JPS5828424A - Taper working guide for electric discharge machine and electric discharge machining method - Google Patents

Taper working guide for electric discharge machine and electric discharge machining method

Info

Publication number
JPS5828424A
JPS5828424A JP12624981A JP12624981A JPS5828424A JP S5828424 A JPS5828424 A JP S5828424A JP 12624981 A JP12624981 A JP 12624981A JP 12624981 A JP12624981 A JP 12624981A JP S5828424 A JPS5828424 A JP S5828424A
Authority
JP
Japan
Prior art keywords
guide
machining
workpiece
wire
wire electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12624981A
Other languages
Japanese (ja)
Other versions
JPS6240126B2 (en
Inventor
Haruki Obara
小原 治樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Fujitsu Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp, Fujitsu Fanuc Ltd filed Critical Fanuc Corp
Priority to JP12624981A priority Critical patent/JPS5828424A/en
Publication of JPS5828424A publication Critical patent/JPS5828424A/en
Publication of JPS6240126B2 publication Critical patent/JPS6240126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece

Abstract

PURPOSE:To maintain a taper angle in working a taper at a certain angle and perform high precision working, by forming an inlet of an upper guide and an outlet of a lower guide so as to have respectively the arcuate section of radius R. CONSTITUTION:An inlet of the upper guide UG and an outlet of the lower guide DG are respectively formed to have the arcuate section of radius R. This radius R is to be at least three or five times the diameter of a wire. The correction of displacement of a fulcrum based upon taper angle is carried out by obtaining the vertical distance Hc or horizontal distance Dc between fulcrums A,A' as a function of taper angle alpha and the diameter phi of wire WR.

Description

【発明の詳細な説明】 本発明は放電加工機にお轄るテーパ加工用ガイド及び該
テーパ加工用ガイドを用いた放電加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a taper machining guide for an electric discharge machine and an electric discharge machining method using the taper machining guide.

ワイヤカット放電加工機は周知の如く、上ガイドと下ガ
イドとの関にワイヤ電極(以後単にワイヤという)を張
設しておき、該ワイヤとワークとの間に放電を生じさせ
てワークを加工するものであり、ワークはテーブル上K
li定され、加工形状に8りて数値制御装置からの指令
によシX、Y方向に移動せしめられる。こO場合、テー
ブル(ワーク)K対してワイヤを僑直方向に張設してお
けば、ワーク上面と下面との加工形状が同一となシ、父
上ガイドをX、Y方向(U軸、V軸という)K変位可能
な如く構成し、たとえばワーク移動方向と直角方向KM
上ガイドを変位してワイヤをワークに対して傾斜せしめ
ればワーク上面と下面との加工形状は同一とならず、ワ
イヤ加工面が傾斜する、いわゆるテーパ加工が行われる
As is well known, a wire-cut electric discharge machine is a wire electrode (hereinafter simply referred to as a wire) that is stretched between an upper guide and a lower guide, and an electrical discharge is generated between the wire and the workpiece to machine the workpiece. The work is placed on the table.
It is moved in the X and Y directions according to commands from the numerical control device according to the machining shape. In this case, if the wire is stretched in the vertical direction with respect to the table (work) K, the machining shape of the upper and lower surfaces of the workpiece will be the same, and the master guide will be aligned in the X and Y directions (U axis, V axis). The shaft is configured to be able to move KM, for example, in a direction KM perpendicular to the direction of movement of the workpiece.
If the upper guide is displaced to tilt the wire relative to the workpiece, the machining shapes of the upper and lower surfaces of the workpiece will not be the same, and so-called taper machining, in which the wire machining surface is inclined, will be performed.

第1図はか\る4軸制御のワイヤカット放電加工機の概
略説lj1因であシ、ワークWKはモータMX、MYに
よシそれぞれX、Y方向に移動されるX−YテーブルT
B上に固定されている。一方、ワイヤWRはリールRL
、から繰出されて下ガイドDGと上ガイドUGとの間に
張設されながらリールRL、に巻取られ、図示しない接
触電極によって電圧が加“見られ、ワークWKとの間に
放電が生じるように構成されている。又、上ガイドUG
はモータMU、MYによシそれぞれX、Y方向に移動可
能にコラムCMK設けられているもので、各モータMX
、MY、MU、MYは数値制御装置NCC)駆動回路D
VX、DVY、DVU、DVVK!D駆動−aれる。尚
、指令テープTPO内容が読取られると分配回路DSに
よシ各軸の分配処理が行われる。か\るワイヤカット放
電加工機において、上ガイドUGをX、Y方向に変位さ
せワイヤWRをワークWKに対して傾斜させて加工を行
なえばテーパ加工ができる。
Figure 1 shows a schematic diagram of a 4-axis controlled wire-cut electrical discharge machine.The workpiece WK is moved in the X and Y directions by motors MX and MY, respectively, on an X-Y table T.
It is fixed on B. On the other hand, the wire WR is the reel RL
, and is wound onto the reel RL while being stretched between the lower guide DG and the upper guide UG, and a voltage is applied by a contact electrode (not shown) so that an electric discharge occurs between the workpiece WK and the workpiece WK. In addition, the upper guide UG
is provided with a column CMK movable in the X and Y directions for motors MU and MY, respectively.
, MY, MU, MY are numerical controller NCC) drive circuit D
VX, DVY, DVU, DVVK! D drive-a. Incidentally, when the contents of the command tape TPO are read, distribution processing for each axis is performed by the distribution circuit DS. In such a wire-cut electric discharge machine, taper machining can be performed by displacing the upper guide UG in the X and Y directions and tilting the wire WR with respect to the workpiece WK.

第2図はか\るテーパ加工の説明図であシ、上ガイドU
Gと下ガイドDGとの間にワイヤWRがワークWKに対
し所定角度傾斜して張設されている。今、ワークWKの
下面PLをプログラム形状(ワークWKの上面QUをプ
ログラム形状としてもよい)とし、又、テーパ角度α、
上ガイドUGと下ガイドDG間の距離H1下ガイドDG
からワークWK下面までの距離りとすれば、ワーク下面
PLK対する下ガイドDGのオフセット量d、及び上ガ
イドUGのオフセット量d、はそれぞれ、d、=h@−
α+■     ・・・・・・・・・(1)d、=H”
−α−h−−α−■ =H・−α−dl      ・・・・・・・・・(2
)で表わせる。尚、dは加工幅である。
Figure 2 is an explanatory diagram of the taper process, upper guide U.
A wire WR is stretched between G and the lower guide DG so as to be inclined at a predetermined angle with respect to the workpiece WK. Now, the lower surface PL of the work WK is set to a program shape (the upper surface QU of the work WK may be set to a program shape), and the taper angle α,
Distance H1 between upper guide UG and lower guide DG Lower guide DG
If the distance from to the lower surface of the workpiece WK is the offset amount d of the lower guide DG and the offset amount d of the upper guide UG with respect to the lower surface PLK of the workpiece, respectively, d, = h@-
α+■ ・・・・・・・・・(1) d,=H”
−α−h−−α−■ =H・−α−dl ・・・・・・・・・(2
) can be expressed as Note that d is the processing width.

従って、ワークの移動に応じてオフセット量d、。Therefore, the offset amount d, depending on the movement of the workpiece.

d、が一定になるよう、ワイヤWRを張設する上ガイド
UGを移動制御すれば第5図に示すようにテーパ角αの
テーパ加工を行なうことができる。尚、図中、点線及び
一点鎖線はそれぞれ上ガイドUG。
By controlling the movement of the upper guide UG on which the wire WR is stretched so that d is constant, taper processing with a taper angle α as shown in FIG. 5 can be performed. In addition, in the figure, the dotted line and the dashed-dotted line are the upper guide UG, respectively.

下ガイドDGの通路である。尚、テーパ加工に・際して
は、前述の如く一般にワーク下面或いは上面でのプログ
ラム通路と、皺プログラム通路上での送シ速度と、テー
パ角α、前記距離H,h等が指令され、指令通シの加工
が行われる。
This is the passage of the lower guide DG. In addition, when performing taper machining, as mentioned above, the program path on the lower or upper surface of the workpiece, the feeding speed on the wrinkle program path, the taper angle α, the distances H, h, etc. are generally commanded. The instructions are processed.

ところで、ワイヤカット放電加工機でテーパ加工を行な
う場合には通常円孔ダイスを用いる。第4図はか\る円
孔ダイスを上ガイドUG及び下ガイドDGとして用いた
断面説明図である。図中、CHは円孔、NSUは上ガイ
ドUGのしぼシ部、NSDは下ガイドDGのしぼシ部で
共に鋭角に或いは微小なRを持たせている。さて、か\
る円孔ダイスを上ガイド及び下ガイドとして用いる放電
加工機においては、しぼシ部NSU、NSDの中心部(
黒丸部)テーパ角度変更の支点とみなして上ガイドUG
の相対移動量を決定して運動制御する。
By the way, when performing taper machining with a wire-cut electric discharge machine, a circular hole die is usually used. FIG. 4 is an explanatory cross-sectional view of the circular hole die used as an upper guide UG and a lower guide DG. In the figure, CH is a circular hole, NSU is a wrinkled portion of the upper guide UG, and NSD is a wrinkled portion of the lower guide DG, all of which have an acute angle or a small radius. Well then, huh?
In an electrical discharge machine that uses circular hole dies as the upper and lower guides, the central part of the wrinkled parts NSU and NSD (
Black circle) Upper guide UG is considered as the fulcrum for changing the taper angle.
The motion is controlled by determining the amount of relative movement.

即ち、両支点を結ぶ直線がワークとなす角度をテーパ角
αとし、又両支点の喬直距離をH1下ガイドDGの支点
からワーク下面迄の距離をhとして、上ガイドUGの相
対移動量を計算し、該移動量に基いて上ガイドの移動制
御を行なっている。
That is, the angle between the straight line connecting the two fulcrums and the workpiece is the taper angle α, and the vertical distance between the two fulcrums is the distance from the fulcrum of the H1 lower guide DG to the bottom surface of the workpiece is h, and the relative movement amount of the upper guide UG is The movement of the upper guide is controlled based on the calculated movement amount.

ところで、円孔ダイスのし埋シ部NSU、NSDが鋭角
または微小Bを持って加工されている場合には、ワイヤ
が実際所定の太さを有し、且つ一定の曲げ剛性を持つこ
とから、テーパ角αが大きくなるとワイヤ中心の軌跡は
第4図の破線に示すようになり、正しく角度αを示さな
くなる。又、ワイヤが急激に折れ曲るためワイヤ位置が
、ワイヤ送行中に変動し高精度の加工ができない。
By the way, if the buried parts NSU and NSD of the circular hole die are machined to have an acute angle or a minute B, since the wire actually has a predetermined thickness and has a certain bending rigidity, When the taper angle α increases, the locus of the center of the wire becomes as shown by the broken line in FIG. 4, and the angle α is no longer indicated correctly. In addition, since the wire bends suddenly, the wire position fluctuates during wire feeding, making it impossible to perform high-precision machining.

以上から、本発明はテーパ角度を指令角になるようにで
き、しかもワイヤ送行中に該ワイヤの位置が変動するこ
とがない精度の高いテーパ加工が行なえる放電加工機の
テーパ加工用ガイド及び放電加工方法を提供することを
目的とする。
From the above, the present invention provides a guide for taper machining of an electric discharge machine, which can set the taper angle to a command angle, and can perform highly accurate taper machining without changing the position of the wire while feeding the wire. The purpose is to provide a processing method.

以下、本発明の実施例を図面に従りて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第5図は本発明に係る放電加工機のテーパ加工用ガイド
の断面説明図であり図中、WRはワイヤ、UGd上ガイ
ド、DGは下ガイドである。尚上ガイドUG及び下ガイ
ドDG間には図示しないがワークが配設されている。さ
で、上ガイドUG及び下ガイドDGのそれぞれワークが
存在する側でありてワイヤWRが案内される部分UGW
、UGW’(上ガイド)、DGW、DGW’(下ガイド
)は中径Rの断藺円弧状に加工され、又各ガイドのワー
クが存在しない側UGυ、DGυはそれぞれ円鍾状に形
成されている。即ち、上ガイドUGの入口部及び下ガイ
ドDGの出口部は共に中径Rの断面円弧状(球面状)に
形成されている。尚、半径凡の値としてはワイヤ直径の
3倍、好ましくは5倍以上にするのが望ましい。このよ
うに、ガイドの入口部及び出口部に半lIRの加工を施
すと従来例のようにワイヤWRの折れ曲がj[よる問題
がなくな−る。即ち、ワイヤWRはスムーズにダイス内
を案内されてビンと張られ、たるむととけないからワ′
イヤの位置変動、及びワイヤの剛性に基づくテーバ角度
の乱れはなくなる。
FIG. 5 is a cross-sectional explanatory view of a guide for taper machining of an electrical discharge machine according to the present invention, and in the figure, WR is a wire, UGd is an upper guide, and DG is a lower guide. Although not shown, a workpiece is disposed between the upper guide UG and the lower guide DG. Now, each of the upper guide UG and lower guide DG has a part UGW on the side where the work is present and where the wire WR is guided.
, UGW' (upper guide), DGW, and DGW' (lower guide) are machined into circular arc shapes with a medium diameter R, and the sides UGυ and DGυ of each guide where no work is present are each formed into a circular ring shape. There is. That is, both the inlet portion of the upper guide UG and the outlet portion of the lower guide DG are formed to have an arcuate cross section (spherical shape) with a medium diameter R. Note that it is desirable that the radius be at least three times, preferably five times or more, the wire diameter. As described above, when the inlet and outlet portions of the guide are processed to have a half IIR, the problem of bending of the wire WR as in the conventional example is eliminated. In other words, the wire WR is smoothly guided inside the die and is stretched tightly, and if it becomes slack, it will not come loose.
This eliminates the disturbance of the Taber angle due to ear positional fluctuations and wire rigidity.

さて、第5図に示す構造のガイドを用いる゛と実質上の
ワイヤ支点はそれぞれA点及びA′点に移行する。尚、
A点及びA′点は共にワイヤWRの僑直部WRnとテー
バ部WRtの中心曽の交点である。ととろでプログラム
時にはワイヤ支点はそれぞれ0点及び07点にあるもの
として、プログラム通路、距離H,h、テーパ角αが指
令されている。従って、実際の加工に際して指令データ
或いは他のデータをテーパ角αに基いて補正する必要が
ある。
Now, when a guide having the structure shown in FIG. 5 is used, the actual wire fulcrums shift to point A and point A', respectively. still,
Point A and point A' are both intersection points of the straight part WRn of the wire WR and the center of the tapered part WRt. When programming with Totoro, the program path, distances H, h, and taper angle α are commanded assuming that the wire fulcrums are at the 0 point and the 07 point, respectively. Therefore, during actual machining, it is necessary to correct command data or other data based on the taper angle α.

次に補正方法について第5図を参照しながら説明する。Next, the correction method will be explained with reference to FIG.

今、ワイヤWRの直径がφであるとすれば、実質上のワ
イヤ支点A、A’とプログラム上のワイヤ支点c、c’
間の距離りは、 φ  α L=(R+ −)tu −(1) 2 と表現され、実質上の支点A 、 A’は上下方向に互
いに近づく方向に移動する。即ち、実質上の支点A。
Now, if the diameter of the wire WR is φ, the actual wire fulcrums A, A' and the programmed wire fulcrums c, c'
The distance between them is expressed as φ α L=(R+ −)tu −(1) 2 , and the substantial supporting points A and A′ move toward each other in the vertical direction. That is, the actual fulcrum A.

A′の―直距離He及び水平距離DCは次式によって表
現される。
The -direct distance He and horizontal distance DC of A' are expressed by the following equations.

)1:6−H−2・(R+’)tag’2  □   
   (2) DcMHc・−α φ    α −(H−2・(R+7)・−■)・−α (3)従って
、補正方法としては(A)、11直支点間距離に着Iす
れば(2)弐に基いてHeを求め、1kHcに基いてテ
ーパ加工制御する方法と、CB〕、水平支点間距離に着
目すれば、Hについて補正する仁となく(3)弐に基い
て上ガイド及び下ガイドの移動距離を補正する方法とが
ある。即ち下ガイドDGをし、上ガイドUGを右方に<
R+!!−)・−一・−α移2 動させる方法である。
)1:6-H-2・(R+')tag'2 □
(2) DcMHc・−α φ α −(H−2・(R+7)・−■)・−α (3) Therefore, as a correction method, (A), if the distance between the 11 orthogonal supports is reached, (2 ) If we look at the method of determining He based on 2 and controlling the taper machining based on 1 kHz, and the distance between horizontal supports (CB), we can calculate the upper guide and lower guide based on 2. There is a method of correcting the moving distance of the guide. In other words, move the lower guide DG and move the upper guide UG to the right.
R+! ! −)・−1・−α Move 2 This is a method of moving.

第6図は一直方向の支点距離を補正して放電加工する本
発明の数値制御装置の要部ブロック線図である。図中、
FTPは数値制御情報が穿孔された紙テープ、TRは紙
テープに穿孔された情報を読取るテープリーグ、DEC
は紙テープFTPから読取られた情報をデコードするデ
コーダ、REGはレジスタ、PARはパラメータ記憶レ
ジスタでテーパ角α、上ガイドと下ガイド間の距離H,
ワーク下面と下ガイド間の距離り勢を記憶する。CPS
は距離H,hを補正する補正回路であシ、垂直支点間距
離は(2)弐に基いて補正され、又ワーク下面と下ガイ
ド間の距離りは ・・・   φ  α he=h−(R+7)・ta++7      (4)
に基いて補正される。WCPはワイヤカット放電加工制
御を実行する周知の処理部であシ、位置データ、並びに
テーパ角α、H,hなどのパラメータを入力されワーク
のインクリメンタル移動量(ΔX、ΔY)及び上ガイド
のインクリメンタル移動量(ΔU、ΔV)をそれぞれ演
算して出力する。INTはインクリメンタル移動量(j
X、、jY)、(jU、jV)K基いてパルス分配演算
(直線補間)を実行して分配パルスXp 、 Yp 、
 UP 、 VPを発生するパ/l、J分配回路、DV
X。
FIG. 6 is a block diagram of the main parts of the numerical control device of the present invention which performs electric discharge machining by correcting the fulcrum distance in a straight direction. In the figure,
FTP is a paper tape with numerical control information perforated, TR is a tape league that reads information perforated on paper tape, and DEC
is a decoder that decodes information read from the paper tape FTP, REG is a register, and PAR is a parameter storage register with taper angle α, distance H between the upper guide and lower guide,
Stores the distance between the lower surface of the workpiece and the lower guide. CPS
is a correction circuit that corrects the distances H and h, the distance between the vertical supports is corrected based on (2) 2, and the distance between the lower surface of the workpiece and the lower guide is... φ α he=h-( R+7)・ta++7 (4)
Corrected based on The WCP is a well-known processing unit that executes wire-cut electrical discharge machining control. Parameters such as position data and taper angles α, H, and h are input to the WCP, and the incremental movement amount (ΔX, ΔY) of the workpiece and the incremental movement of the upper guide are input. The amount of movement (ΔU, ΔV) is calculated and output. INT is the incremental movement amount (j
Execute pulse distribution calculation (linear interpolation) based on X,, jY), (jU, jV)K to obtain distributed pulses
UP, VP generating P/L, J distribution circuit, DV
X.

DVY、DVU、DVVはそれぞれX軸、Y軸、U軸及
びV軸tVV−ボ制御回路、MU、MY、MX、MYは
それぞれ各軸のサーボモータ、である。
DVY, DVU, and DVV are X-axis, Y-axis, U-axis, and V-axis tVV-bo control circuits, respectively, and MU, MY, MX, and MY are servo motors for each axis, respectively.

さて、紙テープFTPから垂直方向支点間距離H1及び
ワーク下面と下ガイド間の距離り、及びテーパ角αが読
取られると、これらはデコーダDECKよ〉判別され、
補正回路CPSK入力される。補正回路CPSはH,h
、αが入力されると(2)、(4)式の補正間としてパ
ラメータ記憶レジスタPAHに出力して、記憶させる。
Now, when the vertical support distance H1, the distance between the lower surface of the workpiece and the lower guide, and the taper angle α are read from the paper tape FTP, these are determined by the decoder DECK.
Correction circuit CPSK is input. Correction circuit CPS is H, h
, α are inputted, they are output to the parameter storage register PAH and stored as corrections for equations (2) and (4).

一方、通路データはレジスタREGに記憶される。#&
履部WCPは入力された通路データ、及び補正されたパ
ラメータ等に基いて周知のテーパ加工制御を行ない、イ
ンクリメンタル移動量(ax、jY)、()U、ΔV)
を演算してパルス分配回路INTK出力する。パルス分
配器INTはΔX、ΔY。
Meanwhile, path data is stored in register REG. #&
The shoe part WCP performs well-known taper machining control based on the input path data and corrected parameters, etc., and calculates the incremental movement amount (ax, jY), ()U, ΔV).
is calculated and outputted from the pulse distribution circuit INTK. The pulse distributor INT has ΔX and ΔY.

ΔU、jVが入力され\ば直ちに同時4軸のパルス分配
演算(直線補間演算)を実行し、分配パルスXp、Yp
、Up、Vptそれぞれt−ボ制御回路DVX。
Immediately after ΔU and jV are input, simultaneous 4-axis pulse distribution calculation (linear interpolation calculation) is executed, and the distribution pulses Xp and Yp are
, Up, and Vpt, respectively, t-bo control circuit DVX.

DVY、DVU、DVVに入力し、周知の方法テサーホ
モータMX、MY、MU、MYを回転セシkt)、ワー
ク及び上ガイドを移動させ、所望のテーパ加工が行われ
る。
DVY, DVU, and DVV are input, and the desired taper processing is performed by rotating the tesser motors MX, MY, MU, and MY using a well-known method and moving the workpiece and upper guide.

以上、本発明によれば、上ガイドの入口部及び下ガイド
の出口部を半径Rの断面円弧状に形成し九からワイヤは
スムーズに球面部に泊って案内され、ビンと張ってたる
む仁とはない。このため、テーパ角は一定角度となり、
又ワイヤ位置がワイヤ走行中に変動することはないから
、精度の高い加工がで1きる。: 又、ガイドの入口部或いは出口部に半径Rを持たせると
支点が変位するがこの支点の変位に基づくテーパ角など
の加工誤差拡簡単な補正回路を設けることKよシ極めて
容易に補正することができる。
As described above, according to the present invention, the inlet part of the upper guide and the outlet part of the lower guide are formed to have an arcuate cross-section with a radius R, and the wire is smoothly guided by resting on the spherical part, and the wire is not taut and sagging. There isn't. Therefore, the taper angle is a constant angle,
Furthermore, since the wire position does not change while the wire is running, highly accurate machining can be performed. : Also, if the guide has a radius R at the entrance or exit, the fulcrum will be displaced, but it is very easy to compensate for machining errors such as taper angle based on the displacement of this fulcrum by providing a simple correction circuit. be able to.

以上、本発明を詳細Kffl明したが、本発明は実施例
に限るものではなく種々変更が可能である。
Although the present invention has been explained in detail above, the present invention is not limited to the embodiments and can be modified in various ways.

たとえば、ガイドの出口部、入口部を断面円弧状に形成
したが、円弧状に限らずなめらかな曲線状に形成しても
よい。
For example, although the outlet and inlet portions of the guide are formed to have an arcuate cross section, they are not limited to an arcuate shape and may be formed in a smooth curved shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は4軸制御のワイヤカット放電加工機の概略説明
図、第2図、第3図はテーパ加工の説明図、第4図は円
孔ダイスをガイドとして用いた従来例説明図、第5図は
本発明に係るテーパ用ガイドの断面説明図、第6図は本
発明の実施例ブロック図である。 UG・・・上ガイド、DG・・・下ガイド、WR・・・
ワイヤ、DEC・・・デコーダ、cps・・・補正回路
、wcp・・・処理部、INT・・・パルス分配回路。 特許出願人  富士通ファナック株弐余社代理人  弁
理士 辻    實 (外2名) 第2回 第4121 第5図
Figure 1 is a schematic diagram of a wire-cut electric discharge machine with four-axis control, Figures 2 and 3 are diagrams of taper machining, Figure 4 is a diagram of a conventional example using a circular hole die as a guide, FIG. 5 is a cross-sectional explanatory view of a taper guide according to the present invention, and FIG. 6 is a block diagram of an embodiment of the present invention. UG...upper guide, DG...lower guide, WR...
Wire, DEC...decoder, cps...correction circuit, wcp...processing section, INT...pulse distribution circuit. Patent applicant Fujitsu Fanuc Co., Ltd. Niyosha Agent Patent attorney Minoru Tsuji (2 others) 2nd No. 4121 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)ワイヤ電極をワークに対し相対的に移動させるこ
とによ〉験ワークに加工を施すと共に1ワイヤ電極をワ
ークに対して傾斜させることKより該ワークにテーパ加
工を施す放電加工機のテーノく加工用ガイドKかいて、
ワイヤ電極が張設される前記テーパ加工用ガイドのワー
クが存在する側でありて、ワイヤ電極が案内される部分
を一面状に加工してなることを特徴とする放電加工機の
チー/く加工用ガイド。
(1) Machining an experimental workpiece by moving the wire electrode relative to the workpiece, and tilting one wire electrode with respect to the workpiece. Draw the machining guide K,
Cheek machining of an electrical discharge machine, characterized in that a part of the tapered machining guide on which the wire electrode is stretched, on which the work is present, is machined into a single-sided part where the wire electrode is guided. Guide for.
(2)前記ワイヤ電極を案内する部分を半l!Rの断曹
円弧状に加工してなることを特徴とする特許請求osi
s第(1)項記−の放電加工機Oテーパ加工用メイド。
(2) The portion that guides the wire electrode is half a liter! Patent claim osi characterized in that it is formed by processing R into a circular arc shape.
Made for electrical discharge machine O taper machining according to item s (1).
(3)ワイヤ電極をワークに対し相対的に移動させると
共に、ワイヤ電極をワークに対して傾斜させることkよ
シ該ワークにテーパ加工を施す放電加工方法において、
ワイヤ電極が張設されるガイドのワークが存在する備で
ありて、ワイヤ電極が案内される部分を円弧状に形成す
ると共に、案内部分を円弧状にしたことKより発生する
ワイヤ電極支点のずれKlづ〈傾斜角誤差を電気的に補
正する補正手段を設けたことを特徴とする放電加工方線
(3) In an electric discharge machining method in which the wire electrode is moved relative to the workpiece and the wire electrode is tilted with respect to the workpiece, the workpiece is subjected to taper machining,
This is a device in which there is a guide work on which the wire electrode is stretched, and the part where the wire electrode is guided is formed in an arc shape, and the guide part is made into an arc shape. Klzu〈Electrical discharge machining direction characterized by being provided with a correction means for electrically correcting inclination angle errors〇
JP12624981A 1981-08-12 1981-08-12 Taper working guide for electric discharge machine and electric discharge machining method Granted JPS5828424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12624981A JPS5828424A (en) 1981-08-12 1981-08-12 Taper working guide for electric discharge machine and electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12624981A JPS5828424A (en) 1981-08-12 1981-08-12 Taper working guide for electric discharge machine and electric discharge machining method

Publications (2)

Publication Number Publication Date
JPS5828424A true JPS5828424A (en) 1983-02-19
JPS6240126B2 JPS6240126B2 (en) 1987-08-26

Family

ID=14930491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12624981A Granted JPS5828424A (en) 1981-08-12 1981-08-12 Taper working guide for electric discharge machine and electric discharge machining method

Country Status (1)

Country Link
JP (1) JPS5828424A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736086A (en) * 1985-02-09 1988-04-05 Fanuc Ltd Taper cutting control unit for wire-cut, electric discharge machine
US4801779A (en) * 1985-06-15 1989-01-31 Fanuc Ltd Wire electrode type electrical discharge machining equipment
US4806720A (en) * 1985-11-20 1989-02-21 Fanuc Ltd. Method and apparatus for wire-cut electrical discharge machining
US4883933A (en) * 1986-06-18 1989-11-28 Mitsubishi Denki Kabushiki Kaisha Traveling wire electroerosion machine
EP0585713A1 (en) * 1992-08-26 1994-03-09 AG für industrielle Elektronik AGIE Losone bei Locarno Method and apparatus for electroerosion cutting
EP0742069A2 (en) * 1995-05-11 1996-11-13 Charmilles Technologies S.A. Device for electrical discharge machining
EP1995012A2 (en) 2007-05-23 2008-11-26 Fanuc Ltd Method for determining wire supporting point in wire-cut electrical discharge machine and measuring member for practicing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736086A (en) * 1985-02-09 1988-04-05 Fanuc Ltd Taper cutting control unit for wire-cut, electric discharge machine
US4801779A (en) * 1985-06-15 1989-01-31 Fanuc Ltd Wire electrode type electrical discharge machining equipment
US4806720A (en) * 1985-11-20 1989-02-21 Fanuc Ltd. Method and apparatus for wire-cut electrical discharge machining
US4883933A (en) * 1986-06-18 1989-11-28 Mitsubishi Denki Kabushiki Kaisha Traveling wire electroerosion machine
EP0585713A1 (en) * 1992-08-26 1994-03-09 AG für industrielle Elektronik AGIE Losone bei Locarno Method and apparatus for electroerosion cutting
US5434379A (en) * 1992-08-26 1995-07-18 A.G. fur Industrielle Elektronik AGIE Losone Apparatus for and method of electro-discharge cutting
EP0742069A2 (en) * 1995-05-11 1996-11-13 Charmilles Technologies S.A. Device for electrical discharge machining
EP0742069A3 (en) * 1995-05-11 1997-10-15 Charmilles Technologies Device for electrical discharge machining
EP1995012A2 (en) 2007-05-23 2008-11-26 Fanuc Ltd Method for determining wire supporting point in wire-cut electrical discharge machine and measuring member for practicing the same

Also Published As

Publication number Publication date
JPS6240126B2 (en) 1987-08-26

Similar Documents

Publication Publication Date Title
JPS61182729A (en) Tapering controller of wire-cut electric discharge machine
US4843203A (en) Taper cutting control method and control system in wire-cut electric discharge machine
EP0155323B1 (en) Wire type electric discharge machining method
US20020084763A1 (en) Apparatus and method for setting control parameters of machining apparatus
CN102814563A (en) Wire electric discharge machine for taper-machining tilted workpiece
JPH0246327B2 (en)
EP3023186A1 (en) Wire electric discharge machine having corner shape correcting function
KR102577377B1 (en) Wire electrical discharge machine and machining program editor
JPS5828424A (en) Taper working guide for electric discharge machine and electric discharge machining method
JPH0144451B2 (en)
JPH08336727A (en) Machining device by electric corrosion
JPS62120919A (en) Wire cut electric discharge machining method
JP3101596B2 (en) Controller for wire electric discharge machining with taper machining correction function
EP0649697B1 (en) Apparatus for electric discharge machining, and method for setting machining condition for the apparatus
JP2630684B2 (en) Wire electric discharge machining method and apparatus
JPS61219529A (en) System of controlling form of wire electric discharge machining
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JP6760998B2 (en) Control device for wire electric discharge machine
JPH04764B2 (en)
JPS61219528A (en) Wire cut electric discharge machine
JP3288799B2 (en) Wire electric discharge machine
JP2005199358A (en) Wire-cut electric discharge machining method, control method for wire-cut electric discharge machining, and wire-cut electric discharge machining device
JP2845848B2 (en) Wire electric discharge machine and taper machining method
JPS6351811B2 (en)
JP5981012B2 (en) Wire electric discharge machine with top and bottom independent corner shape correction function