JPS5828534B2 - Dempo-Koukanyou-Setseigiyo-Souchi - Google Patents

Dempo-Koukanyou-Setseigiyo-Souchi

Info

Publication number
JPS5828534B2
JPS5828534B2 JP50144689A JP14468975A JPS5828534B2 JP S5828534 B2 JPS5828534 B2 JP S5828534B2 JP 50144689 A JP50144689 A JP 50144689A JP 14468975 A JP14468975 A JP 14468975A JP S5828534 B2 JPS5828534 B2 JP S5828534B2
Authority
JP
Japan
Prior art keywords
welding
wavelength
light
discoloration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50144689A
Other languages
Japanese (ja)
Other versions
JPS5268483A (en
Inventor
忠雄 川口
実 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP50144689A priority Critical patent/JPS5828534B2/en
Publication of JPS5268483A publication Critical patent/JPS5268483A/en
Publication of JPS5828534B2 publication Critical patent/JPS5828534B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、電縫鋼管溶接時において溶接部失色を高精度
で検出し溶接条件を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting discoloration of a welded part with high precision and controlling welding conditions during welding of electric resistance welded steel pipes.

電縫鋼管溶接時の溶接部状況(失色、温度、ピード形状
等)と溶接部の品質との間には密接な関係があり、通常
溶接部状況によって溶接条件を制御しており、このため
溶接部の状況を定量的に把握することが必要である。
There is a close relationship between the conditions of the weld zone (discoloration, temperature, bead shape, etc.) and the quality of the weld zone during welding of ERW steel pipes, and the welding conditions are normally controlled depending on the condition of the weld zone. It is necessary to quantitatively understand the situation in the department.

該溶接部状況として溶接部温度を把握する方法としては
放射赤外線量の絶対値を測定する方法があるが、この場
合溶接部形状の影響、赤外線放射効率の変動および周囲
雰囲気の影響等により測定値が変動し精度が低いという
問題があり実用的でない。
One way to understand the temperature of the weld zone is to measure the absolute value of the amount of radiated infrared rays, but in this case, the measured value is affected by the influence of the weld zone shape, fluctuations in infrared radiation efficiency, and the influence of the surrounding atmosphere. It is not practical because it has the problem of fluctuating and low accuracy.

前述のような絶対値測定の欠点を解消した測定方法とし
て失色の各波長成分の光強度を波長スペクトルとして相
対的に捕える2色温度計による方法があるが、この場合
は特定の2波長のみの相対比であるためノイズに弱く、
また動作温度によっては感度が低い。
As a measurement method that overcomes the disadvantages of absolute value measurement as mentioned above, there is a method using a two-color thermometer that relatively captures the light intensity of each wavelength component of color loss as a wavelength spectrum, but in this case, it is possible to measure only two specific wavelengths. Because it is a relative ratio, it is susceptible to noise.
Also, the sensitivity is low depending on the operating temperature.

即ち2色温度計の場合tこおいてノイズをα、検出信号
(信号十ノイズ)をT1、T2、その信号成分のみを8
1、S2とすれば温度Tは となり、ノイズ分αを除去する手段がない(もしT2−
T1= S2− S、なら赤外線絶対値測定と同じ感度
問題が起る)。
In other words, in the case of a two-color thermometer, t is the noise, α is the detection signal (signal plus noise), T1 and T2, and only the signal component is 8.
1, S2, the temperature T becomes, and there is no means to remove the noise α (if T2−
If T1=S2-S, the same sensitivity problem as infrared absolute value measurement occurs).

従って2色温度計は肉眼や赤外線温度計より劣るもので
あり、特に制Hcこ使用する場合誤動作が致命傷となる
Therefore, a two-color thermometer is inferior to a naked eye thermometer or an infrared thermometer, and malfunction can be fatal, especially when using a thermometer.

また特に電縫鋼管溶接のように高周波大電力(例えば4
50 IG(z 、 300 KW)を使用している
現場ではいくらジードルしてもある程度のノイズは消せ
ないものであり、信号の冗長度を持たない2色温度計で
は信号とノイズの分離が不可能である。
In addition, high frequency high power (e.g. 4
In the field where 50 IG (z, 300 KW) is used, a certain amount of noise cannot be erased no matter how much noise is used, and it is impossible to separate the signal and noise with a two-color thermometer that does not have signal redundancy. It is.

一方溶接後に溶接部の破壊テスト及び超音波テスト等を
行う方法もあるがフィードバック情報が遅いため、溶接
時の自動制御には適用できない。
On the other hand, there is a method of performing a destructive test and an ultrasonic test of the welded part after welding, but this method cannot be applied to automatic control during welding because the feedback information is slow.

このため従来電縫鋼管溶接時の溶接状況の把握は溶接機
の運転者が目視で行ない、失色や、ビード形状を観察し
て手動で溶接条件の制御を行っていたが、目視観察であ
るため誤差が大きい問題があった。
For this reason, conventionally, the welding conditions during welding of ERW steel pipes were visually checked by the welding machine operator, and the welding conditions were manually controlled by observing discoloration and bead shape. There was a problem with a large error.

本発明はこのような欠点を解消し電縫鋼管溶接時におい
て溶接部失色を高精度で検出し、溶接条件を制御可能に
なしたものである。
The present invention eliminates these drawbacks, detects discoloration of the welded part with high precision during welding of electric resistance welded steel pipes, and makes it possible to control welding conditions.

前記溶接機の運転者が失色を見て温度を推定できるのは
溶接部失色が黒体放射に近似しており、波長特性によっ
て温度が一義的に決ること(こ基づいている。
The reason why the operator of the welding machine can estimate the temperature by looking at the discoloration is that the discoloration of the weld zone is similar to blackbody radiation, and the temperature is uniquely determined by the wavelength characteristics (this is based on this).

従って失色の分光特性を測定すれば溶接部温度を知るこ
とができる。
Therefore, by measuring the spectral characteristics of color loss, the temperature of the weld zone can be determined.

本発明装置はこの考え方に基づき失色を分光させ、その
スペクトルを光電変換素子群によって非常に速い速度で
かつ高精度で電気的にスキャニングすることによりスペ
クトルの波長パターンを求め、この波長パターンに基づ
いて溶接条件を制御するものである。
Based on this idea, the device of the present invention separates the color loss into spectra, electrically scans the spectrum at a very high speed and with high precision using a group of photoelectric conversion elements, thereby obtaining the wavelength pattern of the spectrum, and based on this wavelength pattern. This is to control welding conditions.

即ち従来の分光器はその用途が実験室用であるため波長
分解能を高めることばかりに重点が置かれ、メカニカル
に極低速で波長スキャニングを行なっており、可祝光全
域を1回スキャニングするのに10分程度を要していた
In other words, since conventional spectrometers are used in laboratories, emphasis is placed on increasing wavelength resolution, and wavelength scanning is performed mechanically at extremely low speed, making it difficult to scan the entire visible light range once. It took about 10 minutes.

これではプロセスへの適用は殆んど望めない。In this case, there is almost no hope for application to processes.

本発明はメカニカルスキャニングに代って光電変換素子
の電気的スキャニングを行なうことによりl m5ec
(1/ 1000秒)程度で可視域をスキャニングして
分光器をプロセスで使用可能にしたものである。
The present invention performs l m5ec by performing electrical scanning of photoelectric conversion elements instead of mechanical scanning.
This system scans the visible range in about 1/1000 seconds, making it possible to use a spectrometer in the process.

以下本発明の1実施例を図面と共に説明する。An embodiment of the present invention will be described below with reference to the drawings.

7は溶接によって造管中の電縫鋼管で、スクイズロール
6によって矢印の方向へ送られながらスクイズされる。
Reference numeral 7 indicates an electric resistance welded steel pipe that is being formed by welding, and is squeezed while being fed in the direction of the arrow by a squeeze roll 6.

5は溶接部であり、該溶接部の失色は集光装置1によっ
て集光され、ファイバースコープ2を通って分光器3へ
送られる。
Reference numeral 5 denotes a welded part, and the discolored light of the welded part is collected by a condensing device 1 and sent to a spectroscope 3 through a fiberscope 2.

分光器は固定されており例えばグレーティング又はプリ
ズムが使用され該集光を波長分解する。
The spectrometer is fixed and uses, for example, a grating or a prism to wavelength-resolve the collected light.

波長分解されたスペクトルの全波長域は次に光電変換素
子群4に同時に入る。
The entire wavelength range of the wavelength-resolved spectrum then enters the photoelectric conversion element group 4 simultaneously.

該光電変換素子群4は多数(本例では512個)の光電
変換素子から構成され例えばフォトダイオードリニアア
レー、イメージデイテクク又はITVカメラ等が使用さ
れる。
The photoelectric conversion element group 4 is composed of a large number (512 in this example) of photoelectric conversion elements, and uses, for example, a photodiode linear array, an image detector, or an ITV camera.

光電変換素子群4は該スペクトルを高速で電気的にスキ
ャニング走査し、その出力は波長パターンの電気信号と
なって信号処理回路8へ入る。
The photoelectric conversion element group 4 electrically scans the spectrum at high speed, and its output becomes an electric signal with a wavelength pattern and enters the signal processing circuit 8.

該信号処理回路8でノイズ信号が除去されてスペクトル
の各波長の強度分布、すなわち真の波長パターンが求め
られ、失色に相当する温度の信号に変換される。
The signal processing circuit 8 removes the noise signal, obtains the intensity distribution of each wavelength of the spectrum, that is, the true wavelength pattern, and converts it into a temperature signal corresponding to color loss.

例えばノイズ除去は光量がほぼ零でノイズのみからなる
紫外線寄の波長域を取出すことによりノイズレベルを知
り該ノイズレベルを全波長域から減算すればよい。
For example, to remove noise, the noise level can be determined by extracting a wavelength range close to ultraviolet light, where the amount of light is almost zero and consists only of noise, and the noise level can be subtracted from the entire wavelength range.

次に波長パターンのピーク値を基準に電気信号を正規化
(ノーマライズ)し、該信号と例えば1400〜160
0℃間における20種の黒体放射の波長パターン(標準
パターン)の相対値と比較してゆき、求めた波長パター
ンに近い2種の標準パターンを選択する。
Next, the electrical signal is normalized based on the peak value of the wavelength pattern, and the signal is
The relative values of 20 types of blackbody radiation wavelength patterns (standard patterns) between 0°C are compared, and two types of standard patterns close to the determined wavelength pattern are selected.

この2種の標準パターンに対応する温度間に実測温度が
ある(なお20種の標準パターンは理論値を基に実測で
修正したものを前もって決定しておく)。
There is an actually measured temperature between the temperatures corresponding to these two types of standard patterns (note that the 20 types of standard patterns are determined in advance by correcting them by actual measurements based on theoretical values).

しかして軽度の波長パターンの異常は標準パターンを基
に修正し、重度の波長パターン異常の場合はデータをリ
ジェクトして次のデーター処理に移る。
In this way, mild wavelength pattern abnormalities are corrected based on the standard pattern, and in the case of severe wavelength pattern abnormalities, the data is rejected and the process moves on to the next data processing.

即ちこの2種の標準パターン間で最も感度が良い波長を
選び、この量の比例配分でもって詳細温度を決定する。
That is, the wavelength with the highest sensitivity is selected between these two types of standard patterns, and the detailed temperature is determined by proportionally distributing this amount.

そして信号処理回路8からの出力信号は該信号の表示装
置9および溶接条件制御回路10へ入り、該溶接条件制
御回路10から溶接条件制御信号(溶接電流、電圧、溶
接速度等)が出力され溶接制御が行われるものである。
Then, the output signal from the signal processing circuit 8 enters the signal display device 9 and the welding condition control circuit 10, and the welding condition control circuit 10 outputs welding condition control signals (welding current, voltage, welding speed, etc.) for welding. It is something that is controlled.

なお溶接制御の具体例としては第2図の如く検出された
温度と目標温度との差を求め、これに従って発信器のプ
レート電圧(Ep)を変更し、この電圧Epに従って発
信器のマツチングがとれるよう他のファクター(例えば
グリッド電圧、電流)を、真空管動作特性及び負荷回路
特性に応じて変更する。
As a specific example of welding control, as shown in Figure 2, the difference between the detected temperature and the target temperature is determined, the plate voltage (Ep) of the transmitter is changed accordingly, and the transmitter is matched according to this voltage Ep. and other factors (eg, grid voltage, current) depending on the tube operating characteristics and load circuit characteristics.

本発明は以上の如く非常に簡単な構成で電縫鋼管工場の
ように騒音、水蒸気、粉塵等の多い環境であってもノイ
ズの分離が可能であり又高精度でスキャニングでき、従
来困難であった溶接部失色による溶接制御を可能になし
たものである。
As described above, the present invention has a very simple configuration, and it is possible to separate noise even in an environment with a lot of noise, water vapor, dust, etc., such as an ERW steel pipe factory, and it is also possible to perform scanning with high precision, which was difficult to do in the past. This makes it possible to control welding by discoloring the welded part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す説明図である。 第2図は溶接制御動作の説明図である。 1・・・集光装置、2・・・ファイバースコープ、3・
・・分光器、4・・・光電変換装置、5・・・溶接部、
6・・・スクイズロール、 γ・・・電縫鋼管、 8・・・信号処理回路、 9・・・表示装置、 10・・・溶接条件制御回路。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. FIG. 2 is an explanatory diagram of the welding control operation. 1... Concentrator, 2... Fiberscope, 3...
... Spectrometer, 4... Photoelectric conversion device, 5... Welding part,
6... Squeeze roll, γ... ERW steel pipe, 8... Signal processing circuit, 9... Display device, 10... Welding condition control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電縫鋼管溶接部の失色を集光する集光装着と、ファ
イバースコープにより該集光装置に接続され、集光され
た光を分光する固定された分光器と、該分光されたスペ
クトルの全波長域を同時に受光して高速で電気的に走査
し該スペクトルの波長パターン出力を生じる光電変換素
子群と、該光電変換素子群の出力を受けて、検知したノ
イズレベルを全波長域の該出力に対して減算し、その減
算結果を正規化し、所定温度範囲の黒体放射の標準パタ
ーン群と比較して失色温度を求める信号処理回路と、該
信号処理回路の出力を受けて溶接条件制御信号を出力す
る溶接条件制御回路を備えることを特徴とする電縫鋼管
溶接制御回路。
1. A light focusing device that focuses the discoloration of the welded portion of the ERW steel pipe, a fixed spectrometer that is connected to the light focusing device through a fiber scope and separates the focused light, and a fixed spectrometer that separates the focused light. A group of photoelectric conversion elements that simultaneously receive light in a wavelength range and electrically scan at high speed to generate a wavelength pattern output of the spectrum; A signal processing circuit that calculates the discoloration temperature by normalizing the subtraction result and comparing it with a standard pattern group of black body radiation in a predetermined temperature range, and a welding condition control signal that receives the output of the signal processing circuit. An ERW steel pipe welding control circuit comprising a welding condition control circuit that outputs.
JP50144689A 1975-12-04 1975-12-04 Dempo-Koukanyou-Setseigiyo-Souchi Expired JPS5828534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50144689A JPS5828534B2 (en) 1975-12-04 1975-12-04 Dempo-Koukanyou-Setseigiyo-Souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50144689A JPS5828534B2 (en) 1975-12-04 1975-12-04 Dempo-Koukanyou-Setseigiyo-Souchi

Publications (2)

Publication Number Publication Date
JPS5268483A JPS5268483A (en) 1977-06-07
JPS5828534B2 true JPS5828534B2 (en) 1983-06-16

Family

ID=15367960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50144689A Expired JPS5828534B2 (en) 1975-12-04 1975-12-04 Dempo-Koukanyou-Setseigiyo-Souchi

Country Status (1)

Country Link
JP (1) JPS5828534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130427U (en) * 1982-02-27 1983-09-03 三菱農機株式会社 String supply device in binding machine
JPS60224034A (en) * 1984-04-23 1985-11-08 Hitachi Ltd Two-wavelength picture measuring device
KR102380352B1 (en) * 2013-11-08 2022-03-30 써머툴 코포레이션 Heat energy sensing and analysis for welding processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305689A (en) * 1963-06-26 1967-02-21 Sanders Associates Inc Electro-optical signal converter system
JPS4969178A (en) * 1972-11-04 1974-07-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305689A (en) * 1963-06-26 1967-02-21 Sanders Associates Inc Electro-optical signal converter system
JPS4969178A (en) * 1972-11-04 1974-07-04

Also Published As

Publication number Publication date
JPS5268483A (en) 1977-06-07

Similar Documents

Publication Publication Date Title
US4446354A (en) Optoelectronic weld evaluation system
JP2000283841A (en) Method and device for wavelength calibration of light spectrum analyzer
US4395119A (en) Method for automatic, non-destructive measurement of eccentricity of coated electrodes
JPH06504849A (en) Emission spectroscopy method and device
JP2007192579A (en) Temperature measuring device and method
CN108195823B (en) Laser-induced breakdown spectroscopy detection system
JPS5828534B2 (en) Dempo-Koukanyou-Setseigiyo-Souchi
JP2008268106A (en) Method of measuring temperature information
CN102445325A (en) Device and method for measuring shade number of automatic darkening welding filter
CN113566971B (en) Multispectral high-temperature transient measurement system based on neural network
CN116026475A (en) Gas early warning and radiation calibration system and method based on uncooled infrared camera
US4605314A (en) Spectral discrimination pyrometer
JPH03160344A (en) Device for measuring constitutions of vegetable and fruit
DE4307190A1 (en) Infrared gas analyser
RU2398194C2 (en) Double-channel pyrometre
JPS62137503A (en) Method and device for optically inspecting precision of sizeof part or test piece
KR100205532B1 (en) Moisture measuring apparatus
JPH06109549A (en) Infrared imaging system
JPH0213815A (en) Sensitivity correction system for photoconducting type infrared detector
US11092490B2 (en) Method and apparatus for calibrating spectrometers
JP3281986B2 (en) Image measurement device
RU2696364C1 (en) Method of measuring absolute spectral sensitivity of ir mpdd
RU2270984C1 (en) Pyrometer
JPH041291B2 (en)
JPS6014132A (en) Colorimetric device of surface of moving object