JPS5827830A - Injecting device for internal combustion engine - Google Patents

Injecting device for internal combustion engine

Info

Publication number
JPS5827830A
JPS5827830A JP12749081A JP12749081A JPS5827830A JP S5827830 A JPS5827830 A JP S5827830A JP 12749081 A JP12749081 A JP 12749081A JP 12749081 A JP12749081 A JP 12749081A JP S5827830 A JPS5827830 A JP S5827830A
Authority
JP
Japan
Prior art keywords
engine
injection
pulse
calculating
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12749081A
Other languages
Japanese (ja)
Inventor
Masanobu Uchinami
打浪 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12749081A priority Critical patent/JPS5827830A/en
Publication of JPS5827830A publication Critical patent/JPS5827830A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the responsiveness in an unsteady state of an engine by a method wherein an injection pulse width is calculated based on a signal from detecting means of the unsteady state of the engine, thereby controlling the operation of an injection valve. CONSTITUTION:In a central control and operation unit 8 which receives signals from an intake air amount sensor 4 provided upstream a throttle valve 5 of the engine 1, a pressure sensor 7 at downstream thereof and an engine speed sensor 12, and outputs a signal to control a fuel injection valve 6 through a drive circuit 9, it is discriminated whether the engine 1 is driven steadily or not based on the information from the sensor 4 and the like, and if the engine is in an unsteady state, an injection pulse width is calculated and a timer is set to generate an interruption after a certain period of time. When the interruption enters in response to the signal from the engine speed sensor 12, the fuel injection valve is opened for predetermined period of time. Further, in case of the interruption of the timer being set, the valve 6 is opened at a certain pulse width or the pulse width corresponding to the input from the sensor 4 and the like. Thus, the fuel injection valve 6 can be opened at a particular time interval when the engine 1 is driven in an unsteady condition.

Description

【発明の詳細な説明】 本発明は電磁的に操作する噴射弁を有し、該噴射弁を制
御装置により内燃機関の作動パラメータに関係して操作
する内燃機関燃料噴射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine fuel injection system having an electromagnetically operated injection valve, which is operated by a control device as a function of the operating parameters of the internal combustion engine.

従来この種の、内燃機関の非定常時の燃料増量、あるい
は減量方法としては、機関の回転に同期して開弁される
噴射弁の開弁時間幅を機関の作動パラメータに応じて制
御することにより行なわれている。°しかるにこの種の
回転に同期して燃料を供給するものにおいては、たとえ
ば、1000回転程度の低回転からの加速時には噴射パ
ルス間隔は80m5ecと長く、加速を検出するまでの
時間及び加速を検出してから噴射パルス幅に反映させる
までの時間等を考慮すると、遅れ時間が応答性の低下に
顕著に現われる。そのため特別な加速補正機構を追加す
る必要があった。また従来装置では、機関の始動時及び
始動後の暖機運転時には、噴射パルス幅を大きくして燃
料増量を行なっているが、始動、暖機時等の機関が低温
時には噴射された燃料は十分気化せず、吸気管の壁面を
伝って流れてしまい、多量の燃料を供給してもなかなか
所定の空燃比の混合気が得られないという欠点があった
Conventionally, this type of method for increasing or decreasing the amount of fuel in an unsteady state of an internal combustion engine involves controlling the opening time width of an injection valve that opens in synchronization with the rotation of the engine in accordance with the operating parameters of the engine. It is carried out by ° However, in this type of device that supplies fuel in synchronization with rotation, the injection pulse interval is as long as 80 m5ec when accelerating from a low rotation of about 1000 rotations, and the time required to detect acceleration and the acceleration cannot be detected. When considering the time from when the injection pulse width is reflected until it is reflected in the injection pulse width, the delay time will significantly appear in the decrease in responsiveness. Therefore, it was necessary to add a special acceleration correction mechanism. In addition, with conventional devices, the injection pulse width is increased to increase the amount of fuel when starting the engine and when warming up after starting, but when the engine is at a low temperature such as when starting or warming up, the injected fuel is sufficient. This has the disadvantage that it does not vaporize and flows along the wall of the intake pipe, making it difficult to obtain a mixture with a predetermined air-fuel ratio even if a large amount of fuel is supplied.

さらに減速時には、上記加速、始動、暖機等の操作とは
別に、減速時燃料をカットあるいは、減少させるという
操作が必要であった。
Furthermore, during deceleration, it is necessary to cut or reduce fuel during deceleration, in addition to the above-mentioned operations such as acceleration, starting, and warming up.

すなわち、従来装置においては、機関の回転に同期して
燃料を噴射しているので、加速時には特別な加速補正溝
を必要とし、始動、暖機時には多量の燃料を供給しても
所定の空燃比の混合気が得られないという欠点があり、
さらに減速時には燃料をカットあるいは、減少させると
いう、加速、始動暖機時とは別の操作が必要であった。
In other words, in conventional devices, fuel is injected in synchronization with engine rotation, so a special acceleration correction groove is required during acceleration, and even when a large amount of fuel is supplied during startup and warm-up, the predetermined air-fuel ratio cannot be maintained. The disadvantage is that it is not possible to obtain a mixture of
Furthermore, when decelerating, fuel needs to be cut or reduced, which is different from when accelerating or starting and warming up.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、内燃機関の作動パラメータに応じ
て、噴射パルスのパルス幅を演算する手段と、作動パラ
メータに応じて、噴射パルスの間隔を演算する手段と、
機関の運転状態を検出する、機関状態検出手段を備え、
機関が非常状態時には、噴射パルスのパルス間隔を演算
する手段からの信号により、または噴射ノ(ルスの)(
117幅を演算する手段と噴射パルスのパルス間隔を演
算する手段の両方からの信号により噴射弁を開弁さすこ
とにより、機関の非定常時に応答性の良く、かつ必要最
小限の燃料を、加速、減速、始動、暖機等にかかわらず
、一連の演算操作で機関に燃料供給できる非常に有用な
内燃機関燃料噴射装置を提供することを目的とするもの
である。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes a means for calculating the pulse width of an injection pulse according to the operating parameters of an internal combustion engine, and a means for calculating the pulse width of the injection pulse according to the operating parameters of the internal combustion engine. means for calculating the interval;
Equipped with an engine state detection means for detecting the operating state of the engine,
When the engine is in an emergency state, the signal from the means for calculating the pulse interval of the injection pulse or the injection pulse (
By opening the injection valve based on signals from both the means for calculating the 117 width and the means for calculating the pulse interval of the injection pulse, the minimum necessary amount of fuel can be accelerated with good responsiveness when the engine is not steady. It is an object of the present invention to provide a very useful internal combustion engine fuel injection device that can supply fuel to an engine by a series of calculation operations regardless of whether it is decelerating, starting, warming up, or the like.

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例を示す全体構成図であり、図にお
いて、1は内燃機関、2はその吸気管で、吸入空気を清
浄化するエアクリーナ8、加速制御のためのスロットル
バルブ5、および機関1に吸入される吸気量を計測する
吸気量センサ4、圧力センサ7、等を備えている。8は
中央制御演算部でありマイクロコンピュータ、〜を変換
器、タイマ等で構成されており、噴射パルス幅演算手段
、噴射パルス間隔演算手段、機関状態検出手段等を備え
ている。中央制御演算部8から出力された噴射パルスは
駆動回路9により増幅され、その時間だけ燃料噴射弁6
を開弁している。この機関1の吸気系に配設した燃料噴
射弁6には図示していない燃料ポンプより一定圧力の加
圧燃料が供給されているため、その開弁時間に対応した
量の燃料が機関1に供給される。前記中央制御演算部8
は機関1の冷却水温センサ10、吸気温センサ11゜回
転センサ12、吸気量センサ4、吸気負圧センサ7、お
よび空燃比センサ、スロットルセンサ、スタータセンサ
等の各種センサよりのそれぞれの検出信号を受けてディ
ジタル信号に変換し、噴射パルス幅、あるいは噴射パル
ス間隔の演算を予め定めたプログラムによるソフトウェ
アにて行なう。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is an overall configuration diagram showing one embodiment of the present invention. In the figure, 1 is an internal combustion engine, 2 is its intake pipe, and includes an air cleaner 8 for cleaning intake air, a throttle valve 5 for acceleration control, and The engine 1 includes an intake air amount sensor 4, a pressure sensor 7, and the like that measure the amount of intake air taken into the engine 1. Reference numeral 8 denotes a central control calculation section, which is composed of a microcomputer, .about. converters, a timer, etc., and includes injection pulse width calculation means, injection pulse interval calculation means, engine state detection means, and the like. The injection pulse output from the central control calculation unit 8 is amplified by the drive circuit 9, and the fuel injection valve 6 is operated for that period of time.
is opening its doors. Since pressurized fuel at a constant pressure is supplied to the fuel injection valve 6 disposed in the intake system of the engine 1 from a fuel pump (not shown), the amount of fuel corresponding to the valve opening time is supplied to the engine 1. Supplied. The central control calculation section 8
represents the detection signals from the engine 1's cooling water temperature sensor 10, intake temperature sensor 11, rotation sensor 12, intake air amount sensor 4, intake negative pressure sensor 7, and various sensors such as the air-fuel ratio sensor, throttle sensor, and starter sensor. The received signal is converted into a digital signal, and the calculation of the injection pulse width or the injection pulse interval is performed by software based on a predetermined program.

次に、前記中央制御演算部8の中にあるマイクロコンピ
ュータにおける処理動作を第2図フローチャートにて説
明する。第2図において、その演算処理はループ的に繰
返すメインルーチンと、噴射パルスを出すための割込ル
ーチンを有している。
Next, processing operations in the microcomputer in the central control calculation section 8 will be explained with reference to the flowchart of FIG. In FIG. 2, the arithmetic processing includes a main routine that repeats in a loop and an interrupt routine for issuing injection pulses.

まず、メインプログラムスタート100にてメインルー
チンの演算処理が開始され、処理ステップ101にてマ
イクロコンピュータを初期状態にセットする。続いて処
理ステップ102にて各種センサからの入力情報を読み
込み、処理ステップ108にて機関が定常運転時である
か、始動、加速等の非定常運転時であるかを識別し、非
定常運転時には処理ステップ104で各種センサからの
入力情報に応じた噴射パルス間隔を演算し、処理ステッ
プ105で、ステップ104で演算した噴射パルス間隔
の時間後に割込み処理が発生するように割込み用タイマ
をセットする。他方機関が定常運転時は処理ステップ1
04,105を経ずに処理ステップ107に進み、回転
に同期して噴射弁を開弁さす割込み処理を実行さすか否
かを決定し、ステップ108で各種センサからの入力情
報に応じた噴射パルス幅を演算し前記処理ステップ10
2へもどる。このようなループにてメインルーチンの演
算処理を行なう。
First, arithmetic processing of the main routine is started at main program start 100, and at processing step 101 the microcomputer is set to an initial state. Next, in processing step 102, input information from various sensors is read, and in processing step 108, it is determined whether the engine is in steady operation or in unsteady operation such as starting or acceleration. In processing step 104, an injection pulse interval is calculated according to input information from various sensors, and in processing step 105, an interrupt timer is set so that an interrupt process occurs after the time of the injection pulse interval calculated in step 104. When the other engine is in steady operation, process step 1
The process proceeds to step 107 without going through steps 04 and 105, and it is determined whether or not to execute an interrupt process to open the injection valve in synchronization with the rotation, and in step 108, an injection pulse is generated according to input information from various sensors. Calculate the width and perform the processing step 10
Return to 2. The arithmetic processing of the main routine is performed in such a loop.

処理ステップ106で回転同期割込みがセットされてい
る場合は、前記回転センサによりの同期パルスにて割込
を受は付け、噴射弁6をステップ107で演算した時間
だけ開弁さすための割込ルーチンの処理が開始される。
If a rotation synchronization interrupt is set in processing step 106, an interrupt routine is executed to accept the interrupt with a synchronization pulse from the rotation sensor and open the injection valve 6 for the time calculated in step 107. processing is started.

割込みルーチンでは、割込を受付けたときにメインルー
チンの処理を一時止め、割込処理を実行し、この割込処
理の完了後に一時止めていたメインルーチンの処理と再
開するようにしている。前記同期パルスの発生による割
込受付200にて割込処理が開始され、107で演算さ
れた時間幅で噴射弁6が開弁された後、処理ステップ2
02のリターンによりメインルーチンの演算処理を再開
している。同様に処理ステップ105で割込み用タイマ
による割込がロフトされている場合ハ、ステップ104
で演算された噴射パルス間隔の時間後にタイマからの信
号による割込受付800にて割込み処理が開始され、一
定のパルス幅あるいは各種センサからの入力に応じた所
定のパルス幅で噴射弁6が開弁された後、処理ステップ
802のリターンによりメインルーチンの演算処理を再
開している。
In the interrupt routine, when an interrupt is accepted, the main routine processing is temporarily stopped, the interrupt processing is executed, and after the interrupt processing is completed, the suspended main routine processing is resumed. Interrupt processing is started at interrupt reception 200 due to the generation of the synchronization pulse, and after the injection valve 6 is opened for the time width calculated at step 107, processing step 2
Upon return of 02, the main routine arithmetic processing is restarted. Similarly, if the interrupt by the interrupt timer is lofted in step 105, step 104
After the injection pulse interval calculated in , interrupt processing is started at interrupt reception 800 based on a signal from the timer, and the injection valve 6 is opened with a constant pulse width or a predetermined pulse width according to input from various sensors. After this, the main routine arithmetic processing is restarted by returning to processing step 802.

次に、上記構成においてその動作を第8図の噴射パルス
の波形と対応させて説明する。まず内燃機関の始動のた
めに図示していないイグニツシ町ンスイッチを投入する
と、装置全体に電源供給され、中央制御演算部8がソフ
トウェア作動を開始し、第2図に示すメインルーチンに
おいて処理ステップ101〜108を経由して処理ステ
ップ102にもどる演算処理を繰返す。この状態に続い
て、スタータを作動させて機関1の始動を行なうと、処
理ステップ106にて機関は非定常時と判定され、処理
ステップ104によりパルス間隔が演算され、処理ステ
ップ105により割込み用タイマがセットされる。この
場合、処理ステップ106の回転同期割込みを実施する
ようにセットしておけば第8図(b)に示すように、回
転に同期した噴射パルスとは別に、割込み処理ルーチン
800〜802で発生する噴射パルスが加算される。始
動を完了し、暖機運転中も処理ステップ108は機関1
を非定常状態とみなすので燃料噴射パルスは第8図(b
)のように回転に同期した噴射パルスと非定常時にパル
ス間隔が演算された噴射パルスの加算された噴射パルス
で噴射弁1が開弁される。そして機関1の暖機完了後は
処理ステップ108では機関は定常運転時と判断される
ので処理ステップ104.105は除いた状態で演算処
理を実行する。処理ステップ106は定常運転時は回転
同期割込みを受は付けるようにセットされているので第
8図(a)に示すように回転に同期して、処理ステップ
107で演算された噴射パルス幅で噴射弁6は開弁され
る。また機関1の加速時には処理ステップ106は非定
常状態と判断するので噴射パルスは始動、暖機時と同様
に第2図ら)のように回転に同期して処理ステップ10
7で演算された噴射パルス幅の噴射パルスと処理ステッ
プ104で演算された噴射パルス間隔が演算されパルス
幅は一定または機関lの作動パラメータに応じた所定の
パルス幅の噴射パルスが加算された噴射パルスで噴射弁
が開弁される。さらに機関1の減速走行時には処理ステ
ップ106は非定常時とみなしパルス間隔が演算される
が、この場合は処理ステップ106で回転に同期した割
込みは実施されないようにセットされているため第8図
(C)に示すように処理ステップ104で演算された、
回転センサ12の信号間隔よりも長い周期の噴射パルス
のみで噴射弁6は開弁されるようになっている。
Next, the operation of the above configuration will be explained in relation to the waveform of the injection pulse shown in FIG. 8. First, when an ignition switch (not shown) is turned on to start the internal combustion engine, power is supplied to the entire device, the central control calculation unit 8 starts software operation, and in the main routine shown in FIG. The arithmetic processing returns to processing step 102 via steps 108 to 108 and is repeated. Following this state, when the starter is operated to start the engine 1, the engine is determined to be in an unsteady state at processing step 106, a pulse interval is calculated at processing step 104, and an interrupt timer is set at processing step 105. is set. In this case, if the rotation synchronization interrupt in processing step 106 is set to be executed, as shown in FIG. The injection pulses are added. Even after the start has been completed and the engine is being warmed up, processing step 108 continues
is considered to be an unsteady state, so the fuel injection pulse is as shown in Figure 8 (b
), the injection valve 1 is opened by an injection pulse that is the sum of an injection pulse synchronized with the rotation and an injection pulse whose pulse interval is calculated in an unsteady state. After the warm-up of the engine 1 is completed, it is determined that the engine is in steady operation at step 108, so the arithmetic processing is executed without steps 104 and 105. Since processing step 106 is set to accept rotation synchronization interrupts during steady operation, injection is performed in synchronization with the rotation and with the injection pulse width calculated in processing step 107, as shown in FIG. 8(a). Valve 6 is opened. Furthermore, when the engine 1 accelerates, processing step 106 determines that it is in an unsteady state, so the injection pulse is synchronized with the rotation as shown in Fig. 2, etc., as in the case of startup and warm-up.
The injection pulse with the injection pulse width calculated in step 7 and the injection pulse interval calculated in processing step 104 are calculated, and the pulse width is constant or an injection pulse with a predetermined pulse width depending on the operating parameters of the engine I is added. The injection valve is opened by the pulse. Furthermore, when the engine 1 is decelerating, the pulse interval is calculated in step 106, assuming that it is in an unsteady state, but in this case, the interrupt synchronized with rotation is set not to be executed in step 106, so as shown in FIG. Calculated in processing step 104 as shown in C),
The injection valve 6 is opened only by an injection pulse having a cycle longer than the signal interval of the rotation sensor 12.

なお上記実施例では、噴射パルス幅を演算する手段、噴
射パルス間隔を演算する手段、及び機関状態検出手段は
ソフトウェアによりマイクロコンピュータに実行させた
が、これらの手段は個々にハードウェアの回路等で構成
しても同様の効果が期待できることは云うまでもない。
In the above embodiment, the means for calculating the injection pulse width, the means for calculating the injection pulse interval, and the means for detecting the engine state are executed by a microcomputer using software, but these means may be individually executed by a hardware circuit or the like. Needless to say, the same effect can be expected even if the configuration is configured.

以上のように、この発明によれば内燃機関の作動パラメ
ータに応じて、噴射パルスのパルス幅を演算する手段と
、作動パラメータに応じて、噴射パルスのパルス間隔を
演算する手段と、機関の運転状態を検出する機関状態検
出手段を備え、機関が非定常時には、噴射パルスのパル
ス間隔を演算する手段からの信号により、または、噴射
パルスノハルス幅を演算する手段と噴射パルスのパルス
間隔を演算する手段の両方からの信号により噴射弁を開
弁させるようにしたので、加速時特に低回転からの加速
時にも、第8図(b)に示すように噴射パルス間隔を演
算さす手段からの信号により、時間遅れなく必要量の燃
料を供給したようにしたので、特別な加速補正機構がな
くても十分応答性の良い加速性能を得ることができる。
As described above, according to the present invention, there are provided a means for calculating the pulse width of the injection pulse according to the operating parameters of the internal combustion engine, a means for calculating the pulse interval of the injection pulses according to the operating parameters, and a means for calculating the pulse width of the injection pulse according to the operating parameters. An engine state detection means is provided for detecting the state, and when the engine is unsteady, a signal from the means for calculating the pulse interval of the injection pulse, or a means for calculating the injection pulse nohalus width and a means for calculating the pulse interval of the injection pulse is provided. Since the injection valve is opened by signals from both of Since the required amount of fuel is supplied without time delay, acceleration performance with sufficient responsiveness can be obtained without a special acceleration correction mechanism.

また、従来のように始動、暖機特等機関が低温時には、
燃料が十分気化されず、所定の空燃比の混合気を得るた
めに、一度に多すぎる程多量の燃料を供給して、結果と
して燃料が吸気管の壁面を伝って流nてしまうというよ
うな欠点も、本発明によれば始動、暖機時の燃料を数回
に分割して供給したので、燃料の霧化も良く少量の燃料
で所定の空燃比が得られるという効果がある。さらに、
減速時の燃料は、噴射パルス幅を演算する手段からの信
号を無視し、噴射パルスのパルス間隔を演算する手段に
おいてパルス間隔が十分長くなるように演算させれば、
減速時の燃料カットあるいは減少させる方法も、加速、
始動、暖機等と同じ一連の操作で行なうことができ、構
成が簡単になるという効果が得られる。
In addition, when the special engine for starting and warming up is low temperature as in the past,
In some cases, the fuel is not vaporized sufficiently, and in order to obtain a mixture with a predetermined air-fuel ratio, too much fuel is supplied at once, resulting in the fuel flowing down the wall of the intake pipe. However, according to the present invention, since the fuel is supplied in several parts during startup and warm-up, the fuel is well atomized and a predetermined air-fuel ratio can be obtained with a small amount of fuel. moreover,
For fuel during deceleration, if the signal from the means for calculating the injection pulse width is ignored and the means for calculating the pulse interval of the injection pulse is calculated so that the pulse interval is sufficiently long,
The method of cutting or reducing fuel during deceleration also applies to acceleration,
This can be done through the same series of operations as starting, warming up, etc., resulting in a simpler configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、第2図は
第1図中の中央制御演算部の中にあるマイクロコンピュ
ータのソフトウェアを示すフローチャート、第8図は本
発明による噴射弁の開弁タイミングを示す波形図である
。 図中、1・・・内燃機関、4・・・吸気量センサ、6・
・・電磁噴射弁、7・・・負圧センサ、8・・・中央制
御演算部、10・・・冷却水温センサ、11・・・吸気
温センサ、12・・・回転センサ、 代理人 葛野信− 第1図 第2図 第3図 (a)(b)(Cλ
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a flowchart showing software of a microcomputer in the central control calculation section in FIG. 1, and FIG. 8 is an injection valve according to the present invention. FIG. In the figure, 1... internal combustion engine, 4... intake air amount sensor, 6...
...Electromagnetic injection valve, 7.. Negative pressure sensor, 8.. Central control calculation unit, 10.. Cooling water temperature sensor, 11.. Intake temperature sensor, 12.. Rotation sensor, Agent Makoto Kazuno - Figure 1 Figure 2 Figure 3 (a) (b) (Cλ

Claims (1)

【特許請求の範囲】 1、電磁的に操作する噴射弁を有し、内燃機関の作動パ
ラメタに応じて、噴射パルスのパルス幅を演算する手段
と、前記作動パラメータに応じて、噴射パルスのパルス
間隔を演算する手段と、機関の定常運転時の状態と、加
速、減速、始動等の非定常時の状態を検出する機関状態
検出手段を備え、前記機関状態検出手段からの信号に応
じて、前記噴射パルスのパルス幅を演算する手段と、前
記噴射パルスのパルス間隔を演算する手段の少なくとも
1つ以上の手段で前記噴射弁を開弁させることを特徴と
する内燃機関燃料噴射装置。 2、機関の加速時、減速時、始動時、暖機運転時のうち
少なくとも1つ以上の機関状態時に、前記噴射パルスの
パルス間隔を演算する手段からの信号により、または、
前記噴射パルスのパルス間隔を演算する手段と前記噴射
パルスのパルス間隔を演算する手段の両方の手段により
、前記噴射弁を開弁させることを特徴とする特許請求の
範囲第1項記載の内燃機関燃料噴射装置。
[Scope of Claims] 1. An electromagnetically operated injection valve, means for calculating the pulse width of the injection pulse according to the operating parameters of the internal combustion engine, and means for calculating the pulse width of the injection pulse according to the operating parameters. A means for calculating the interval, and an engine state detection means for detecting the state of the engine during steady operation and the state during non-steady operation such as acceleration, deceleration, and starting, and in response to a signal from the engine state detection means, An internal combustion engine fuel injection device, characterized in that the injection valve is opened by at least one of a means for calculating a pulse width of the injection pulse and a means for calculating a pulse interval of the injection pulse. 2. By means of a signal from means for calculating the pulse interval of the injection pulse during at least one engine state among engine acceleration, deceleration, startup, and warm-up, or
2. The internal combustion engine according to claim 1, wherein the injection valve is opened by both the means for calculating the pulse interval of the injection pulse and the means for calculating the pulse interval of the injection pulse. Fuel injection device.
JP12749081A 1981-08-12 1981-08-12 Injecting device for internal combustion engine Pending JPS5827830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12749081A JPS5827830A (en) 1981-08-12 1981-08-12 Injecting device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12749081A JPS5827830A (en) 1981-08-12 1981-08-12 Injecting device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5827830A true JPS5827830A (en) 1983-02-18

Family

ID=14961238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12749081A Pending JPS5827830A (en) 1981-08-12 1981-08-12 Injecting device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5827830A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102425A (en) * 1978-01-31 1979-08-11 Nippon Denso Co Ltd Fuel injection controller
JPS5578131A (en) * 1978-12-06 1980-06-12 Nissan Motor Co Ltd Fuel ejection control device
JPS55131536A (en) * 1979-04-02 1980-10-13 Nissan Motor Co Ltd Fuel injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102425A (en) * 1978-01-31 1979-08-11 Nippon Denso Co Ltd Fuel injection controller
JPS5578131A (en) * 1978-12-06 1980-06-12 Nissan Motor Co Ltd Fuel ejection control device
JPS55131536A (en) * 1979-04-02 1980-10-13 Nissan Motor Co Ltd Fuel injector

Similar Documents

Publication Publication Date Title
JPS6059418B2 (en) Electronic fuel injection control device
US4759332A (en) Air-fuel ratio control system for automotive engines
JPH0550586B2 (en)
JPS61275537A (en) Fuel supply device for internal combustion engine
US4981122A (en) Fuel injection control device of an engine
JPH01142545U (en)
JPS5827830A (en) Injecting device for internal combustion engine
JPS6327533B2 (en)
JPS5827829A (en) Fuel injecting device for internal combustion engine
JPH0718357B2 (en) Fuel injection control device for internal combustion engine
JPH0738664Y2 (en) Engine protector
JPS5939940A (en) Electronically controlled fuel injection device
JPS5841229A (en) Fuel supply controlling apparatus
JPS5968530A (en) Control method of internal-combustion engine
JP3203468B2 (en) Fuel injection amount control device for starting internal combustion engine
JPH03217632A (en) Fuel injection device of engine
JPS5946343A (en) Fuel injection controlling apparatus
JP4006743B2 (en) Fuel injection control device for internal combustion engine
JPS6388240A (en) Start injection device for internal combustion engine
JPS6285160A (en) Intake secondary-air supply device for vehicle-loaded internal combustion engine
JPS60228744A (en) Fuel injector
JPS5970841A (en) Fuel feeder for motorcycle engine
JPH07116962B2 (en) Air-fuel ratio controller for internal combustion engine
JPS63219837A (en) Electronic control fuel injection system for internal combustion engine
JP3116426B2 (en) Fuel injection amount control device for internal combustion engine