JPS5828130B2 - DC electric railway power supply method - Google Patents

DC electric railway power supply method

Info

Publication number
JPS5828130B2
JPS5828130B2 JP53133396A JP13339678A JPS5828130B2 JP S5828130 B2 JPS5828130 B2 JP S5828130B2 JP 53133396 A JP53133396 A JP 53133396A JP 13339678 A JP13339678 A JP 13339678A JP S5828130 B2 JPS5828130 B2 JP S5828130B2
Authority
JP
Japan
Prior art keywords
power
bus
substation
power supply
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53133396A
Other languages
Japanese (ja)
Other versions
JPS5559025A (en
Inventor
豊美 権藤
房男 手塚
貞治 能木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP53133396A priority Critical patent/JPS5828130B2/en
Publication of JPS5559025A publication Critical patent/JPS5559025A/en
Publication of JPS5828130B2 publication Critical patent/JPS5828130B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Description

【発明の詳細な説明】 本発明は、直流式電気鉄道の給電方法に関するもので、
変電所において正極母線を分割し、分割した正極母線に
対応して給電回路を区分し、前記分割した正極母線単独
に順電力変換装置を設け、(以下これを正極母線分割順
電力変換装置単独給電という)前記の区分された各給電
回路の回生電力を共通の逆電力変換装置により3相交流
電力に変換し、設備の簡易化、投資の合理化をはかるこ
とを目的としたものである。
[Detailed description of the invention] The present invention relates to a power supply method for a DC electric railway,
At the substation, the positive electrode bus is divided, a power feeding circuit is divided corresponding to the divided positive electrode bus, and a forward power converter is provided for each of the divided positive electrode buses (hereinafter referred to as positive electrode bus split forward power converter independent power feeding). The purpose of this system is to convert the regenerated power of each of the above-mentioned divided power supply circuits into three-phase AC power using a common reverse power converter, thereby simplifying equipment and rationalizing investment.

従来、一般に鉄道線路に沿うて適当な間隔で設備された
直流変電所には1組ないし数組の変換装置を設け、各変
換装置の正極側は変換装置専用の直流しゃ断器(以下こ
れを変換装置用直流しゃ断器という)を介して共通の導
体(以下これを正極母線という)に接続し、負極側は直
接に共通の導体(以下これを負極母線という)に接続し
ている。
Conventionally, DC substations installed at appropriate intervals along railway lines are generally equipped with one or several sets of converters, and the positive side of each converter is equipped with a dedicated DC breaker (hereinafter referred to as converter). They are connected to a common conductor (hereinafter referred to as the positive electrode bus) via a device DC breaker), and the negative electrode side is directly connected to the common conductor (hereinafter referred to as the negative electrode bus).

すなわち各変換装置は変電所内で並列に接続されて直流
変電所の直流電源を構成しており、一方、電車線路は一
般に隣接変電所間および線路側に区分(以下これを給電
回線という)され、前記区分された給電回線の電車線は
各回線専用の直流しゃ断器(以下これを給電用直流しゃ
断器という)を介して各変電所でそれぞれの正極母線に
接続されレールは負極母線に直接接続される。
In other words, each converter is connected in parallel within the substation to constitute the DC power source of the DC substation, while the electric train tracks are generally divided into adjacent substations and on the track side (hereinafter referred to as power supply lines). The overhead contact lines of the divided power supply lines are connected to the positive busbars at each substation via DC circuit breakers dedicated to each line (hereinafter referred to as power supply DC circuit breakers), and the rails are directly connected to the negative busbars. Ru.

すなわち、一般に前記区分された電車線路には隣接する
変電所が並列に電力を供給する給電回路が構成されてい
る。
That is, generally, a power supply circuit is constructed in which adjacent substations supply power in parallel to the divided electric train tracks.

給電回路を構成する前記直流しゃ断器は、空気中で電流
をしゃ断する電極を有する機械的構造のもので、電流し
ゃ断時に消耗する電極の手入れ、保修に変電所保守労力
の大部分が費され、また、各変電所は各給電回路を通し
て一般に並列に接続されているため、並列する任意の変
電所内における正極母線での短絡事故電流は、事故変電
所より供給する事故電流に、隣接変電所より各給電回線
を通して供給される事故電流が加わるので事故時の被害
を拡大するおそれがある。
The DC breaker that constitutes the power supply circuit has a mechanical structure that has electrodes that cut off current in the air, and most of the substation maintenance effort is spent on cleaning and maintaining the electrodes that are consumed when cutting off the current. In addition, since each substation is generally connected in parallel through each power supply circuit, a short-circuit fault current on the positive bus in any parallel substation will be added to the fault current supplied from the fault substation, and from each adjacent substation. Since the fault current supplied through the power supply line is added, there is a risk that damage in the event of an accident may be expanded.

上述の問題点を解決したものとして、第1図に示すよう
な給電方法が出願人により出願されている。
In order to solve the above-mentioned problems, the applicant has filed an application for a power supply method as shown in FIG.

すなわち第1図において、1,2および3は直流変電所
、4,4′は3相交流送電線、5,5′は3相交流しゃ
断器、6,6′は変換装置用変圧器、7.7′は順電力
変換装置、8,8′は逆電力変換装置9,9′は変電所
正極母線、10は変電所負極母線、11 、11’は区
分された電車線、12はレール、13 、13’は電力
回生運転中の電気車。
That is, in FIG. 1, 1, 2 and 3 are DC substations, 4 and 4' are three-phase AC transmission lines, 5 and 5' are three-phase AC circuit breakers, 6 and 6' are converter transformers, and 7 .7' is a forward power converter, 8, 8' is a reverse power converter, 9, 9' is a substation positive electrode bus, 10 is a substation negative electrode bus, 11, 11' is a divided overhead contact line, 12 is a rail, 13 and 13' are electric cars in power regeneration operation.

第1図の例について説明する。The example shown in FIG. 1 will be explained.

第1図は変電所正極母線分割、順電力変換装置単独給電
の一般給電回路に3箇所の変電所が並列に電力を供給す
る例で、変電所2に逆電力変換装置を設備し、電車線路
では電力回生制御中の電気車が運転される場合の例であ
る。
Figure 1 shows an example in which three substations supply power in parallel to a general power supply circuit with substation positive bus bar division and forward power converter independent power supply; substation 2 is equipped with a reverse power converter, and This is an example in which an electric vehicle is operated under power regeneration control.

第1図において電気車のカ行運転用電力は各変電所にお
いて一般の商用周波3相交流送電線4より交流しゃ断器
5を通して受電された3相交流電圧を変圧器6で適当な
電圧に変換し、順電力変換装置7,7′により直流電力
に変換し、正極母線9γ、各区分された電車線11.1
1’により電気車に供給される。
In Fig. 1, the electric power for running the electric car is obtained by converting the 3-phase AC voltage received from the general commercial frequency 3-phase AC transmission line 4 through the AC breaker 5 at each substation into an appropriate voltage at the transformer 6. The forward power converter 7, 7' converts the power into DC power, and connects it to the positive bus 9γ and each sectioned overhead contact line 11.1.
1' is supplied to the electric car.

電力回生運転中の電気車13 、13’の回生電力は電
車線路i i 、 1i’を経て変電所2の分割された
正極母線9,9′に至り、逆電力変換装置8,8′によ
り、それぞれ3相交流電力に変換され、変圧器6′シゃ
断器5′を経て3相交流送電線4′に供給される。
The regenerated power of the electric cars 13, 13' during the power regeneration operation reaches the divided positive electrode buses 9, 9' of the substation 2 via the overhead contact lines i i, 1i', and is transferred by the reverse power converters 8, 8'. Each of the three-phase AC power is converted into three-phase AC power and supplied to the three-phase AC transmission line 4' via a transformer 6' and a breaker 5'.

すなわち、直流正極母線か分割されているため。In other words, the DC positive electrode bus is divided.

それぞれの正極母線につながる電車線路に発生する回生
電力を交流に変換し交流電源に供給するためにはそれぞ
れの分割された直流正極母線に対応する逆電力変換装置
が必要で、第1図の例では直流正極母線分割数が2箇で
あり、2箇の逆電力変換装置が必要となる。
In order to convert the regenerative power generated on the electric train tracks connected to each positive bus to AC and supply it to the AC power supply, a reverse power converter corresponding to each divided DC positive bus is required, and the example shown in Figure 1 is In this case, the number of DC positive electrode busbar divisions is two, and two inverse power converters are required.

すなわち第1図に示した直流式電気鉄道の給電回路にお
いては、変電所の正極母線分割、順電力変換装置単独給
電回路は、正極母線地絡時の事故電流の制御、給電回路
保護の信頼性を低下しないで直流高速度しゃ断器が省略
できるなど、設備の簡素化、保護の信頼性向上などの利
点を有しているが逆電力変換装置などの電力回生設備を
設ける場合は分割された正極母線ごとに設備する必要が
あるので電力回生設備が不経済となる。
In other words, in the power supply circuit of the DC electric railway shown in Figure 1, the positive bus division of the substation and the single forward power converter power supply circuit are important for controlling the fault current in the event of a positive bus ground fault and for ensuring the reliability of the power supply circuit protection. It has advantages such as simplifying the equipment and improving protection reliability, such as the ability to omit a DC high-speed breaker without reducing the power, but when installing power regeneration equipment such as a reverse power converter, it is necessary to use a separate positive electrode. Since it is necessary to install it for each bus bar, the power regeneration equipment becomes uneconomical.

本発明は上述の点に鑑みてなされたもので、以下にその
実施例に係る直流式電気鉄道の給電方法を第2図によっ
て説明する。
The present invention has been made in view of the above points, and a power supply method for a DC electric railway according to an embodiment thereof will be explained below with reference to FIG.

第2図はこの実施例による給電方法を実施するための給
電回路の構成例を示すもので、第1図のものと同一部分
または相当部分は同一符号で示されている。
FIG. 2 shows an example of the configuration of a power supply circuit for carrying out the power supply method according to this embodiment, and the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals.

第2図において1’、2’および3′はそれぞれ変電所
であって、第1図の変電所2に設備した逆電力変換設備
にかわりに、変電所2′のように分割された直流正極母
線9,9′間に14 、14’で示すダイオードでそれ
ぞれのダイオードの陽極を分割された正極母線9,9′
に接続し、それぞれのダイオードの陰極は逆電力変換母
線15に共通に接続し、この逆電力変換母線15に逆電
力変換装置8の正極側を接続したもので、他の順電力変
換装置給電回路構成は第1図のものと全く同じである。
In Fig. 2, 1', 2', and 3' are substations, and instead of the reverse power conversion equipment installed in substation 2 in Fig. 1, the DC positive electrode is divided as in substation 2'. Positive electrode bus bars 9, 9' are separated by diodes 14 and 14' between the bus bars 9, 9', and the anodes of the respective diodes are divided.
The cathodes of the respective diodes are commonly connected to the reverse power conversion bus 15, and the positive side of the reverse power conversion device 8 is connected to this reverse power conversion bus 15. The configuration is exactly the same as that shown in FIG.

したがって、電気車のカ行運転用電力は第1図の場合と
全く同様な径路で供給されるが、第2図において電気車
13の回生電力は電車線11により変電所2′の直流正
極母線9に至り、ダイオード14と、逆電力変換母線1
5を経て逆電力変換装置8に至る。
Therefore, the electric power for running the electric car is supplied through the same route as in FIG. 1, but in FIG. 9, the diode 14 and the reverse power conversion bus 1
5 and reaches an inverse power converter 8.

また電気車13′の回生電力は電車線11′により変電
所2′の直流正極母線γに至り、ダイオード14′およ
び逆電力変換母線15を経て逆電力変換装置8に至り、
電気車13の回生電力と一緒になり逆電力変換装置8に
より3相交流電力に変換され、変換器6′、しゃ断器5
′を経て3相交流電源4′に供給される。
In addition, the regenerated power of the electric car 13' reaches the DC positive bus γ of the substation 2' via the overhead contact line 11', passes through the diode 14' and the reverse power conversion bus 15, and reaches the reverse power conversion device 8.
It is combined with the regenerated power of the electric car 13 and converted into three-phase AC power by the reverse power converter 8, which is then sent to the converter 6' and the breaker 5.
' is supplied to the three-phase AC power supply 4'.

すなわち、区分された給電回路に発生するそれぞれの回
生電力は、ダイオード14 、14’のため一緒にまと
められるので直流正極母線が分割され順電力変換装置単
独給電の場合でも逆電力変換装置は1箇ですみ、また区
分された給電回路相互間についてはダイオード14 、
14’が逆極性の縦つなぎ接続であるため、開放に近い
状態となるので変電所の正極母線分割、順電力変換装置
単独給電回路の利点を損なうことなく、逆電力変換装置
の設備投資の軽減、電力回生設備利用率の向上がはから
れる。
In other words, the regenerated power generated in the divided power supply circuits is collected together by the diodes 14 and 14', so even if the DC positive bus is divided and the forward power converter is fed alone, there is only one reverse power converter. Also, between the divided power supply circuits, diodes 14,
Since 14' is a vertically connected connection with reverse polarity, it is almost open, so it is possible to reduce the capital investment for the reverse power converter without sacrificing the advantages of dividing the positive bus of the substation and the forward power converter independent power supply circuit. , the utilization rate of power regeneration equipment will be improved.

なお、各順電力変換装置7.Tの正極側は直流しゃ断器
が省略されて直接それぞれの正極母線9゜γに接続され
る。
Note that each forward power conversion device 7. The positive electrode side of T is directly connected to each positive electrode bus 9°γ without a DC breaker.

さらに各変電所の各正極母線9.グは給電用直流しゃ断
器が省略されて隣接変電所間で区分された各電車線11
、11’に接続され、一方各変電所の負極母線10は
レール12に直接接続されて給電回路を構成しているが
、各直流しゃ断器が省略されるため給電回路の短絡事故
は3相交流しゃ断器6によって保護される。
Furthermore, each positive electrode bus 9 of each substation. Each contact line 11 is divided between adjacent substations by omitting a DC breaker for power supply.
, 11', and on the other hand, the negative bus 10 of each substation is directly connected to the rail 12 to form a power supply circuit.However, since each DC breaker is omitted, short circuit accidents in the power supply circuit are caused by three-phase AC. It is protected by a circuit breaker 6.

したがって、例えば第2図の変電所1’、2’間の電車
線路に電気車13がある場合、変電所1′よりは変電所
1′の原電力変換装置7′の正極側より正極母線γを経
て、また変電所7よりは変電所τの原電力変換装置7の
正極側より正極母線9を経て変電所1’、2’の変換装
置7′、7が並列に接続される電車線11より電流が供
給される。
Therefore, for example, when there is an electric car 13 on the overhead contact line between substations 1' and 2' in FIG. 2, the positive electrode bus γ is , and from the substation 7, from the positive side of the raw power converter 7 of the substation τ, via the positive electrode bus 9, the overhead contact line 11 to which the converters 7', 7 of the substations 1', 2' are connected in parallel. More current is supplied.

いま、電車線11区間内の例えば電気車13の位置にお
いて電車線11とレール12間に16で示すように短絡
事故が発生した場合は、変電所1′および変電所2の交
流しゃ断器6がそれぞれしゃ断されるので変電所1/、
2/の直流出力はなくなり、また変電所1′に隣接する
他の変電所(図示せず)の変換装置より電車線を通って
事故発生区間の電車線11区間に流入する電流は変電所
1′の原電力変換装置7によって阻止され、同様に変電
所7に隣接するさらに他の変電所の変換装置より電車線
を通って事故発生区間の電車線11区間に流入する電流
は変電所τの変換装置7′によって阻止されるので事故
電流は消滅し、事故は保護される。
Now, if a short circuit accident occurs between the overhead contact line 11 and the rail 12 as shown at 16 at the location of the electric car 13 in the overhead contact line 11 section, for example, the AC breaker 6 of the substation 1' and the substation 2 will be activated. Since each is cut off, substation 1/,
2/ is no longer present, and the current that flows from the converter of another substation (not shown) adjacent to substation 1' through the overhead contact line and into the section of overhead contact line 11 where the accident occurred is transferred to substation 1. The current that is blocked by the raw power converter 7 at the substation 7 and flows from the converter at another substation adjacent to the substation 7 through the contact line to the section of the contact line 11 where the accident occurred is blocked by the power converter 7 at the substation τ. Since it is blocked by the converter 7', the fault current disappears and the fault is protected.

ただし、変電所1’、2’が停止しても他の変電所変電
所間の電車線は他の変電所の変換装置の直流電源により
、また、変電所7,3/間の電車線11′は変電所3′
の変換装置7の直流電源により給電される。
However, even if substations 1' and 2' are stopped, the contact line between the other substations and substations will be operated by the DC power source of the converter of the other substation, and the contact line 11 between substations 7 and 3/ ' is substation 3'
Power is supplied by the DC power supply of the converter 7.

また、例えば変電所γの正極母線9において短絡事故が
発生した場合は前記電車線11区間の電気車13の位置
における短絡事故時と同様にして保護されるが、事故電
流は変電所7の変換装置7よりの電流と、隣接変電所1
′の変換装置γ′より電車線11を経て流入する電流の
和であり、従来の直流式電気鉄道給電回路の事故の場合
に比し、並列変電所ならびに給電回線数が少なくなるの
で事故電流は低減する。
For example, if a short-circuit accident occurs at the positive bus 9 of the substation γ, protection will be provided in the same way as in the case of a short-circuit accident at the location of the electric car 13 in the overhead contact line 11 section, but the fault current will be transferred to the substation 7. Current from device 7 and adjacent substation 1
The fault current is the sum of the currents flowing from the converter γ′ in the converter γ′ through the contact line 11, and compared to the case of a fault in a conventional DC electric railway power supply circuit, the number of parallel substations and power supply lines is reduced, so the fault current is reduce

なお、本実施例は正極母線が2箇に分割されている場合
について例示したが、正極母線が3箇以上の数であるこ
とは自由で、この場合は原電力変換装置が正極母線の分
割数に対応する数となり、またダイオード14 、14
’の数も正極母線の分割した数に対応するのみで逆電力
変換装置の数は1筒でよいことは自明である。
In addition, although this example illustrated the case where the positive electrode bus is divided into two, the number of positive electrode buses can be three or more, and in this case, the raw power conversion device and the number corresponding to the diodes 14 and 14
It is obvious that the number ' corresponds only to the number of divided positive electrode busbars, and the number of inverse power converters may be one cylinder.

すなわち第3図は本発明の他の実施例を示すもので、こ
の実施例においては4個の正極母線9゜γ、9“および
Yが設けられでおり、これらの正極母線9 、9’、9
“およびγ“はそれぞれ原電力変換装置7.7’、7〃
および7″を介して変圧器6に接続されると共に、ダイ
オード14,14’、14“および14″を介して逆電
力変換母線15に接続されており、上述の実施例のもの
と同様の作用、効果を奏する。
That is, FIG. 3 shows another embodiment of the present invention, in which four positive electrode busbars 9°γ, 9'' and Y are provided, and these positive electrode busbars 9, 9', 9
"and γ" are the raw power converters 7, 7' and 7, respectively.
and 7'' to the transformer 6, and to the reverse power conversion bus 15 via diodes 14, 14', 14'' and 14'', with the same effect as in the embodiment described above. , has an effect.

また、上述の各実施例ではしゃ断器5.5’、変圧器6
,6′を用いて変換設備が構成されているが、本発明で
はこれらはどのようなものであってもよく、あるいは之
らが省略されていてもこの発明の給電方法は実施可能で
ある。
Further, in each of the above embodiments, the circuit breaker 5.5', the transformer 6
, 6' are used to construct the conversion equipment, however, in the present invention, any type of these may be used, or even if these are omitted, the power supply method of the present invention can be implemented.

さらに、本発明によれば、原電力変換装置7〜7″を単
にダイオードにより構成するか、あるいはサイリスクそ
の他によって構成するかは当業者が任意に選定できるも
のである。
Furthermore, according to the present invention, those skilled in the art can arbitrarily select whether the raw power converters 7 to 7'' are constructed simply by diodes or by silice or the like.

以上説明したように本発明は、変電所正極母線分割、原
電力変換装置単独給電の一般の直流式電気鉄道給電回路
の変電所において、各区分された電車線路に発生する直
流回生電力を共通の逆電力変換装置により交流電力に変
換し、電源へ供給するもので、電力回生設備の簡素化が
はかれ、これにより設備投資の軽減、利用率の向上をは
かることができるもので、その技術的な効果も犬である
As explained above, the present invention is a substation of a general DC electric railway power supply circuit in which the substation positive bus bar is divided and the original power converter is supplied separately. This converts AC power into AC power using an inverse power converter and supplies it to the power source, which simplifies power regeneration equipment, thereby reducing capital investment and improving utilization rates. The effect is also a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の経過を示し、変電所の直流正極母線分
割順電力変換装置単独給電回路に逆電力変換装置を設備
する場合の給電回路略図であり、第2図本発明の実施例
において用いる給電回路図、第3図は本発明の他の実施
例を示す給電方法に用いる回路図である。 1’、2’、3’は直流変電所、4,4′は3相交流送
電線、5,5′は3相交流しゃ断器、6,6′は変換装
置用変圧器、7,7′は原電力変換装置、8,8′は逆
電力変換装置、9,9′は変電所正極母線、10は変電
所負極母線、i i 、 i i’は区分された電車線
、12はレール、13 、13’は電気車、14゜14
’、14“、14′//はダイオード、15は逆電力変
換母線である。
FIG. 1 shows the progress of the present invention and is a schematic diagram of a power supply circuit when a reverse power converter is installed in a DC positive bus split forward power converter single power supply circuit of a substation, and FIG. FIG. 3 is a circuit diagram used in a power feeding method showing another embodiment of the present invention. 1', 2', 3' are DC substations, 4, 4' are 3-phase AC transmission lines, 5, 5' are 3-phase AC circuit breakers, 6, 6' are converter transformers, 7, 7' is a raw power converter, 8, 8' is a reverse power converter, 9, 9' is a substation positive electrode bus, 10 is a substation negative electrode bus, i i , i i' are divided overhead contact lines, 12 is a rail, 13, 13' are electric cars, 14°14
', 14'', 14'// are diodes, and 15 is a reverse power conversion bus.

Claims (1)

【特許請求の範囲】[Claims] 1 商用周波の交流電力を直流電力に順変換する複数台
の順電力変換装置と、回生車両よりの回生電力を交流電
力に逆変換して、この交流電力を商用周波電源母線側へ
回生する逆電力変換装置とをそれぞれ備え、複数台の順
変換装置側々に設けられる直流正極母線を通して、回線
毎に区分されたき電線に所望の直流電力を給電するよう
にしたものに於て、前記複数の直流正極母線とき電線と
の各直流電路の任意点と、逆電力変換母線との間に、直
流電路側を陽極とし逆電力変換母線側を陰極とするダイ
オードをそれぞれ設け、これらダイオードを通して入力
される回生電力を逆電力変換装置側へ導くようにしたこ
とを特徴とする電流式電気鉄道の給電方法。
1 Multiple forward power converters that convert commercial frequency AC power into DC power, and a reverse converter that converts regenerative power from a regenerative vehicle back into AC power and regenerates this AC power to the commercial frequency power supply bus. A power conversion device is provided, and a desired DC power is supplied to the feeder line divided for each line through the DC positive electrode bus bar provided on each side of the plurality of forward conversion devices. Diodes with the DC line side as an anode and the reverse power conversion bus side as a cathode are installed between arbitrary points of each DC circuit between the DC positive bus and the electric wire and the reverse power conversion bus, and regeneration input through these diodes is provided. A power supply method for a current-type electric railway, characterized in that power is guided to a reverse power converter side.
JP53133396A 1978-10-28 1978-10-28 DC electric railway power supply method Expired JPS5828130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53133396A JPS5828130B2 (en) 1978-10-28 1978-10-28 DC electric railway power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53133396A JPS5828130B2 (en) 1978-10-28 1978-10-28 DC electric railway power supply method

Publications (2)

Publication Number Publication Date
JPS5559025A JPS5559025A (en) 1980-05-02
JPS5828130B2 true JPS5828130B2 (en) 1983-06-14

Family

ID=15103762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53133396A Expired JPS5828130B2 (en) 1978-10-28 1978-10-28 DC electric railway power supply method

Country Status (1)

Country Link
JP (1) JPS5828130B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088756U (en) * 1983-11-26 1985-06-18 日立工機株式会社 printer paper feeder
JPS6140252U (en) * 1984-08-16 1986-03-14 東芝テック株式会社 Printing machine rotation shaft holding device
JPS61125531U (en) * 1985-01-18 1986-08-07
JPH058143Y2 (en) * 1985-03-11 1993-03-01

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088756U (en) * 1983-11-26 1985-06-18 日立工機株式会社 printer paper feeder
JPS6140252U (en) * 1984-08-16 1986-03-14 東芝テック株式会社 Printing machine rotation shaft holding device
JPS61125531U (en) * 1985-01-18 1986-08-07
JPH058143Y2 (en) * 1985-03-11 1993-03-01

Also Published As

Publication number Publication date
JPS5559025A (en) 1980-05-02

Similar Documents

Publication Publication Date Title
JPH0688506B2 (en) DC type electric railway power feeder
JPS5828130B2 (en) DC electric railway power supply method
JP2890675B2 (en) DC power supply method
JPH02343Y2 (en)
JPS6220735A (en) Dc power feeding device
JPH0127946Y2 (en)
JPH0339302Y2 (en)
JPH02106447A (en) Feeder line system for dc electric railcar
JPS5845374B2 (en) DC electric railway power supply method
JPS6218340A (en) Direct current feeding device
JPH0688513B2 (en) DC power supply
JPS62216843A (en) Dc power feeder
JPH0688511B2 (en) DC power supply
JPS5845372B2 (en) DC electric railway power supply method
JPH0688510B2 (en) DC power supply
JPS5959529A (en) Power supplying equipment in dc electric railway
JPS6218343A (en) Direct current feeding device
JPH046568B2 (en)
JPS6220729A (en) Dc power feeding device
JPH07110590B2 (en) DC power supply
JPH046567B2 (en)
JPS62205837A (en) Direct current load dispatching device
JPH0688507B2 (en) DC power supply
JPH0688512B2 (en) DC power supply
JPS62210141A (en) Dc feeding system