JPS6351811B2 - - Google Patents

Info

Publication number
JPS6351811B2
JPS6351811B2 JP18873882A JP18873882A JPS6351811B2 JP S6351811 B2 JPS6351811 B2 JP S6351811B2 JP 18873882 A JP18873882 A JP 18873882A JP 18873882 A JP18873882 A JP 18873882A JP S6351811 B2 JPS6351811 B2 JP S6351811B2
Authority
JP
Japan
Prior art keywords
workpiece
wire
control
taper
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18873882A
Other languages
Japanese (ja)
Other versions
JPS5981023A (en
Inventor
Hajime Kishi
Maki Seki
Kunio Tanaka
Shinji Kawakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP18873882A priority Critical patent/JPS5981023A/en
Priority to DE8383903312T priority patent/DE3379940D1/en
Priority to PCT/JP1983/000383 priority patent/WO1984001735A1/en
Priority to EP19830903312 priority patent/EP0124611B1/en
Publication of JPS5981023A publication Critical patent/JPS5981023A/en
Publication of JPS6351811B2 publication Critical patent/JPS6351811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • B23H7/065Electric circuits specially adapted therefor

Description

【発明の詳細な説明】 本発明はワイヤカツトテーパ加工方法に係り、
特に2つの制御面においてそれぞれ同時2軸制御
し、全体として同時4軸制御を行なつてワイヤと
ワーク間の相対的移動を制御し、制御面に対して
傾斜して配設されたワークに上面形状と下面形状
の異なるテーパ加工を施すことができるワイヤカ
ツトテーパ加工方法に関する。
[Detailed Description of the Invention] The present invention relates to a wire cut taper processing method,
In particular, simultaneous 2-axis control is performed on each of the two control surfaces, and simultaneous 4-axis control is performed as a whole to control the relative movement between the wire and the workpiece. The present invention relates to a wire cut taper processing method capable of performing taper processing with different shapes and lower surface shapes.

ワイヤカツト放電加工機は周知の如く、上ガイ
ドと下ガイドとの間にワイヤを張設しておき、該
ワイヤとワークとの間に放電を生じさせてワーク
を加工するものであり、ワークはテーブル上に固
定され、加工形状に沿つて数値制御装置からの指
令によりX、Y方向に移動せしめられる。この場
合、テーブル(ワーク)に対してワイヤを垂直方
向に張設しておけば、ワーク上面と下面との加工
形状が同一となり、又上ガイドをX、Y方向(U
軸、V軸という)に偏位可能な如く構成し、たと
えばワーク移動方向と直角方向に該上ガイドを偏
位してワイヤをワークに対して傾斜せしめればワ
ーク上面と下面との加工形状は同一とならず、ワ
イヤ加工面が傾斜する、いわゆるテーパ加工が行
われる。
As is well known, a wire cut electric discharge machine is a machine in which a wire is stretched between an upper guide and a lower guide, and an electrical discharge is generated between the wire and the workpiece to machine the workpiece, and the workpiece is placed on a table. It is fixed on the top and is moved in the X and Y directions along the machining shape according to commands from the numerical control device. In this case, if the wire is stretched perpendicularly to the table (workpiece), the machining shape of the upper and lower surfaces of the workpiece will be the same, and the upper guide will be moved in the X, Y direction (U
For example, if the upper guide is deflected in a direction perpendicular to the direction of movement of the workpiece and the wire is tilted relative to the workpiece, the shape of the upper and lower surfaces of the workpiece can be changed. So-called taper processing is performed in which the wire processing surface is not the same but is inclined.

第1図はかゝるテーパ加工の説明図であり、上
ガイドUGと下ガイドDGとの間にワイヤWRがワ
ークWKに対し所定角度傾斜して張設されてい
る。今、ワークWKの下面PLをプログラム形状
(ワークWKの上面QUをプログラム形状としても
よい)とし、又、テーパ角度α、上ガイドUGと
下ガイドDG間の距離H、下ガイドDGからワー
クWK下面までの距離hとすれば、ワーク下面
PLに対する下ガイドDGのオフセツト量d1及び上
ガイドUGのオフセツト量d2はそれぞれ、 d1=h・tanα+d/2 ……(1) d2=H・tanα−h・tanα−d/2=H・tanα−d1 ……(2) で表わせる。尚、dは加工幅である。
FIG. 1 is an explanatory view of such taper processing, in which a wire WR is stretched between an upper guide UG and a lower guide DG at a predetermined angle with respect to the workpiece WK. Now, let the lower surface PL of the workpiece WK be a program shape (the upper surface QU of the workpiece WK may also be a program shape), and also the taper angle α, the distance H between the upper guide UG and the lower guide DG, and the lower surface of the workpiece WK from the lower guide DG. If the distance to h is the bottom surface of the workpiece
The offset amount d 1 of the lower guide DG and the offset amount d 2 of the upper guide UG with respect to PL are respectively d 1 =h・tanα+d/2...(1) d 2 =H・tanα−h・tanα−d/2= It can be expressed as H・tanα−d 1 ...(2). Note that d is the processing width.

従つて、ワークの移動に応じてオフセツト量
d1,d2が一定になるよう、ワイヤWRを張設する
上ガイドUGを移動制御すれば第2図に示すよう
にテーパ角αのテーパ加工を行なうことができ
る。尚、図中、点線及び一点鎖線はそれぞれ上ガ
イドUG、下ガイドDGの通路である。以上のよ
うにワイヤカツト放電加工指令としてはワーク下
面或いは上面でのプログラム通路と、該プログラ
ム通路上での送り速度、テーパ角α、前記距離
H,h等を指令すれば指令通りの加工が行われ
る。
Therefore, the amount of offset changes depending on the movement of the workpiece.
By controlling the movement of the upper guide UG on which the wire WR is stretched so that d 1 and d 2 are constant, taper processing with a taper angle α as shown in FIG. 2 can be performed. In addition, in the figure, the dotted line and the dashed-dotted line are the passages of the upper guide UG and the lower guide DG, respectively. As described above, as a wire cut electric discharge machining command, if the program path on the lower or upper surface of the workpiece, the feed rate on the program path, the taper angle α, the distances H, h, etc. are commanded, machining will be performed according to the command. .

ところで、最近上面形状と下面形状が全く異な
る加工、たとえば上面形状が直線となり、下面形
状が円弧となるような部品が要求されてきてい
る。しかしながら、従来のテーパ加工方法では
かゝる部品形状の加工を行なうことができなかつ
た。そこで、本願出願人は本願と同日付で上面形
状と下面形状が全く異なるテーパ加工ができるテ
ーパ加工方法を提案している。ところで、かゝる
提案されたテーパ加工方法は、ワークをその上面
及び下面が第1及び第2制御面(たとえばXYプ
ログラム面及びUV下ガイド移動面)に対し平行
になるように配設した場合に適用できるものであ
つた。換言すれば上記提案されたテーパ加工方法
では、ワークを第1及び第2の制御面に対して傾
斜して配設した場合には適用できない。
Incidentally, recently there has been a demand for parts whose upper and lower surfaces are completely different in shape, for example, where the upper surface has a straight line and the lower surface has an arc. However, conventional taper processing methods have not been able to process such parts. Therefore, on the same date as the present application, the applicant of the present application has proposed a taper processing method that can perform taper processing in which the top surface shape and the bottom surface shape are completely different. By the way, the proposed taper machining method works when the workpiece is arranged so that its upper and lower surfaces are parallel to the first and second control planes (for example, the XY program plane and the UV lower guide movement plane). It was applicable to In other words, the proposed taper processing method cannot be applied when the workpiece is disposed at an angle with respect to the first and second control surfaces.

さて、テーパ加工が可能なNCワイヤカツト放
電加工機においては、機構上テーパ角度の大きさ
に制限があり、ワークを水平に配設する限り最大
テーパ角以上のテーパ加工を行なうことができな
い。しかし、このようにテーパ角度に制限がある
にもかゝわらず部品によつては最大テーパ角以上
に大きいテーパ角を有するテーパ加工が要求され
る場合がある。かゝる場合ワーク(部品材料)を
制御面(XYプログラム面やUV下ガイド移動面)
に平行でなく傾けて取付けることによつて、制御
面に対する相対的なテーパ角は最大テーパ角の制
限内に納まり、ワークに最大テーパ角より大きい
テーパ加工を施すことができる。すなわち、機械
により定まる最大テーパ角以上のテーパ角を有す
るテーパ加工が要求される場合には、ワークを制
御面に対して傾斜させて取付けてテーパ加工をし
なければならない。しかし、従来の方法及び前記
提案されたテーパ加工方法では、ワークを傾斜さ
せたまゝ、部品上面形状と部品下面形状が異なる
テーパ加工を行なうことができなかつた。
Now, in an NC wire-cut electric discharge machine that can perform taper machining, there is a mechanical limit to the size of the taper angle, and as long as the workpiece is placed horizontally, it is not possible to perform taper machining that exceeds the maximum taper angle. However, despite such limitations on the taper angle, some parts may require taper processing to have a taper angle larger than the maximum taper angle. In such a case, move the workpiece (part material) to the control surface (XY program surface or UV lower guide movement surface)
By mounting at an angle rather than parallel to the control surface, the taper angle relative to the control surface is within the limit of the maximum taper angle, and it is possible to perform taper processing on the workpiece that is larger than the maximum taper angle. That is, if taper machining with a taper angle greater than the maximum taper angle determined by the machine is required, the workpiece must be mounted at an angle with respect to the control surface to perform the taper machining. However, with the conventional method and the proposed taper machining method, it is not possible to perform taper machining in which the shape of the top surface of the part and the shape of the bottom surface of the part are different while keeping the workpiece tilted.

以上から、本発明はワークを制御面に対して傾
斜させて取付けた場合であつても、部品の上面形
状と部品下面形状が異なるテーパ加工を行なうこ
とができるワイヤカツトテーパ加工方法を提供す
ることを目的とする。
In view of the above, the present invention provides a wire cut taper machining method that can perform taper machining in which the top surface shape and the bottom surface shape of the component are different even when the workpiece is mounted at an angle with respect to the control surface. With the goal.

以下、本発明を図面に従つて詳細に説明する。
尚、以下の説明においてプログラム面を第1制御
面或いはXYプログラム面といゝ、下ガイドが移
動する面を第2制御面或いはUV下ガイド移動面
というが、制御面の選定の仕方はこれに限らず、
(イ)下ガイド移動面を上ガイド移動面とすることも
できる。
Hereinafter, the present invention will be explained in detail with reference to the drawings.
In the following explanation, the program surface will be referred to as the first control surface or XY program surface, and the surface on which the lower guide moves will be referred to as the second control surface or UV lower guide movement surface, but the method of selecting the control surface is limited to this. figure,
(a) The lower guide moving surface can also be used as the upper guide moving surface.

第3図は制御面と部品面との関連説明図であ
り、WKは部品、USは部品上面、DSは部品下
面、WRはワイヤ、FCSはプログラム面である第
1制御面(XYプログラム面)、SCSは下ガイド
の移動面である第2制御面(UV下ガイド移動
面)であり、部品WKはその部品上面US並びに
部品下面DSがそれぞれXYプログラム面FCSと
UV下ガイド移動面SCSとにそれぞれ平行になる
ように配設されている。
Figure 3 is an explanatory diagram of the relationship between the control surface and the component surface, where WK is the component, US is the top surface of the component, DS is the bottom surface of the component, WR is the wire, and FCS is the program surface.The first control surface (XY program surface) , SCS is the second control surface (UV lower guide movement surface) that is the movement surface of the lower guide, and the upper surface US and lower surface DS of the component WK are the XY program surface FCS, respectively.
They are arranged parallel to the UV lower guide movement surface SCS.

第4図は部品上面形状及び下面形状がそれぞれ
円及び正方形の場合において、部品を第1、第2
制御面(XYプログラム面及びUV下ガイド移動
面)に対して傾けたときのワイヤ通路を説明する
説明図であり、A図は部品を傾斜して配設した場
合の断面図、C図は第1、第2制御面におけるワ
イヤ通路説明図である。部品(ワーク)WKの上
面US及び下面DSは4図Aに示すようにXYプロ
グラムFCSとUV下ガイド移動面SCSとβの傾斜
を持つて配設されている。この結果、XYプログ
ラム面FCSのワイヤ通路PRPは円にならずゆが
んだ形状になつており、又UV下ガイド移動面
SCSのワイヤ通路DGPも正方形でなくなりゆが
んだ形状になつている。尚、第5図に傾斜方向を
かえた場合の各制御面におけるワイヤ通路を示
す。
Figure 4 shows the parts in the first and second positions when the upper and lower surfaces of the parts are circular and square, respectively.
It is an explanatory diagram illustrating the wire path when tilted with respect to the control plane (XY program plane and UV lower guide movement plane). Figure A is a cross-sectional view when parts are arranged at an angle, and Figure C is a 1 is an explanatory diagram of the wire passage on the second control surface. As shown in Figure 4A, the upper surface US and lower surface DS of the part (workpiece) WK are arranged with an inclination of β to the XY program FCS and the UV lower guide movement surface SCS. As a result, the wire path PRP on the XY program plane FCS is not circular but has a distorted shape, and the UV lower guide movement plane
The SCS wire path DGP is also no longer square and has a distorted shape. Incidentally, FIG. 5 shows the wire passages on each control surface when the inclination direction is changed.

さて、本発明においては、ワークを第1、第2
の制御面に対して傾斜させて配設すると共に、ワ
ークと第1及び第2の制御面間の相対的位置関係
データ並びに部品の上面形状データと下面形状デ
ータとをそれぞれ入力し、しかる後部品上面と部
品下面の対応するポイントを結んだ直線が第1及
び第2制御面と交叉する点(投影点)の位置を求
め、ついで第1制御面と第2制御面における対応
する投影点をワイヤが同時にたどるように各投影
点の位置データを用いて同時4軸制御し、部品上
面と下面における形状の異なるテーパ加工であつ
て、テーパ角が機械により定まる最大テーパ角よ
り大きテーパ加工を行なつている。
Now, in the present invention, the workpiece is
The relative positional relationship data between the workpiece and the first and second control surfaces as well as the top surface shape data and bottom surface shape data of the part are respectively input, and then the part is placed at an angle with respect to the control surface. Find the position of the point (projection point) where the straight line connecting the corresponding points on the top surface and the bottom surface of the component intersects the first and second control surfaces, and then wire the corresponding projection points on the first and second control surfaces. Simultaneous 4-axis control is performed using the position data of each projection point so that the projection points are traced at the same time, and taper machining with different shapes on the top and bottom surfaces of the part is performed, where the taper angle is larger than the maximum taper angle determined by the machine. ing.

第6図は本発明のテーパ加工方法を説明する説
明図である。図中、V3はワークの厚さ、V4は機
械座標系の各軸Xn、Yn、Znを図示の如くとつた
場合(但しYn軸は紙面に垂直)、Xn軸からXYプ
ログラム面FCS迄の距離、V5はXn軸からUV下
ガイド移動面SCS迄の距離、V6はYn軸を回転支
軸として回転した場合の回転角、V7はXn軸を回
転支軸として回転した場合の回転角である。又、
P1は部品上面USにおけるワイヤ通路上のポイン
ト、P2は部品下面DSにおけるワイヤ通路上のポ
イントであり、部品座標系Xp−Yp−Zp(但し、
Yp軸は紙面に垂直)におけるこれら各ポイント
P1,P2の座標は既知であり、それぞれ対応して
いるものとする。更に、Qi,Riは部品上面と下面
における対応するポイントP1,P2を結ぶ直線
P1P2がXYプログラム面FCSと、UV下ガイド移
動面SCSとそれぞれ交叉するポイント(投影点)
である。
FIG. 6 is an explanatory diagram illustrating the taper processing method of the present invention. In the figure, V 3 is the thickness of the workpiece, and V 4 is the thickness from the X n axis when the axes X n , Y n , and Z n of the machine coordinate system are taken as shown (however, the Y n axis is perpendicular to the plane of the paper). The distance to the XY program plane FCS, V 5 is the distance from the X n axis to the UV lower guide movement surface SCS, V 6 is the rotation angle when rotating with the Y n axis as the rotation support axis, V 7 is the rotation angle when the X n axis is used as the rotation support axis. This is the rotation angle when rotating as a rotation support shaft. or,
P 1 is a point on the wire path on the top surface US of the component, P 2 is a point on the wire path on the bottom surface DS of the component, and the component coordinate system X p −Y p −Z p (however,
Each of these points in Y p- axis is perpendicular to the plane of the paper)
It is assumed that the coordinates of P 1 and P 2 are known and correspond to each other. Furthermore, Q i and R i are straight lines connecting the corresponding points P 1 and P 2 on the top and bottom surfaces of the component.
The point where P 1 P 2 intersects the XY program plane FCS and the UV lower guide movement plane SCS (projection point)
It is.

さて、V3〜V7並びにポイントP1,P2は既知で
ある。従つて、これらの値からXYプログラム面
FCS及び下ガイド移動面SCSにおける投影点Qi
Riの座標(XM1、YM1、ZM1)、(XM2、YM2
ZM2)が求まれば、これら対応する投影点Qi,Ri
(i=1、2、…)を同時にたどるように、XY
プログラム面でX、Y同時2軸制御し、又UV下
ガイド移動面でU、Vの同時2軸制御し、全体と
して同時4軸制御すれば所望の部品が得られる。
Now, V 3 to V 7 and points P 1 and P 2 are known. Therefore, from these values, the XY program plane
Projected point Q i on FCS and lower guide movement plane SCS,
Coordinates of R i (XM 1 , YM 1 , ZM 1 ), (XM 2 , YM 2 ,
ZM 2 ), these corresponding projection points Q i , R i
(i=1, 2,...) so that XY
The desired part can be obtained by simultaneously controlling two axes of X and Y on the program surface, controlling two axes of U and V simultaneously on the UV lower guide movement surface, and controlling four axes simultaneously as a whole.

今、ポイントP1,P2の部品座標系における座
標をそれぞれ(xp1、yp1、0)、(xp2、yp2、−V3
とし、これらポイントP1,P2の座標を機械座標
系に変換したときの座標を (xn1、yn1、zn1)、(xn2、yn2、zn2) とする。尚、部品座標系(xp、yp、zp)から機械
座標系(xn、yn、zn)への変換式は次式のよう
になる。
Now, the coordinates of points P 1 and P 2 in the component coordinate system are (x p1 , y p1 , 0) and (x p2 , y p2 , −V 3 ), respectively.
The coordinates of these points P 1 and P 2 when converted to the mechanical coordinate system are (x n1 , y n1 , z n1 ) and (x n2 , y n2 , z n2 ). The conversion formula from the component coordinate system (x p , y p , z p ) to the machine coordinate system (x n , y n , z n ) is as follows.

xn=xp・cosV6−zp・sinV6 yn=yp・cosV7−(xp・sinV6 +zp・cosV6・sinV7) zn=yp・sinV7+(xp・sinV6 +zp・cosV6・cosV7) (3) 但し、Yn軸を中心としてV6回転を最初に行な
い、ついでXn軸を中心としてV7回転をするもの
とする。
x n = x p・cosV 6 −z p・sinV 6 y n =y p・cosV 7 −(x p・sinV 6 +z p・cosV 6・sinV 7 ) z n =y p・sinV 7 +(x p・sinV 6 +z p・cosV 6・cosV 7 ) (3) However, it is assumed that V 6 rotations are first performed around the Y n axis, and then V 7 rotations are performed around the X n axis.

従つて、P1(xp1、yp1、0)、P2(xp2、yp2、−
V3)は(3)式を用いて(4)、(5)式の如く機械座標系
に変換される。
Therefore, P 1 (x p1 , y p1 , 0), P 2 (x p2 , y p2 , −
V 3 ) is converted to the mechanical coordinate system using equation (3) as shown in equations (4) and (5).

xn1=xp1・cosV6 yn1=yp1・cosV7−xp1・sinV6 zn1=yp1・sinV7+xp1・sinV6 (4) xn2=xp2・cosV6+V3・sinV6 yn2=yp2・cosV7−(xp2・sinV6 −V3・cosV6・sinV7) zn2=yp2・sinV7+(xp2・sinV6 −V3・cosV6・cosV7) (5) さて、ベクトルP1Qi―→(=B→)の単位ベクトル
i,j,kは A=√(n1n22+(n1n22
n1n22(6) とすると、 i=(xn1−xn2)/A j=(yn1−yn2)/A k=(zn1−zn2)/A (7) となる。又、ポイントQiのZ軸座標ZM1はV4
あるから、 k・|B|=(V4−zn1) が成立し、ベクトルβの大きさは |B|=(V4−zn1)・A/(zn1−zn2) となる。故に投影点QiのX軸、Y軸座標値XM1
YM1、ZM1はそれぞれ XM1=xn1+(V4−zn1)・(xn1−xn2)/(zn1
−zn2) yn1+(V4−zn1)・(yn1−yn2)/(zn1−zn2) ZM2=V4 (8) となり、投影点Qiの座標が求まる。同様にUV下
ガイド移動面の投影点Riの各軸座標値XM2
YM2、ZM2は XM2=xn2+(V5−zn2)・(xn1−xn2)/(zn1
−zn2) YM2=yn2+(V5−zn2)・(yn1−yn2)/(zn1−zn2) ZM2=V5 (9) となる。
x n1 =x p1・cosV 6 y n1 =y p1・cosV 7 −x p1・sinV 6 z n1 =y p1・sinV 7 +x p1・sinV 6 (4) x n2 =x p2・cosV 6 +V 3・sinV 6 y n2 = y p2・cosV 7 − (x p2・sinV 6 −V 3・cosV 6・sinV 7 ) z n2 = y p2・sinV 7 + (x p2・sinV 6 −V 3・cosV 6・cosV 7 ) (5) Now, the unit vectors i, j, k of the vector P 1 Qi-→(=B→) are A=√( n1n2 ) 2 + ( n1n2 ) 2 +
( n1n2 ) 2 (6) then i=(x n1 − x n2 )/A j=(y n1 − y n2 )/A k=(z n1 − z n2 )/A (7) . Also, since the Z-axis coordinate ZM 1 of point Q i is V 4 , k・|B|=(V 4 −z n1 ) holds true, and the magnitude of vector β is |B|=(V 4 − z n1 )・A/(z n1 −z n2 ). Therefore, the X-axis and Y-axis coordinate values of the projection point Q i are XM 1 ,
YM 1 and ZM 1 are respectively XM 1 = x n1 + (V 4 − z n1 )・(x n1 − x n2 )/(z n1
−z n2 ) y n1 + (V 4 − z n1 ) · (y n1 − y n2 )/(z n1 − z n2 ) ZM 2 = V 4 (8) and the coordinates of the projection point Q i are determined. Similarly, each axis coordinate value XM 2 of the projection point R i of the UV lower guide movement surface,
YM 2 and ZM 2 are XM 2 = x n2 + (V 5 − z n2 )・(x n1 − x n2 )/(z n1
−z n2 ) YM 2 = y n2 + (V 5 − z n2 )・(y n1 − y n2 )/(z n1 − z n2 ) ZM 2 = V 5 (9).

ついで、X、Yプログラム面上の投影点座標
(Xi、Yi)と、ベクトルRii―→の軸成分Ui、Viを求
め、Xi、Yi、Ui、ViをNCデータとしてメモリに
記憶する。但し、Xi、Yi、Ui、Viは、 Xi=XM1 Yi=YM1 Ui=(XM2−XM1) Vi=(YM2−YM1) (10) である。
Next, the projection point coordinates (X i , Y i ) on the X, Y program plane and the axial components U i , V i of the vector R i Q i -→ are determined, and X i , Y i , U i , V i is stored in memory as NC data. However , X i , Y i , U i , and Vi are as follows : .

そして、以後部品上面と下面における全対応点
に対し、(8)〜(10)式を用いて順次Xi、Yi;Ui、Vi
(i=1、2、3…)を求め、メモリに記憶する。
Then, for all corresponding points on the top and bottom surfaces of the component, using equations (8) to (10), X i , Y i ; U i , V i
(i=1, 2, 3...) is determined and stored in memory.

全対応点におけるXi、Yi、Ui、Viが求まれば、
これらをNCデータとしてNCテープを作成し該
NCテープを用いて(テープ運転)、或いはメモ
リより1ブロツクづつ読み出し(メモリ運転)、
同時4軸制御によりワイヤカツト放電加工機を制
御する。
If X i , Y i , U i , and V i at all corresponding points are found,
Create an NC tape using these as NC data and
Using NC tape (tape operation) or reading one block at a time from memory (memory operation),
Controls a wire cut electrical discharge machine using simultaneous 4-axis control.

次に部品上面及び下面の形状入力について説明
する。第7図は部品の一部平面図である。今、部
品上面形状PUPと部品下面形状PDPにおける線
素をそれぞれG1,G3,G5,G7;G2,G4,G6
G8とし、又線素G1とG2,G3とG4,G5とG6,G7
とG8…が互いに対応するものとすると部品形状
定義プログラムは以下のようになる。但し、ポイ
ントS1〜S10、円弧C1,C2,C3は既に定義済であ
るものとする。
Next, inputting the shapes of the top and bottom surfaces of the component will be explained. FIG. 7 is a partial plan view of the parts. Now, the line elements in the component top surface shape PUP and component bottom surface shape PDP are respectively G 1 , G 3 , G 5 , G 7 ; G 2 , G 4 , G 6 ,
G 8 , and the line elements G 1 and G 2 , G 3 and G 4 , G 5 and G 6 , G 7
Assuming that G8 and G8 correspond to each other, the part shape definition program will be as follows. However, it is assumed that points S 1 to S 10 and arcs C 1 , C 2 , and C 3 have already been defined.

G1;S1、S2、1 G2;S6、S7、1 G3;C1、CW、S2、S3、40 G4;C2、CW、S7、S8、40 G5;S3、S4、1 G6;S8、S9、1 G7;C3、CW、S4、S5、50 G8;S9、S10、50 尚、上記プログラム中CWは時計方向の円弧で
あることを示し、又末尾の数値1、40、50は各線
素Giの分割数である。分割数が2以上のときには
NCデータ作成処理に際し各分割点が求められ、
対応する分割点毎に(8)〜(9)式によりXi、Yi、Ui
Viが演算され、NCデータとして出力される。
G 1 ; S 1 , S 2 , 1 G 2 ; S 6 , S 7 , 1 G 3 ; C 1 , CW, S 2 , S 3 , 40 G 4 ; C 2 , CW, S 7 , S 8 , 40 G 5 ; S 3 , S 4 , 1 G 6 ; S 8 , S 9 , 1 G 7 ; C 3 , CW, S 4 , S 5 , 50 G 8 ; S 9 , S 10 , 50 In the above program CW indicates a clockwise circular arc, and the numbers 1, 40, and 50 at the end are the number of divisions of each line element G i . When the number of divisions is 2 or more
Each division point is determined during the NC data creation process,
For each corresponding division point, X i , Y i , U i ,
V i is calculated and output as NC data.

第8図は本発明のブロツク図、第9図は処理の
流れ図である。
FIG. 8 is a block diagram of the present invention, and FIG. 9 is a process flowchart.

予め、ROM101にはNCデータ作成プログ
ラムが記憶されている。又、V3〜V7、部品上面
及び下面の形状データ(前述の部品形状定義文)
がテープ102からテープリーダ103に読取ら
れて、RAM104に記憶されている。処理部1
05は、まずRAM104より、形状データを読
取り以下のステツプ(イ)、(ロ)により部品上面と下面
における対応点の座標を求めRAM106に順次
格納する。
An NC data creation program is stored in the ROM 101 in advance. In addition, V 3 to V 7 , the shape data of the top and bottom surfaces of the part (the above-mentioned part shape definition statement)
is read from the tape 102 by the tape reader 103 and stored in the RAM 104. Processing part 1
05 first reads the shape data from the RAM 104 and calculates the coordinates of corresponding points on the top and bottom surfaces of the component through the following steps (a) and (b), and sequentially stores them in the RAM 106.

(イ) 対応する2つの線素の分割数が2以上はどう
かを判定する。1であれば各線素の端点を対応
点座標としてRAM106に記憶し、次の線素
データを読み取る。
(b) Determine whether the number of divisions of two corresponding line elements is 2 or more. If it is 1, the end point of each line element is stored in the RAM 106 as the corresponding point coordinates, and the next line element data is read.

(ロ) 分割数が2以上であれば、各線素の分割点の
座標を求めて対応点座標とし、これをRAM1
06に記憶し、次の線素データを読みとる。
尚、第10図Aに示すように分割数をM、2点
の座標をそれぞれ(xa、ya)、(xb、yb)とすれ
ば2点を結ぶ直線の分割点座標xj、yj(j=1、
2、…M)は xj=xa+j/M(xb−xa) yj=ya+j/M(yb−ya) となる。又、第10図Bに示すように、θ0を中
心角、rを円弧半径、Mを分割数、θ(=θ0
M)を角度増分、中心Cpと円弧始点Csを結ぶ
直線がX軸となる角度をとすれば分割点の座
標xj、yj(j=1、2、…M)は x1=xa、y1=ya xj=Xj-1・cosθ−yj-1・sinθ yj=xj-1・sinθ+yj-1・cosθ となる。
(b) If the number of divisions is 2 or more, find the coordinates of the division point of each line element, use them as the corresponding point coordinates, and store them in RAM1.
06 and read the next line element data.
As shown in Figure 10A, if the number of divisions is M and the coordinates of the two points are (x a , y a ) and (x b , y b ), respectively, then the division point coordinates of the straight line connecting the two points are x j , y j (j=1,
2,...M) becomes x j = x a + j/M (x b - x a ) y j = y a + j/M (y b - y a ). Also, as shown in Figure 10B, θ 0 is the central angle, r is the arc radius, M is the number of divisions, and θ (= θ 0 /
M) is the angular increment, and the angle at which the straight line connecting the center C p and the arc starting point C s is the X axis, then the coordinates of the dividing point x j , y j (j = 1, 2,...M) are x 1 = x a , y 1 = y a x j = X j-1・cosθ−y j-1・sinθ y j =x j-1・sinθ+y j-1・cosθ.

以上の処理により全対応点の算出と記憶が終了
すれば処理部105は各対応点を用いて(8)〜(9)式
を用いてXi、Yi、Ui、Vi(i=1、2、…)を求
め、これをNCデータとしてRAM106に記憶
する。以上により部品上面及び下面形状が異なる
NCデータがRAM106上に作成されたことに
なる。以後、NCデータをテープパンチ107に
よりテープ108に記録してNCテープを作成す
る。尚、RAM106よりNCデータを1ブロツ
クづつ直接読取つてNC装置201に入力し、テ
ーパ加工を行なうようにしてもよい。
When the calculation and storage of all corresponding points is completed through the above processing, the processing unit 105 uses each corresponding point to calculate X i , Y i , U i , V i (i= 1, 2,...) and store this in the RAM 106 as NC data. The shape of the top and bottom surfaces of the parts differs due to the above.
This means that NC data has been created on the RAM 106. Thereafter, NC data is recorded on tape 108 by tape punch 107 to create an NC tape. Incidentally, the NC data may be directly read one block at a time from the RAM 106 and inputted to the NC device 201 to perform the taper process.

以上、本発明によれば、部品の上面形状と下面
形状が異なつた場合にテーパ角が機械により定ま
る最大テーパ角度より大きくなつていても、ワー
クを制御面に対して傾斜させて取付けることによ
りワイヤとワーク間で同時4軸制御による相対移
動を制御してテーパ加工を可能にしており、かつ
部品上面と部品下面に設定されたワイヤ通路に沿
つて正確なテーパ加工を行なえるから、従来のワ
イヤカツト放電加工機の応用分野を拡張できるワ
イヤカツトテーパ加工方法が提供される。
As described above, according to the present invention, even if the taper angle is larger than the maximum taper angle determined by the machine when the upper and lower surface shapes of the part are different, the wire can be attached by tilting the workpiece to the control surface. Taper machining is possible by controlling the relative movement between the workpiece and the workpiece using simultaneous 4-axis control, and accurate taper machining can be performed along the wire path set on the top and bottom surfaces of the component, making it possible to perform taper machining using simultaneous 4-axis control. A wire cut taper machining method is provided that can expand the field of application of electrical discharge machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のテーパ加工説明図、
第3図は制御面と部品面との関連説明図、第4図
及び第5図は部品上面形状が円であり部品下面形
状が正方形である場合において、XYプログラム
面及びUV移動面におけるワイヤの通路説明図、
第6図は本発明のテーパ加工方法説明図、第7図
は部品の一部平面図、第8図は本発明のブロツク
図、第9図はNCデータ作成処理の流れ図、第1
0図は分割点算出説明図である。 WR……ワイヤ、WK……部品、US……部品
上面、DS……部品下面、FCS……XYプログラム
面、SCS……UV下ガイド移動面。
Figures 1 and 2 are explanatory diagrams of conventional taper processing;
Figure 3 is an explanatory diagram of the relationship between the control surface and the component surface, and Figures 4 and 5 show the relationship between the control surface and the component surface, and Figures 4 and 5 show the wires on the XY program plane and the UV movement plane when the top surface of the component is a circle and the bottom surface of the component is square. Passage explanatory diagram,
Fig. 6 is an explanatory diagram of the taper processing method of the present invention, Fig. 7 is a partial plan view of the part, Fig. 8 is a block diagram of the present invention, Fig. 9 is a flowchart of the NC data creation process, and Fig. 1
Figure 0 is an explanatory diagram of dividing point calculation. WR...wire, WK...component, US...top of the component, DS...bottom of the component, FCS...XY program surface, SCS...UV lower guide movement surface.

Claims (1)

【特許請求の範囲】[Claims] 1 2つの制御面でそれぞれ同時2軸制御し、全
体として同時4軸制御によりワイヤとワーク間の
相対移動を制御してワークに所定のテーパ加工を
施すワイヤカツトテーパ加工方法において、ワー
クを第1、第2の制御面に対して傾斜させて配設
するとともに、ワークと第1、第2の制御面との
間の相対位置関係データおよび部品の上面形状デ
ータと下面形状データを入力し、前記部品上面と
部品下面に設定されたワイヤ通路上の対応するポ
イントを接続する直線が前記第1及び第2の制御
面と交差する投影点の位置を演算し、これら第1
及び第2の制御面での投影点の位置に基づきワイ
ヤとワーク間で同時4軸制御による相対移動を制
御することを特徴とするワイヤカツトテーパ加工
方法。
1 In a wire cut taper machining method in which a predetermined taper machining is performed on a workpiece by controlling the relative movement between the wire and the workpiece by simultaneously controlling two axes on two control planes and controlling the relative movement between the wire and the workpiece by simultaneous four-axis control as a whole, the workpiece is , and input the relative positional relationship data between the workpiece and the first and second control surfaces as well as the top surface shape data and bottom surface shape data of the part, and Calculate the position of a projected point where a straight line connecting corresponding points on the wire path set on the upper surface and lower surface of the component intersects the first and second control surfaces, and
and a wire cut taper machining method characterized by controlling relative movement between the wire and the workpiece by simultaneous four-axis control based on the position of the projection point on the second control surface.
JP18873882A 1982-10-27 1982-10-27 Wire cut taper machining method Granted JPS5981023A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18873882A JPS5981023A (en) 1982-10-27 1982-10-27 Wire cut taper machining method
DE8383903312T DE3379940D1 (en) 1982-10-27 1983-10-27 A wire-cut taper machining method
PCT/JP1983/000383 WO1984001735A1 (en) 1982-10-27 1983-10-27 A wire-cut taper machining method
EP19830903312 EP0124611B1 (en) 1982-10-27 1983-10-27 A wire-cut taper machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18873882A JPS5981023A (en) 1982-10-27 1982-10-27 Wire cut taper machining method

Publications (2)

Publication Number Publication Date
JPS5981023A JPS5981023A (en) 1984-05-10
JPS6351811B2 true JPS6351811B2 (en) 1988-10-17

Family

ID=16228904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18873882A Granted JPS5981023A (en) 1982-10-27 1982-10-27 Wire cut taper machining method

Country Status (1)

Country Link
JP (1) JPS5981023A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056824A (en) * 1983-09-06 1985-04-02 Fanuc Ltd Wire electric discharge machining method
JPH0783965B2 (en) * 1985-07-08 1995-09-13 株式会社放電精密加工研究所 Extrusion die manufacturing method
JPH0783966B2 (en) * 1985-07-08 1995-09-13 株式会社放電精密加工研究所 Extrusion die manufacturing method
JPH0783967B2 (en) * 1985-07-08 1995-09-13 株式会社放電精密加工研究所 Extrusion die manufacturing method
JP2704124B2 (en) * 1994-10-25 1998-01-26 日本電気株式会社 Wire electric discharge machining method and apparatus

Also Published As

Publication number Publication date
JPS5981023A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
EP1195665B1 (en) Apparatus and method for setting control parameters of machining apparatus
JPS6336524B2 (en)
EP0155323B1 (en) Wire type electric discharge machining method
EP0258897A2 (en) Method and system for automatically generating tool path data for automatic machining center
US4963805A (en) Numerical control apparatus for machining non-circular workpieces
EP1298507A2 (en) Method for setting a machining feed rate and a machine tool using the same
US20170185064A1 (en) Machining method and a control device for a machine tool
US5075865A (en) Method and apparatus for involute interpolation
US5031107A (en) Numerical control apparatus for machining non-circular workpieces
US4700314A (en) Taper cutting method
JPS6351811B2 (en)
US5030819A (en) Method and device for numerical control for electroerosion machine
JP3101596B2 (en) Controller for wire electric discharge machining with taper machining correction function
EP0365001A2 (en) Method and apparatus for the three-dimensional processing
JPS6240126B2 (en)
JP3288799B2 (en) Wire electric discharge machine
EP0124611B1 (en) A wire-cut taper machining method
JP2742959B2 (en) Laser processing equipment
JPS6238096B2 (en)
KR0168072B1 (en) Moving route compensating method based on diameter of machine tool
JPH01273682A (en) Method of setting output condition for cutting for cutting robot
JPS60126709A (en) Position controlling method
KR0168069B1 (en) Moving route compensating method based on diameter of machine tool
JP2803845B2 (en) Method and device for correcting squareness of teaching program
JPS6351810B2 (en)