JPS5845372B2 - DC electric railway power supply method - Google Patents

DC electric railway power supply method

Info

Publication number
JPS5845372B2
JPS5845372B2 JP15335878A JP15335878A JPS5845372B2 JP S5845372 B2 JPS5845372 B2 JP S5845372B2 JP 15335878 A JP15335878 A JP 15335878A JP 15335878 A JP15335878 A JP 15335878A JP S5845372 B2 JPS5845372 B2 JP S5845372B2
Authority
JP
Japan
Prior art keywords
power
substation
power supply
bus
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15335878A
Other languages
Japanese (ja)
Other versions
JPS5579717A (en
Inventor
貞治 熊木
豊美 権藤
房男 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP15335878A priority Critical patent/JPS5845372B2/en
Publication of JPS5579717A publication Critical patent/JPS5579717A/en
Publication of JPS5845372B2 publication Critical patent/JPS5845372B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電気鉄道の給電方法に係り、特に交流電力を直
流電力に変換して電気車の駆動源として供給する直流式
電気鉄道の給電方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply method for electric railways, and more particularly to a power supply method for DC type electric railways that converts AC power into DC power and supplies it as a driving source for electric cars.

従来、一般に鉄道線路に沿って適当な間隔で設備された
直流変電所には1組ないし数組の変換装置を設け、各変
換装置の直流出力側は変換装置専用の直流しゃ断器(以
下これを変換装置用直流しゃ断器と称する)に接続し、
交流入力側は直接に共通の導体(以下これを負極母線と
称する)に接続している。
Conventionally, DC substations installed at appropriate intervals along railway lines are generally equipped with one or several sets of converters, and the DC output side of each converter is equipped with a dedicated DC breaker (hereinafter referred to as this). (referred to as a DC breaker for converter equipment),
The AC input side is directly connected to a common conductor (hereinafter referred to as negative electrode bus).

すなわち、順電力変換装置と直流高速度しゃ断器とを含
めた給電系は変電所間で並列に接続されて直流変電所の
直流電源を構成しており、一方、電車線路は一般に隣接
変電所間および線路別に区分(以下これを給電回線と称
する)され、前記区分された給電回線の電車線(き電線
とも称する)は各回線専用の直流高速度しゃ断器(以下
これを給電用直流高速度しゃ断器と称する)を介して各
変電所でそれぞれの正極母線に接続され、レールは負極
母線に接続される。
In other words, the power supply system including the forward power converter and the DC high-speed circuit breaker is connected in parallel between substations to form the DC power source of the DC substation, while the overhead contact line is generally connected between adjacent substations. The overhead contact lines (also referred to as feeder lines) of the divided power supply lines are divided by line (hereinafter referred to as power supply lines), and each line is equipped with a dedicated DC high-speed breaker (hereinafter referred to as a DC high-speed breaker for power supply). The rails are connected to the respective positive busbars at each substation via rails (referred to as rails), and the rails are connected to the negative busbars at each substation.

すなわち、一般に前記区分された電車線路には隣接する
変電所が並列に電力を供給する給電回路が構成されてお
り、給電回路を構成する前記直流高速度しゃ断器群は、
空気中で電流をしゃ断する電極を有する機械的構造のも
ので、電流しゃ断時に消耗する電極の手入れ、補修に変
電所保守労力の大部分が費され、また各変電所は各給電
回路を通して一般に並列に接続されているため、並列す
る任意の変電所内における原電力変換装置用出力母線(
以下直流正極母線と称する)での短絡事故時の電流は、
事故変電所より供給する事故電流に、隣接変電所より各
給電回線を通して供給される事故電流が加わるので事故
時の被害を拡大するおそれがある。
That is, generally, the divided overhead contact line is configured with a feeder circuit that supplies power from adjacent substations in parallel, and the group of DC high-speed circuit breakers that make up the feeder circuit are:
It is a mechanical structure with electrodes that cut off current in the air, and most of the substation maintenance effort is spent on cleaning and repairing the electrodes that are consumed when the current is cut off, and each substation is generally connected in parallel through each feeder circuit. Because it is connected to the output bus for the raw power converter in any parallel substation (
The current at the time of a short circuit accident at the DC positive bus (hereinafter referred to as DC positive bus) is:
Since the fault current supplied from the faulty substation is added to the fault current supplied from adjacent substations through each power supply line, there is a risk that damage in the event of a fault may be expanded.

上述の問題点で特に直流高速度しゃ断器を用いた弊害を
解決するために、第1図に示すような給電方法が考えら
れる。
In order to solve the above-mentioned problems, especially the disadvantages of using a DC high-speed circuit breaker, a power supply method as shown in FIG. 1 can be considered.

すなわち第1図において、1.2および3は直流変電所
、4は3相交流送電線、5a、5b及び5cは3相交流
しゃ断器、6a+6b及び6cは変換装置用変圧器、7
a、7bは原電力変換装置、8は逆電力変換装置である
That is, in FIG. 1, 1.2 and 3 are DC substations, 4 is a three-phase AC transmission line, 5a, 5b and 5c are three-phase AC circuit breakers, 6a+6b and 6c are converter transformers, and 7
Reference numerals a and 7b are raw power converters, and 8 is an inverse power converter.

9 a t9bおよび9cは変換装置用断路器、10a
〜10dはそれぞれサイリスクスイッチ11と、セクシ
ョン間電位差を略零とする為に必要なダイオード12と
で構成され、よく知られている直流高速度しゃ断器と略
同−機能を有する静止形に置き換えたものである。
9a t9b and 9c are converter disconnectors, 10a
~10d are each composed of a sirisk switch 11 and a diode 12 necessary to make the potential difference between sections approximately zero, and are replaced with a static type that has approximately the same function as a well-known DC high-speed breaker. It is something that

14a〜14dは給電用直流断路器、15は変電所用直
流正極母線、16は変電所用負極母線、17a、、1γ
a2,17b1,11b2は区分された電車区間を示す
き電線、180,182はレールである。
14a to 14d are DC disconnectors for power supply, 15 is a DC positive electrode bus for substations, 16 is a negative electrode bus for substations, 17a, 1γ
A2, 17b1, and 11b2 are feeder lines indicating divided train sections, and 180 and 182 are rails.

第1図は変電所直流正極母線15、原電力変換装置単独
給電の一般の給電回路に3箇所の変電所が並列に電力を
供給する例で、変電所2に逆電力変換装置を設備し、電
車線路ではカ行、回生の所定の動作で電気車が運転され
る場合の例である。
Figure 1 shows an example in which three substations supply power in parallel to a general power supply circuit where the substation DC positive electrode bus 15 and the original power converter are supplied separately, and substation 2 is equipped with an inverse power converter. This is an example of a case where an electric car is operated on a train track with a predetermined operation of power and regeneration.

第1図において電気車のカ行運転用電力は各変電所にお
いて一般の商用周波3相交流送電線4より交流しゃ断器
5a 、sbを通して受電された3相交流電圧を変圧器
6a 、6bで適当な電圧に変換し、順変換装置7a
、7bにより直流電力に変換して、直流正極母線15、
各区分された電線17a1,1γa2,1γb1,17
b2により電気車19a、19bに供給される。
In Fig. 1, the electric power for running the electric car is generated by converting the 3-phase AC voltage received from the general commercial frequency 3-phase AC transmission line 4 through AC breakers 5a and sb into transformers 6a and 6b at each substation. converter 7a
, 7b into DC power, and the DC positive electrode bus 15,
Each divided electric wire 17a1, 1γa2, 1γb1, 17
It is supplied to electric cars 19a and 19b by b2.

変電所2,3間に示す電気車19bが回生運転時にある
場合は、この回生電力はき電線17b2および回生能力
のある変電所2の断路器14c及びストッパダイオード
12cを経て直流正極母線15に至り、逆電力変換装置
8により、それぞれ3相電力に変換され、変圧器6c、
しゃ断器5cを経て3相交流送電線4に回生される仕組
となっている。
When the electric car 19b shown between the substations 2 and 3 is in regenerative operation, this regenerative power reaches the DC positive bus bar 15 via the feeder line 17b2 and the disconnector 14c and stopper diode 12c of the substation 2 with regenerative capability. , are converted into three-phase power by the inverse power converter 8, and are connected to the transformer 6c,
The energy is regenerated to the three-phase AC power transmission line 4 via the circuit breaker 5c.

この第1図に示す従来例の直流式電気鉄道の給電方法に
よれば、直流高速度しゃ断器の代りにサイリスクスイッ
チ11と回生用ストッパダイオード12を逆並列接続し
てなる静止形の直流スイッチ10a〜10dを用いたか
ら、き電設備の保守が簡易化されるとともに、何らかの
原因によりき電線の任意点で短絡事故等を生じた様な場
合、事故点を健全なる系より完全に除去するに要する所
要時間は直流高速度しゃ断器を使用する場合に比べて非
常に短縮され、事故の拡大を未然に防止できると云う利
点がある。
According to the conventional DC electric railway power supply method shown in FIG. 1, instead of the DC high-speed breaker, a static DC switch is used, which is formed by connecting a SIRISK switch 11 and a regenerative stopper diode 12 in antiparallel. Since 10a to 10d are used, the maintenance of the feeding equipment is simplified, and if a short circuit occurs at any point on the feeding line for some reason, the fault point can be completely removed from a healthy system. The required time is much shorter than when using a DC high-speed breaker, which has the advantage of preventing the spread of an accident.

これと同時に各変電所相互間に介在するプツトセクショ
ン間の電位差は上記静止形の直流スイッチ群の作用によ
り、例えば導通時のサイリスクとストッパダイオードの
順電圧降下分を合計した値が表われるのみで、はとんど
セクション間の電位差は無視し得る値と考えてよく、こ
の点に関しては理想的な直流き電系の構成と云える。
At the same time, the potential difference between the put sections intervening between each substation is due to the action of the static DC switch group, and for example, only the sum of the si risk during conduction and the forward voltage drop of the stopper diode appears. For the most part, the potential difference between sections can be considered to be a negligible value, and in this respect it can be said to be an ideal DC feeding system configuration.

しかし乍らこの反面、例えば静止形のスイッチを構成す
るサイリスク素子そのものは、大容量になればなる程犬
型でしかも非常に高価なものとなり、特にサイリスク素
子そのものの保護はき電系の使命より非常に厳しい制約
があって、必然的に静止形のスイッチそのものの構成が
複雑化し、且つ大型となり非常に不経済なものとなる。
However, on the other hand, for example, the higher the capacity of the thyrisk element that constitutes a static switch, the more expensive it becomes. There are very strict restrictions, and the structure of the static switch itself is inevitably complicated and large, making it extremely uneconomical.

本発明は上述の点に鑑みてなされたもので、その目的と
するところは、少なくとも1箇所の変電所内において直
流正極母線の他に、電気車が回生運転状態にあるとき回
生電力を交流送電線側に回生ずるための回生母線を分設
するとともに、従来の給電系にみられる直流スイッチの
代りに一方向性の電気弁たとえばダイオードのみを用い
ることにより、設備の簡易化、投資の合理化を図ること
である。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to transmit regenerative power to an AC power transmission line when an electric vehicle is in a regenerative operation state in addition to a DC positive bus in at least one substation. By installing a separate regeneration bus on the side and using only a unidirectional electric valve, such as a diode, in place of the DC switch found in conventional power supply systems, equipment can be simplified and investments can be rationalized. That's true.

以下に本発明の実施例に係る直流式電気鉄道の給電方法
について説明する。
A power supply method for a DC electric railway according to an embodiment of the present invention will be described below.

第2図はこの実施例による給電回路の構成例を示すもの
で、第1図のものと同一部分または相当部分は同一符号
で示されている。
FIG. 2 shows an example of the configuration of the power supply circuit according to this embodiment, and the same or equivalent parts as those in FIG. 1 are designated by the same reference numerals.

第2図において1 a 、 2a、および3aはそれぞ
れ変電所であって、これらの各変電所1 a 、 2a
および3aにおいて直流正極母線15とき電線1γa1
,1γa2 t 1 yblt 17b2間にはカ行用
のストッパダイオード12a〜12dが直流断路器14
a〜14dを介して接続されており、各変電所区間に位
置するき電線1γal。
In FIG. 2, 1a, 2a, and 3a are substations, respectively, and each of these substations 1a, 2a
And in 3a, when the DC positive electrode bus 15, the electric wire 1γa1
, 1γa2 t 1 yblt 17b2, there are stopper diodes 12a to 12d for direct current connecting to the DC disconnector 14.
The feeder line 1γal is connected via lines a to 14d and located in each substation section.

17a2,1γb1.tlb2間にはそれぞれプツトセ
クション21が介設されている。
17a2, 1γb1. A put section 21 is interposed between each tlb2.

また変電所2a内では、直流正極母線15の他に回生母
線20が設けられており、この回生母線20側は図示す
る様に直流正極母線15下に連なるアーム(給電線)数
と同数のアームで構成され、各アームにはストッパダイ
オード22a〜22dが図示する様に夫夫挿入してあっ
て、これらダイオード群のカソード側は共通の回生母線
20と接続され、各ダイオード22a〜22dのアノー
ド側は各断路器14a〜14dを通してき電線17at
t 17a2,17bt 。
In addition, in the substation 2a, a regenerative bus 20 is provided in addition to the DC positive bus 15, and as shown in the figure, the regenerative bus 20 has the same number of arms as the number of arms (feeding lines) connected under the DC positive bus 15. Stopper diodes 22a to 22d are inserted into each arm as shown in the figure, and the cathode sides of these diodes are connected to the common regeneration bus 20, and the anode sides of each of the diodes 22a to 22d are connected to the common regeneration bus 20. The feeder line 17at is passed through each disconnector 14a to 14d.
t 17a2, 17bt.

11b2に接続されている。11b2.

上記構成の給電回路において、電気車のカ行運転用電力
は第1図の場合と全く同様な経路で供給されるが、本実
施例においては例えば変電所1a〜2a間に介在する電
気車19aの回生電力は、き電線11a1より変電所2
aの断路器14aおよび回生母線20側に連なるダイオ
ード22dを介して回生母線20に至り、この回生母線
20からリアクトル23及び直流断路器9cを通して逆
電力変換装置、7 cに入力される。
In the power supply circuit configured as described above, electric power for driving the electric car is supplied through the same route as in the case of FIG. 1, but in this embodiment, for example, the electric car 19 The regenerative power is transferred from the feeder line 11a1 to the substation 2.
The power reaches the regeneration bus 20 via the disconnector 14a of a and the diode 22d connected to the regeneration bus 20 side, and is input from the regeneration bus 20 to the reverse power converter 7c through the reactor 23 and the DC disconnector 9c.

逆変換装置7cの交流出力電圧は変圧器6cにより変圧
され、この変圧された電力はしゃ断器5cを通して交流
送電線4に回生される。
The AC output voltage of the inverter 7c is transformed by the transformer 6c, and the transformed power is regenerated to the AC power transmission line 4 through the breaker 5c.

また上記構成の給電回路において、発電所2aのデッド
セクション21間電圧を、電気車の運転状態たとえば力
行、回生および停止のいかんにかかわらず常に略零にす
ることができる。
Further, in the power supply circuit configured as described above, the voltage across the dead section 21 of the power station 2a can always be made approximately zero regardless of the operating state of the electric vehicle, such as power running, regeneration, or stoppage.

すなわち、変電所2aのデッドセクション21の前方に
位するき電線11a1区間に最も大きな電位差が生ずる
運転条件の例として、第2図に示すように変電所2aに
隣接する変電所1a方面に回生運転中の車輌19aがあ
り、同時刻に変電所3a方面に力行中の車輌19cがあ
る場合について第3図を参照しながら説明する。
That is, as an example of an operating condition in which the largest potential difference occurs in the feeder line 11a1 section located in front of the dead section 21 of the substation 2a, as shown in FIG. A case where there is a vehicle 19a inside the substation 3a and a vehicle 19c powering in the direction of the substation 3a at the same time will be described with reference to FIG.

第3図中、G、19aは一定回生電流Igで回生運転中
の車輌、M、19cは一定力行電流Imで変電所2aか
ら変電所3aに向って力行(進行)する車輌を示し、1
1は変電所2aから回生車輌G。
In FIG. 3, G, 19a indicates a vehicle in regenerative operation with a constant regenerative current Ig, M, 19c indicates a vehicle powering (progressing) from the substation 2a to the substation 3a with a constant powering current Im, and 1
1 is a regenerative vehicle G from substation 2a.

19aまでの距離、Xは変電所2aから力行車輌M、1
9cまでの距離、12は変電所2aと3a間の距離であ
る。
The distance to 19a, X is from substation 2a to power vehicle M, 1
9c, and 12 is the distance between substations 2a and 3a.

ここで第3図の電圧、電流の分布は等価的には第4図に
よって表わすことができる。
Here, the voltage and current distributions shown in FIG. 3 can be equivalently represented by FIG. 4.

また、変電所1aと3aの順変換装置7a 、 7bは
定格または120%負荷程度まではき電電圧を常に15
00(V)一定に制御できるようになっている。
In addition, the forward converters 7a and 7b of substations 1a and 3a always change the feeding voltage to 15% up to the rated or 120% load.
It is possible to control the voltage at a constant voltage of 00 (V).

さらに変電所2aにおいては、回生母線20に連なるス
トッパダイオード22a〜22dの電流id + 12
2b 、122c r icの大きさは極性を常に監視
する。
Furthermore, in the substation 2a, the current id + 12 of the stopper diodes 22a to 22d connected to the regenerative bus 20
The magnitude of 2b, 122c ric always monitors the polarity.

かかる点を踏まえて第4図の等価回路図において、車輌
19aよりの回生電圧によってストッパダイオード12
aは逆バイアスされ当該ダイオード12,1を通して流
れるカ行電流iaは零、又車輌19cはカ行運転時であ
るので、ストッパダイオード22aを通して流れる回生
電流Idは零という必要条件を満たすべく、変電所2a
の逆電力変換装置7cの端子間電圧e’iと原電力変換
装置γaの端子間電圧e’s 1をそれぞれe’i =
1500(V)、e’s ] = 1500(V)と
なるように制御し、隣接の変電所3aも常にe’s2
=1500(V)に制限するように制御する。
Based on this point, in the equivalent circuit diagram of FIG. 4, the stopper diode 12 is
a is reverse biased and the current ia flowing through the diodes 12 and 1 is zero, and since the vehicle 19c is in the driving mode, the substation 2a
The inter-terminal voltage e'i of the inverse power converter 7c and the inter-terminal voltage e's 1 of the original power converter γa are respectively e'i =
1500 (V), e's] = 1500 (V), and the adjacent substation 3a is also always e's2.
= 1500 (V).

したがって、回生運転時の逆電力変換装置ICの無負荷
電圧eiは回生電流Igによる内部電圧降下が加わって
上昇するが、これを1500(V)に維持するため、1
500(Vより内部電圧降下による上昇分だけ低くなる
ように制限される。
Therefore, the no-load voltage ei of the reverse power converter IC during regenerative operation increases due to the internal voltage drop due to the regenerative current Ig, but in order to maintain this at 1500 (V), 1
500 (V) by the increase due to internal voltage drop.

また、原電力変換装置7a、7bの無負荷電圧es]は
変電所が分担するカ行電流による内部電圧降下を差引い
て1500(V)とするため、1500(V)より内部
電圧降下分だけ高くなるように制限される。
In addition, the no-load voltage es of the raw power converters 7a and 7b is set to 1500 (V) by subtracting the internal voltage drop due to the current shared by the substation, so it is higher than 1500 (V) by the internal voltage drop. be limited to.

もちろん、変電所3aの原電力変換装置7 a tlb
も、変電所2aの原電力変換装置と同様に制御されるの
でカ行車輌負荷については、変電所2aと3aはき電電
圧の等しい並列運転となり、次の各式が成立する。
Of course, the raw power converter 7a tlb of the substation 3a
Since the substations 2a and 3a are controlled in the same manner as the raw power converter of the substation 2a, the substations 2a and 3a operate in parallel with the same feeding voltage for the vehicle load, and the following equations hold true.

(但しrtはき電線の単位長さ当りの抵抗値を示す) いま、回生電流Ig=2800(A)、カ行電流lm=
2100(A)、原電力変換装置の内部抵抗rSO,0
03375(Q)、逆電力変換装置の内部抵抗ri =
0.0675(IQ)、電車線抵抗rt=0.026
7(Ω/km)、変電所間隔12−2.65(km)と
し、カ行車輌Mが変電所2aから3aに向って移動した
場合の変電所2aの原電力変換装置7atγbと逆電力
変換装置γCの電圧、変電所3aの原電力変換装置7a
yγbの電圧、および変電所2aと3aの分担電流を求
めると第5図のようになる。
(However, rt indicates the resistance value per unit length of the feeder wire.) Now, regenerative current Ig = 2800 (A), current lm =
2100 (A), internal resistance of the raw power converter rSO, 0
03375 (Q), internal resistance ri of the inverse power converter device =
0.0675 (IQ), contact wire resistance rt=0.026
7 (Ω/km), the substation interval is 12-2.65 (km), and the raw power converter 7atγb of the substation 2a and the reverse power conversion when the vehicle M moves from the substation 2a to the substation 3a. Voltage of device γC, raw power converter 7a of substation 3a
Figure 5 shows the voltage of yγb and the shared current of substations 2a and 3a.

すなわち、 変電所2aのINV電圧(ei) 〜1311(V)変
電所2aのCNV電圧(esl)〜1571〜1500
(V)、変電所3aのCNV電圧(es2) = 15
71−1500 (V)、の範囲内に調整すれば、回生
運転時に逆電力変換装置1cに流れ込こもうとする隣接
変電所1 a y3aの原電力変換装置及び逆電力変換
装置1cが設備される変電所2aの原電力変換装置γa
からの循還電流は抑制され、デッドセクション21を挟
む両電路の電位を同電位に保持できるだけでなく、回生
車両よりの回生電力を効果的に商用周波電源母線側へ回
生できるものである。
That is, INV voltage (ei) of substation 2a ~ 1311 (V) CNV voltage (esl) of substation 2a ~ 1571 ~ 1500
(V), CNV voltage of substation 3a (es2) = 15
If adjusted within the range of 71-1500 (V), the raw power converter and reverse power converter 1c of the adjacent substation 1 a y 3a, which is about to flow into the reverse power converter 1c during regenerative operation, will be installed. Raw power converter γa of substation 2a
The circulating current from the dead section 21 is suppressed, and not only can the potentials of both electric circuits sandwiching the dead section 21 be maintained at the same potential, but also the regenerative power from the regenerative vehicle can be effectively regenerated to the commercial frequency power supply bus side.

次にき電線とレール間に短絡事故が発生した場合につい
て第2図の実施例を参照して説明する。
Next, a case where a short circuit accident occurs between the feeder line and the rail will be explained with reference to the embodiment shown in FIG.

いまき電線17a1区間内のたとえば電気車19aの位
置においてき線11a1とレール187間に25で示す
ように短絡事故が発生した場合、例えば図示しない過電
流検出器の動作により各変電所1a。
If a short-circuit accident occurs between the feeder line 11a1 and the rail 187 as shown at 25 at the position of the electric car 19a within the section of the current electric wire 17a1, for example, each substation 1a will be affected by the operation of an overcurrent detector (not shown).

2aの原電力変換装置γa、γbに対してゲートシフト
指令が与えられてゲートを最小限の位置まで絞って各変
電所1 a 、 2aの給電を停止し、給電系の電流が
零になった事を検出して変電所2aにあっては断路器1
4a、変電所1aにあっては14dを開極指令によって
開極し、変電所1 a +23を完全に停止させて故障
区間のき電系を健全母線より切離す。
A gate shift command was given to the raw power converters γa and γb of 2a, and the gates were narrowed down to the minimum position to stop the power supply to each substation 1a and 2a, and the current in the power supply system became zero. Disconnector 1 is activated at substation 2a after detecting the problem.
4a, in the substation 1a, 14d is opened by the opening command, the substation 1a+23 is completely stopped, and the feeding system in the faulty section is disconnected from the healthy bus.

このように短絡電流を充分に制限した後に故障区間のき
電系を切離すようにしているので、故障の拡大は未然に
防止でき確実に所定の短絡保護を行なうことができるも
のである。
Since the feeding system in the faulty section is disconnected after the short-circuit current is sufficiently limited in this way, the expansion of the fault can be prevented and the specified short-circuit protection can be reliably performed.

次に回生車両があって当該車両の他方のき電線17aI
Tで短絡事故があった場合の保護動作について述べる。
Next, there is a regenerative vehicle, and the other feeder line 17aI of the vehicle
We will discuss the protective operation in the event of a short circuit accident at T.

例えば2図でき電線1γb2下の電気車19bが回生運
転時になって、他方のき電線11a1下の電気車19a
がカ行運転時にある様な場合、カ行運転時にある電気車
19aに給電するき電線17a1を支持する碍子のリー
ク等の原因で符号25で示す点で事故を生じ、この事故
区間を速やかに切離して事故点を健全母線より遮断しな
ければならないが、この様な場合、本願においては次の
様な所定の動作を行なうものである。
For example, when the electric car 19b under the feeder wire 1γb2 in Figure 2 is in regenerative operation, the electric car 19a under the other feeder wire 11a1
If this is the case, an accident will occur at the point 25 due to a leak in the insulator supporting the feeder wire 17a1 that supplies power to the electric car 19a, and the accident section will be immediately removed. The fault point must be isolated from the healthy busbar, but in such a case, the following predetermined actions are performed in this application.

すなわち、変電所1a及び2aの各原電力変換装置γa
、γbをゲートシフトしてサイリスク位相を最小限の位
置まで絞って、変電所1a、2aの給電を停止する事は
従来例と同一であるが、かかる操作と同時に逆電力変換
装置1cの動作は継続する。
That is, each raw power converter γa of substations 1a and 2a
, γb are gate-shifted to reduce the si-risk phase to the minimum position, and the power supply to the substations 1a and 2a is stopped, as in the conventional example, but at the same time, the operation of the inverse power converter 1c is continue.

例えば変電所1 a 、 2aが既に停止状態にあって
回生状態にある電気車19bの回生電力が回生されるル
ープとして、車両19b→き電線17b2→変電所2a
の断路器14c→ダイオ一ド22b→回生母線20→リ
アクトル23→断路器9c→逆電力変換装置7c→変圧
器6c→しゃ断器5c→3相送電線4のループであるが
、本願においては変電所2.aの正極母線15と回生母
線20とを図示するように分離した構成となっており、
さらに変電所1a、2aの原電力変換装置7a、7bの
ゲートは上記したように充分に最小限まで絞って変電所
は停止状態にあるので、前記ループを通して流れる回生
電力が第2図の事故点25に流れ込むことは決してない
For example, as a loop in which the regenerative power of the electric car 19b, which is in a regenerative state with the substations 1a and 2a already in a stopped state, is regenerated, the loop is as follows: vehicle 19b → feeder line 17b2 → substation 2a
This is a loop of disconnector 14c → diode 22b → regeneration bus 20 → reactor 23 → disconnector 9c → reverse power converter 7c → transformer 6c → breaker 5c → 3-phase transmission line 4, but in this application it is a loop of 3-phase power transmission line 4. Place 2. The positive electrode bus 15 and the regenerative bus 20 of a are separated as shown in the figure,
Furthermore, since the gates of the raw power converters 7a and 7b of the substations 1a and 2a are sufficiently narrowed down to the minimum value as described above and the substations are in a stopped state, the regenerative power flowing through the loop is transferred to the fault point in Figure 2. It never flows into 25.

したがって本願によれば、変電所1 a 、 2aの主
回路に挿入された断路器14d、14cは、各原電力変
換装置のゲート位相が最小限まで絞ったとほぼ同時刻に
変電所1aにあっては断路器14dを、変電所2aにあ
っては断路器14aをそれぞれ開極することができ、速
やかに事故点25のき電線17a1区間を切離すことが
できる。
Therefore, according to the present application, the disconnectors 14d and 14c inserted into the main circuits of the substations 1a and 2a are placed in the substation 1a at approximately the same time when the gate phase of each raw power converter is reduced to the minimum. The disconnect switch 14d at the substation 2a can be opened, and the disconnect switch 14a at the substation 2a can be opened, and the section of the feeder line 17a1 at the fault point 25 can be quickly disconnected.

上述のように本発明の実施例に係る直流式電気鉄道の給
電方法によれば、下記のような種々の利点が得られる。
As described above, according to the DC electric railway power supply method according to the embodiment of the present invention, the following various advantages can be obtained.

すなわち、(イ)変電所2aにおいて回線母線20を別
個に設けると共に、各変電所1a〜3aにおいてストッ
パダイオード12a〜12dでき電し、しかも回生電力
は回生母線20下のストッパダイオード22a〜22d
を通して回生ずるようにしたから、著しく保守に労力お
よび給電を要する直流高速度しゃ断器や高価なサイリス
タスイッチが不要にして極めて経済的になる。
That is, (a) the line bus 20 is provided separately in the substation 2a, and the stopper diodes 12a to 12d are provided in each substation 1a to 3a, and the regenerative power is transmitted to the stopper diodes 22a to 22d under the regenerative bus 20.
Since regeneration occurs through the power supply, there is no need for DC high-speed circuit breakers or expensive thyristor switches, which require significant maintenance effort and power supply, making it extremely economical.

(→き電設備が簡易される。(→Feeding equipment will be simplified.

(〕→事故時は隣接変電所からの流入電流がないから従
来に比し、事故電流の値そのものが低く遮断器、ダイオ
ード群の容量を小さくすることができる。
()→In the event of a fault, there is no inflow current from the adjacent substation, so the fault current value itself is lower than in the past, and the capacity of the circuit breaker and diode group can be reduced.

(→回生運転中の車輌があると、変電所2aのデッドセ
クション間に電位差が生じるが、原電力変換装置7a、
7bおよび逆電力変換装置ICを制御することにより、
セクション間電位差をなくすことができる。
(→If there is a vehicle in regenerative operation, a potential difference will occur between the dead sections of the substation 2a, but the raw power converter 7a,
By controlling 7b and the inverse power converter IC,
Potential difference between sections can be eliminated.

(力き電線事故時は、事故点をはさむ両変電所は瞬時(
100〜150m5)に給電を停止するが、かかる給電
の停止時であっても逆電力変換装置を通して回生は可能
であるので、エネルギーの有効利用を図ることができる
(In the event of a power line accident, both substations sandwiching the accident point will instantly
100 to 150 m5), but even when the power supply is stopped, regeneration is possible through the inverse power converter, so energy can be used effectively.

尚、上述の実施例ではしゃ断器5a、5b、変圧器5a
、6bを用いて変換設備が構成されているが、本発明で
はこれらはどのようであってもよい。
In addition, in the above-mentioned embodiment, the circuit breakers 5a, 5b and the transformer 5a
, 6b are used to construct the conversion equipment, however, in the present invention, these may be of any type.

以上説明したように本発明は、電気車が走行するレール
に沿って交流電力を前記電気車の動力源としての直流電
力に変換する複数の変電所を並設してなる直流式電気鉄
道の給電設備において、前記複数の変電所のうち少なく
とも1つの変電所に直流正極母線の他に回生母線を設け
、各変電所の前記正極母線とき電線とを、正極側が該正
極母線側になるように接続されたストッパダイオードと
断路器を介して接続して前記電気車にカ行電力を供給す
ると共に、前記回生母線とき電線間は正極側が前記き電
線側になるように接続されたストッパダイオードを介設
して前記電気車からの回生電力を交流電源側に回生ずる
ようにしたから、き電設備の簡略化が図れ、しかも高性
能な給電方法を得ることができる効果がある。
As explained above, the present invention provides power supply for a DC electric railway in which a plurality of substations are installed in parallel along the rails on which electric cars run, converting AC power into DC power as a power source for the electric cars. In the equipment, at least one of the plurality of substations is provided with a regenerative bus in addition to the DC positive bus, and the positive bus and electric wire of each substation are connected so that the positive side is on the positive bus side. A stopper diode is connected to the supplied stopper diode via a disconnector to supply power to the electric vehicle, and a stopper diode is connected between the electric wires at the time of the regenerative bus so that the positive electrode side is on the feeder line side. Since the regenerated power from the electric car is regenerated to the AC power source side, the power feeding equipment can be simplified and a high-performance power feeding method can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の給電方法を示した電気結線図、第2図は
本発明の実施例による給電方法を示す電気結線図、第3
図および第4図は第2図の給電方法の動作説明用電気回
路図、第5図は本発明の給電方法における動作説明用特
性線図である。 1a〜3a・・・・・・直流変電所、4・・・・・・3
相交流送電線、5a〜5c・・・:・・3相交流しゃ断
器、6a〜6c・・・・・・3相変圧器、7 a +γ
b・・・・・・原電力変換装置、γC・・・・・・逆電
力変換装置、9a〜9c・・・・・・直流断路器、12
a〜12d・・・・・・力行用ストッパダイオード、1
4a〜14d・・・・・・直流断路器、15・・・・・
・直流正極母線、16・・・・・・負極母線、1γal
117a2r 17b1.17b2−−−−−・き電
線、18. 、18□・・・・・・レール、19・・・
・・・電気車、20・・・・・・回生母線、21・・・
・・・断路器、22a〜22d・・・・・・回生用スト
ッパダイオード。
Figure 1 is an electrical wiring diagram showing a conventional power supply method, Figure 2 is an electrical wiring diagram showing a power supply method according to an embodiment of the present invention, and Figure 3 is an electrical wiring diagram showing a power supply method according to an embodiment of the present invention.
4 are electric circuit diagrams for explaining the operation of the power feeding method of FIG. 2, and FIG. 5 is a characteristic diagram for explaining the operation of the power feeding method of the present invention. 1a-3a...DC substation, 4...3
Phase AC transmission line, 5a-5c...:...3-phase AC breaker, 6a-6c...3-phase transformer, 7a + γ
b... Raw power converter, γC... Reverse power converter, 9a to 9c... DC disconnector, 12
a to 12d...stopper diode for power running, 1
4a to 14d...DC disconnector, 15...
・DC positive electrode bus, 16... Negative electrode bus, 1γal
117a2r 17b1.17b2--Feeder wire, 18. , 18□・・・Rail, 19...
...Electric car, 20...Regeneration bus, 21...
...Disconnector, 22a to 22d...Regeneration stopper diode.

Claims (1)

【特許請求の範囲】[Claims] 1 商用周波電源母線より入力される交流電力を直流電
力に順変換する単数或いは複数台の順電力変換装置と、
この装置の直流出力側に設けられる直流正極母線と、こ
の母線下に接続され且つ各き電線毎に対応して区分され
た断路器とカ行用ダイオード(又は消弧能力の無いサイ
リスタスイッチ)とから成る複数の直流電路と、これら
直流電路でカ行用ダイオード(又は消弧能力の無いサイ
リスクスイッチ)と断路器との各橋絡点側にアノードが
接続され、且つカソードを回生母線側に接続する回生用
ダイオード群を含む複数の電力返還ループと、これら複
数の電力返還ループより導ひかれる回生能力を、交流電
力に逆変換して商用周波電源母線側へ回生する逆電力変
換装置とを設備した第1変電所と、この第1変電所に隣
接され、商用周波電源母線より入力される交流電力を直
流電力に順変換する単数或いは複数台の順電力変換装置
と、この装置の直流出力側に設けられる直流正極母線と
、この母線下に接続され且つ各き電線毎に対応して区分
された断路器とカ行用ダイオード(又は消弧能力の無い
サイリスクスイッチ)とから成る複数の直流電路を設備
した第2変電所とを有し、これら第1、第2変電所のカ
行用のダイオード群を通して所望の直流電力を各き電線
へ給電するようにしたことを特徴とする直流式電気鉄道
の給電方法。
1. One or more forward power conversion devices that forward convert AC power input from a commercial frequency power supply bus into DC power;
A DC positive busbar provided on the DC output side of this device, a disconnector and a line diode (or a thyristor switch without arc extinguishing ability) connected under this busbar and separated for each feeder line. An anode is connected to each bridge point between a power diode (or a silisk switch without arc extinguishing ability) and a disconnector in these DC circuits, and a cathode is connected to the regeneration bus side. A plurality of power return loops including a group of regeneration diodes to be connected, and a reverse power conversion device that converts the regeneration capability derived from these plurality of power return loops back into AC power and regenerates it to the commercial frequency power supply bus side. A first substation installed, one or more forward power conversion devices adjacent to the first substation that convert AC power input from a commercial frequency power supply bus into DC power, and a DC output of this device. A plurality of DC positive electrode busbars provided on the side, and disconnectors and power diodes (or si-risk switches without arc extinguishing capability) connected under this busbar and divided correspondingly to each feeder line. A second substation equipped with a DC power line, and a desired DC power is supplied to each feeder line through a group of diodes for the lines of these first and second substations. Electric railway power supply method.
JP15335878A 1978-12-11 1978-12-11 DC electric railway power supply method Expired JPS5845372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15335878A JPS5845372B2 (en) 1978-12-11 1978-12-11 DC electric railway power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15335878A JPS5845372B2 (en) 1978-12-11 1978-12-11 DC electric railway power supply method

Publications (2)

Publication Number Publication Date
JPS5579717A JPS5579717A (en) 1980-06-16
JPS5845372B2 true JPS5845372B2 (en) 1983-10-08

Family

ID=15560705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15335878A Expired JPS5845372B2 (en) 1978-12-11 1978-12-11 DC electric railway power supply method

Country Status (1)

Country Link
JP (1) JPS5845372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311439B2 (en) * 1983-07-20 1988-03-14 Nippon Light Metal Co

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311439B2 (en) * 1983-07-20 1988-03-14 Nippon Light Metal Co

Also Published As

Publication number Publication date
JPS5579717A (en) 1980-06-16

Similar Documents

Publication Publication Date Title
US4680663A (en) Power supply installation for dc electric railroad
KR960001555B1 (en) Power supply installation for dc electric railroad
JPS5845372B2 (en) DC electric railway power supply method
JPS5845373B2 (en) DC electric railway power supply method
JPH02343Y2 (en)
JPS61191441A (en) Feeding device in substation for electric railway
JPH0429525A (en) Dc power supply system
JPS5828130B2 (en) DC electric railway power supply method
JPH0339302Y2 (en)
JPS5845374B2 (en) DC electric railway power supply method
JPS60176833A (en) Power feed device for d.c. type electrical railways
JPS5814119Y2 (en) DC electric railway power supply system
JPS6034493Y2 (en) DC circuit cutting device
JPH0688510B2 (en) DC power supply
JPH0141530B2 (en)
JPS6220729A (en) Dc power feeding device
JPH046568B2 (en)
JPS6218338A (en) Direct current feeding device
JPS5959529A (en) Power supplying equipment in dc electric railway
JPS62214030A (en) D.c. feeder
JPS6215140A (en) Direct current feeding device
JPS62214029A (en) D.c. feeder
JPH0688513B2 (en) DC power supply
JPS63188540A (en) Direct current feeder
JPS62214028A (en) D.c. feeder