suction device of multicylinder internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152712A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Injection type fuel feeder for 6-cylinder engine
JPS5525547A (en) * 1978-08-10 1980-02-23 Toyota Motor Corp Suction device of multicylinder internal combustion engine

Also Published As

Publication number Publication date
JPS5828547A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
JP2580823B2 (en) Stratified combustion internal combustion engine
US6725649B2 (en) Control apparatus for a direct-injection, spark-ignition engine
JP2002276418A (en) Cylinder injection engine having turbo supercharger, and its control method
JPS6293481A (en) Method of supplying engine with fuel
JPH0821342A (en) Fuel injection type engine
JP2000008913A (en) Variable mixture concentration distribution control method for spark-ignition engine
JP2824663B2 (en) Fuel supply device for internal combustion engine
JPH0245028B2 (en)
JPH0245026B2 (en)
JP2009002191A (en) Intake control device of internal combustion engine
JPH0245029B2 (en)
JPH0245027B2 (en)
JPH0861072A (en) Intake controller for engine
JP2002371852A (en) Cylinder direct injection internal combustion engine
JPH11351012A (en) Direct cylinder injection type spark ignition engine
JPH06213081A (en) Exhaust gas recirculation system of engine
JP3269350B2 (en) In-cylinder spark ignition internal combustion engine
JPH07103078A (en) Egr device for cylinder direct injection type engine
JP2777718B2 (en) 4-stroke engine
JPS58204959A (en) Fuel feeding method for multicylinder internal-combustion engine
JPS5999044A (en) Fuel injection system for fuel injection type spark-ignition internal-combustion engine
JPH09166066A (en) Air intake pipe fuel injection type internal combustion engine
JPS58109548U (en) Internal combustion engine exhaust gas recirculation device
JPS58206815A (en) Controlling of opening and closing of intake ports for double-intake type internal-combustion engine
JPH0350265Y2 (en)