JPS5970841A - Fuel feeder for motorcycle engine - Google Patents

Fuel feeder for motorcycle engine

Info

Publication number
JPS5970841A
JPS5970841A JP18128682A JP18128682A JPS5970841A JP S5970841 A JPS5970841 A JP S5970841A JP 18128682 A JP18128682 A JP 18128682A JP 18128682 A JP18128682 A JP 18128682A JP S5970841 A JPS5970841 A JP S5970841A
Authority
JP
Japan
Prior art keywords
acceleration
fuel
pulse
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18128682A
Other languages
Japanese (ja)
Inventor
Takeshi Atago
阿田子 武士
Masami Nagano
正美 永野
Tatsuya Yoshida
龍也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18128682A priority Critical patent/JPS5970841A/en
Publication of JPS5970841A publication Critical patent/JPS5970841A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain a good acceleration characteristic, by determining an acceleration fuel amount while applying a rotary speed as the main parameter in the case of a motorcycle engine. CONSTITUTION:Output signals from an engine temperature sensor 24 and an air flow meter 18 are input to an input/output circuit 36 of a control circuit 30 and converted into digital values. Further, an output pulse is input at each 180 deg. turn of a crank angle from a crank angle sensor 22, and a fuel injection pulse controlling an injector 60 is output in accordance with said output pulse. Further outputs of a throttle switch 22 and a starter switch 40 are input as signals of one bit. In accordance with these input signals, a computer 32 outputs both the control signal of a fuel pump to a pump 54 by the execution of a program and the fuel injection pulse to the injector 60 in response to the output pulse of the crank angle sensor. An injector pulse signal (B) is applied to the air flow meter, and an acceleration injection pulse A.TA is generated in accordance with detection of an acceleration condition.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単車エンジンの燃料供給装置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a fuel supply system for a motorcycle engine.

〔発明の背景〕[Background of the invention]

自動車用エンジンの燃料系の制菌にはディジタル計算機
が使用されている。この自動車用エンジンの燃料供給装
置では吸入空気の変化量をディジタル計り機で検知し、
この吸入空気槽、の変化量ΔQAが所定値より太きいと
き、変化量ΔQAに応じて決まる燃料を噴射する。以下
この噴射を加速補正噴射と記す。一般に燃料噴射はエン
ジンの回転に同規して行なわれる。以下この噴射を正規
噴射と記す。しかしエンジンへの吸入窒気孟が急に増加
した場合、供給燃料も急に増加させる必要がめジ、正規
噴射とは別のタイミングで燃料を噴射する。これを以下
加速噴射と記す。この加速噴射の燃料供給量は一般に吸
入空気の変化量ΔQAに基づい又決めていた。
Digital computers are used to disinfect the fuel system of automobile engines. This automotive engine fuel supply system uses a digital meter to detect changes in intake air.
When the amount of change ΔQA in the intake air tank is larger than a predetermined value, fuel determined according to the amount of change ΔQA is injected. Hereinafter, this injection will be referred to as acceleration correction injection. Generally, fuel injection is performed in synchronization with engine rotation. Hereinafter, this injection will be referred to as normal injection. However, if the nitrogen intake into the engine suddenly increases, it is necessary to suddenly increase the amount of fuel supplied, so fuel is injected at a different timing from the regular injection. This is hereinafter referred to as accelerated injection. The fuel supply amount for this accelerated injection has generally been determined based on the amount of change ΔQA in the intake air.

最近単車エンジンの制御をディジタル計算機で行なう要
求が生れた。単車エンジンの制御でも自動車と同様、加
速噴射が必要である。加速状態を検知したとき、自動車
と同4f!吸入窒気盾の変化ΔQAを主パラメータとし
て供給燃料量を側副したところ十分な加速特性が得られ
ないことが解った。
Recently, there has been a demand for controlling motorcycle engines using digital computers. Accelerated injection is necessary to control a motorcycle engine, just as in a car. When the acceleration state is detected, the same 4f as a car! It was found that sufficient acceleration characteristics could not be obtained when the amount of supplied fuel was used as a secondary parameter using the change ΔQA of the intake nitrogen shield as a main parameter.

〔発明の目的〕[Purpose of the invention]

本発明の目的は良好な加速特性の得られる単車エンジン
の燃料供給装置を提供することである。
An object of the present invention is to provide a fuel supply system for a motorcycle engine that provides good acceleration characteristics.

〔発明の概要〕[Summary of the invention]

上述の如く、吸入空気量の変化ΔQAk主パラメータと
して加速燃料供給量を決定した場合、良好な加速特性が
得られない問題点の原因について調査したところ、単車
用エンジンは吸気管の径がシリンダ容積に比べ非常に大
きく、アクセル操作値に対するスロットルの開度変化率
が非常に大きいことが解った。このため、加速操作で増
加する吸入空気の変化率はスロットル操作量に依存する
よりも吸気管の構造で決ってしまうことが解った。
As mentioned above, when the acceleration fuel supply amount is determined as the main parameter of change in intake air amount ΔQAk, we investigated the cause of the problem in which good acceleration characteristics cannot be obtained. It was found that the rate of change in throttle opening relative to the accelerator operation value was very large. Therefore, it was found that the rate of change in intake air that increases with acceleration operation is determined by the structure of the intake pipe rather than depending on the amount of throttle operation.

つまp、単車の加速状態での吸入空気の変化ΔQ、Aは
スロットルを全開まで一度に開いたときの吸入空気の変
化特性と略同様の特性になることが解った。つまり、ア
クセルの操作量にあまり依存せず、略一定の変化量とな
る。
It has been found that the change in intake air ΔQ and A when the motorcycle is accelerating is approximately the same as the change in intake air when the throttle is fully opened at once. In other words, the amount of change does not depend much on the amount of operation of the accelerator, and is a substantially constant amount of change.

従って本発明では単車エンジンの回転速度Nを主パラメ
ータとして加速燃料if決定することとした。さらに実
験の結果エンジン回転速度Nをメインパラメータとして
加速燃料を決定することにより良好な加速特性が得られ
ることを確認した。
Therefore, in the present invention, the acceleration fuel if is determined using the rotational speed N of the motorcycle engine as a main parameter. Further, as a result of experiments, it was confirmed that good acceleration characteristics could be obtained by determining the acceleration fuel using the engine rotational speed N as the main parameter.

〔発明の実施例〕[Embodiments of the invention]

以下図面を用い本発明の一笑施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は4サイクル単車エンジン用燃料供給装置のシス
テム図である。エアクリーナ12からスロットル14で
1lilJ fMlされエンジン16へ供給される壁間
の蛍はエアクリーナ12の出口に設けられた熱式エアフ
ローメータ18により検出される。またスロットルt4
ニit、スロットルスイッチ20が設けられ、スロット
ルの全開状態(最低開度状態)を検知する。またエンジ
ンにはクランク角の180匿回転毎にパルスを出すクラ
ンク角センサ22と、エンジン温度センサ24が設けら
れ、その出力はそれぞれディジタルコンピュータからな
る制(財)回klls30に人力される。
FIG. 1 is a system diagram of a fuel supply device for a four-stroke motorcycle engine. Fireflies between the walls are supplied from the air cleaner 12 to the engine 16 at 1 lilJ fMl by the throttle 14 and are detected by a thermal air flow meter 18 provided at the outlet of the air cleaner 12. Also throttle t4
A throttle switch 20 is provided to detect the fully open state (minimum opening state) of the throttle. The engine is also provided with a crank angle sensor 22 that outputs a pulse every 180 rotations of the crank angle, and an engine temperature sensor 24, the outputs of which are input manually to a control system 30 consisting of a digital computer.

燃料タンク52内の燃料はポンプ54により加圧され、
フィルタ56とダンパ58を介してインジェクタ60へ
供給され、制(財)回路30からの出力パルスによりイ
ンジェクタの開弁時間に応じた燃料が供給される。
The fuel in the fuel tank 52 is pressurized by the pump 54,
The fuel is supplied to the injector 60 via the filter 56 and the damper 58, and the output pulse from the control circuit 30 supplies fuel according to the valve opening time of the injector.

第2図は制隣回路30の詳細ブロック図であり、ディジ
タル計算機32は、R,A Mを内蔵しており、メモリ
でありROM34および入出力回路36とはデーターバ
ス38で接続されている。入出力回路36には上述のエ
ンジン温度センサ24、エアフローメータ18の出力信
−号が入力され、ディジタル饋に変換される。またクラ
ンク角センサ22からクランク角の180度回転毎に出
力パルスが人力され、このパルスに応じ、インジェクタ
60を制御する燃料噴射パルスが出力される。さらに1
ビツトの信号として、スロットルスイッチ22およびス
タータスイッチ40の出力が入力される。
FIG. 2 is a detailed block diagram of the neighbor control circuit 30. A digital computer 32 has built-in RAM and memory, and is connected to a ROM 34 and an input/output circuit 36 via a data bus 38. The output signals of the above-mentioned engine temperature sensor 24 and air flow meter 18 are inputted to the input/output circuit 36 and converted into digital signals. Further, an output pulse is manually generated from the crank angle sensor 22 every 180 degree rotation of the crank angle, and a fuel injection pulse for controlling the injector 60 is output in response to this pulse. 1 more
The outputs of the throttle switch 22 and starter switch 40 are input as bit signals.

上述の入力信号に応じ計算機32はプログラムの実行に
より燃料ポンプの制御信号をポンプ54へ出力すると共
に上述の如く、クランク角センサ出力パルスに応答して
インジェクタioへ燃料噴射パルスを出力する。
In response to the above input signal, the computer 32 executes the program to output a fuel pump control signal to the pump 54, and outputs a fuel injection pulse to the injector io in response to the crank angle sensor output pulse as described above.

第3図は制御回路の動作説明図である。(イ)はエアフ
ローメータの出力を示す。(ロ)はインジェクタへ加え
られるパルス信号を示し、斜線は加速噴射パルスを示す
。(ハ)はクランク角センサ24の出刃を示す。この実
施例ではクランク角の180度回転毎にクランク角セン
サ22はパルスを出力する。
FIG. 3 is an explanatory diagram of the operation of the control circuit. (a) shows the output of the air flow meter. (b) shows the pulse signal applied to the injector, and the diagonal line shows the accelerated injection pulse. (c) shows the cutting edge of the crank angle sensor 24. In this embodiment, the crank angle sensor 22 outputs a pulse every 180 degree rotation of the crank angle.

(ロ)に示す燃料噴射パルスの内、正規噴射パルスは(
ハ)のクランク角センザ出力に同期して作られる。
Among the fuel injection pulses shown in (b), the normal injection pulse is (
C) It is created in synchronization with the crank angle sensor output.

一方斜線で示す加速噴射パルスは加速状態の検出に応じ
て発生する。
On the other hand, an accelerated injection pulse shown by diagonal lines is generated in response to detection of an acceleration state.

第4図は加速状態の検知と加速噴射量の演算フローチャ
ートであり、一定時間例えば10m5(イ)毎に実行さ
れる。ステップ12でエア70−センサの出力QAを取
込みRA Mに保持すると共に前回の実行時に保持して
いたエアフローメータの出力Q、Aと比較し、その差Δ
Q、Aを計算する。またクランク角センサのパルス間隔
全計数するカウンタからその周期を取込みその逆数を計
算することによジエンジン速度Nを計算する。このカウ
ンタは入出力回路内に設けられ、クランク角ノくルスが
入力される毎にカウント値をレジスタに保持すると共に
カウンタはリセットされ、再びクロックの計数を始める
。ステップ14で差ΔQAが一定値よシ大きいかどうか
を判断して加速状態がどうがを決定する。もし加速と判
断されるとステップ16へ移るが、そうでなければこの
プログラムの実行は終了する。ステップ16でエンジン
回転速UNをパラメータとして予め記憶していたルック
アップテーブルから回転速度Nに応じた加速係数Aを検
索する。このm速係数Aは加速燃料増量の割合を示す。
FIG. 4 is a flowchart for detecting the acceleration state and calculating the acceleration injection amount, which is executed every fixed period of time, for example, every 10 m5 (a). In step 12, the output QA of the air 70-sensor is taken in and held in RAM, and it is compared with the outputs Q and A of the air flow meter held during the previous execution, and the difference Δ is calculated.
Calculate Q and A. Further, the engine speed N is calculated by taking the period from a counter that counts all pulse intervals of the crank angle sensor and calculating its reciprocal. This counter is provided in the input/output circuit, and each time the crank angle pulse is input, the count value is held in a register, the counter is reset, and the clock starts counting again. In step 14, it is determined whether the difference ΔQA is larger than a certain value, and the acceleration state is determined. If it is determined that there is an acceleration, the process moves to step 16, but if not, the execution of this program ends. In step 16, an acceleration coefficient A corresponding to the engine speed N is searched from a lookup table stored in advance using the engine speed UN as a parameter. This m-speed coefficient A indicates the rate of acceleration fuel increase.

ステップ18で前回の正規噴射の噴射量TIを続出し、
その値に加速係数Aを乗じる。則ちA −T I f!
cfit算する。この計7Hiηを入出力回路ヘセット
すると同時に、加速噴射を行なわせるため特別に起動を
掛ける。この起動によりクランク角センサの出刃パルス
加入力されたと同様に燃料噴射のだめのパルスを出力し
、そのパルス幅は上記計詣、1直A−TIとなる。
In step 18, the injection amount TI of the previous regular injection is successively determined,
Multiply that value by acceleration coefficient A. That is, A −T I f!
Calculate cfit. At the same time as this total of 7Hiη is set to the input/output circuit, a special activation is applied to perform accelerated injection. As a result of this activation, a fuel injection pulse is output in the same way as when the crank angle sensor's blade pulse is input, and its pulse width becomes 1 direct A-TI as measured above.

第5図は正規噴射パルス幅の計算フローチャートであり
、一定時間例えば20m8eO毎に実行される。第4図
のフローチャートで取込まれた人力QAとNをステップ
22でメモリ几A−Mより続出し、基本燃料噴射巣T 
p ′!!−計算する。この時の式%式% (11 次にステップ24でエンジン温展をセンサ24から取込
み、この値を基に補正係数Kをルックアップテーブルよ
り検索j″る。ステップ26で燃料噴射量T Iを演算
するとともにその値をRAMに記1.ハして車4図のス
テップ18で使用する。さらにこのd1算結果’1’ 
Iを入出力回路へ出力する。これによりクランク角セン
サの1B刀パルスのタイミングでこのNl’算結果TI
に応じたパルス幅のパルスがインジェクタへ加えられ、
燃料が供給される。
FIG. 5 is a flowchart for calculating the normal injection pulse width, which is executed every fixed period of time, for example, every 20 m8eO. In step 22, the manual input QA and N input in the flowchart of FIG.
p′! ! -Calculate. At this time, the formula % Formula % (11 Next, in step 24, the engine temperature is taken in from the sensor 24, and based on this value, the correction coefficient K is searched from the lookup table.In step 26, the fuel injection amount T At the same time, the value is recorded in the RAM and used in step 18 of the car 4 diagram.Furthermore, this d1 calculation result is '1'.
Outputs I to the input/output circuit. As a result, this Nl' calculation result TI is calculated at the timing of the 1B sword pulse of the crank angle sensor.
A pulse with a pulse width corresponding to is applied to the injector,
Fuel is supplied.

〔実施VIIの効果〕[Effects of Implementation VII]

本実施例では短周期(10m臓)で実行されるプログラ
ムにより加速の判断が行なわれるので応答性が良い。さ
らに一定時間毎(10「旧制)にこのフローチャートラ
実行しているので、吸入空気の変化率ΔQAの検知が容
易である。さらにエンジン回転速度をパラメータとして
刀口連係数をROMに記憶されていたルックアップテー
ブルから検索することにより決定しているので、不連続
に変化する係数教であっても任意に選定でき、任意の特
性が決定できる。このため制御性が向上する。また正規
の噴射量TIとこの加速係数Aとで加速燃料を決定して
いるので計算が1珀単である。本実施例ではAと′1゛
工から加速燃料を求めたが、AとT Pの乗算でも良好
な制(財)特性が得られる。
In this embodiment, the acceleration is determined by a program that is executed in short cycles (10 m), so responsiveness is good. Furthermore, since this flowchart is executed at regular intervals (10 "old system"), it is easy to detect the rate of change ΔQA of the intake air.Furthermore, with the engine rotation speed as a parameter, the Toguchi coupling coefficient is stored in the ROM. Since it is determined by searching from an up-table, even coefficients that change discontinuously can be selected arbitrarily, and arbitrary characteristics can be determined.This improves controllability.Also, the regular injection amount TI Since the acceleration fuel is determined by this acceleration coefficient A, the calculation is simple.In this example, the acceleration fuel was found from A and '1', but it can also be calculated by multiplying A and TP. Regulatory (goods) characteristics are obtained.

〔第2実施例〕 上記実施例ではエンジン回転速度Nに基づき加速係数へ
を求め、この係数Aと正規噴射量とより加速噴射量を決
定した。しかし、エンジン回転速iNと吸入空気量Q、
Aとからも加速噴射量が決定できる。その実施例を第4
図のステップ52で示す。この実施例は従って第4図の
フローチャートのステップ16と18の代りにステップ
52を実行するものである。
[Second Example] In the above example, an acceleration coefficient was determined based on the engine rotational speed N, and the acceleration injection amount was determined from this coefficient A and the normal injection amount. However, engine speed iN and intake air amount Q,
The accelerated injection amount can also be determined from A. The example is the fourth example.
This is shown at step 52 in the figure. This embodiment therefore performs step 52 in place of steps 16 and 18 of the flowchart of FIG.

予めNとQAとをパラメータとして最適加速噴射量を実
験的に決定し、その値をROM内に記憶しておく。そし
てステップ14で加速状態と判断されると、ステップ1
4からステップ52へ移る。
The optimal acceleration injection amount is determined experimentally in advance using N and QA as parameters, and the value is stored in the ROM. If it is determined in step 14 that the acceleration state is present, step 1
4 to step 52.

このステップ52でQAとNとに応じ加速噴射量を検索
して求める。この検索結果はステップ20で入出力回路
36へセットし、さらに加速噴射の為の起!111Iヲ
掛ける。これにより、入出力回路にセットされた値で加
速噴射される。
In this step 52, the accelerated injection amount is searched and determined according to QA and N. This search result is set to the input/output circuit 36 in step 20, and is then used to start the acceleration injection! Multiply 111I. As a result, accelerated injection is performed at the value set in the input/output circuit.

〔第2実施倒の効果〕 第2実施例ではテーブル検索により加速噴射量を決定し
ているので、処理時間が短かい。また第4図は商運処理
ルーチンであり、ステップの処理時間を短かくすること
によp計算機の負荷全低減する効果は太きい。また筒速
ルーチンでありセンサ出力の取込みルーチンに加速状態
の判定ステップを設けたので、加速応答が向上する。
[Effects of the second embodiment] In the second embodiment, the accelerated injection amount is determined by table search, so the processing time is short. Further, FIG. 4 shows a business luck processing routine, and by shortening the processing time of each step, the effect of reducing the total load on the p-calculator is significant. Furthermore, since the acceleration state determination step is provided in the cylinder speed routine and the sensor output capture routine, the acceleration response is improved.

〔発明の効果〕〔Effect of the invention〕

以上の説明の如く本発明はエンジン回転速KNケ主パラ
メータとして加速燃料量を決定しているので良好な加速
特性を得ることができる。尚エンジン回転速度Nの逆数
である周期のデータでも略同様の特性が得られる。この
出願では周期のデータもエンジン回転速度ヲ表すデータ
Nとしてあつかうことが可能である。
As explained above, in the present invention, since the acceleration fuel amount is determined using the engine rotational speed KN as the main parameter, good acceleration characteristics can be obtained. It should be noted that substantially similar characteristics can be obtained with data of the period which is the reciprocal of the engine rotational speed N. In this application, period data can also be treated as data N representing the engine rotational speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すシステム図、第2図は
第1図の制御回路の詳細ブロック図、第3図は動作説明
図、第4図は加速噴射プログラムを示すフローチャート
、第5図は正規噴射プログラムを示すフローチャートで
ある。 18・・・エアフローメータ、20・・・スロットルス
イッチ、22・・・クランク角センサ、24・・・温i
セy第1I21 −240−
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a detailed block diagram of the control circuit shown in FIG. 1, FIG. 3 is an operation explanatory diagram, FIG. 4 is a flowchart showing an accelerated injection program, FIG. 5 is a flowchart showing the regular injection program. 18... Air flow meter, 20... Throttle switch, 22... Crank angle sensor, 24... Temperature i
Sey No. 1 I21 -240-

Claims (1)

【特許請求の範囲】[Claims] 1、エンジンの動作状態を検出するセンサと、センサ出
力に基づき燃料供給量を演算するディジタル計算機とデ
ィジタル計算機の出刃に基づき燃料を供給する燃料供給
手段とがらなりエンジンの動作状態に応じた燃料をエン
ジンへ供給するものにおいて、上記ディジタル計算機は
センサ出力から加速状態を横用する機能と、加速状態が
検出されたときエンジン速度に基づいて加速燃料供給量
を決定する機能と、決定された加速燃料で直ちに加速燃
料を供給することを燃料供給手段に指示する機能を有す
ることを特徴とする単車エンジン用燃料供給装置。
1. A sensor that detects the operating state of the engine, a digital computer that calculates the fuel supply amount based on the sensor output, and a fuel supply means that supplies fuel based on the output of the digital computer, which supplies fuel to the engine according to the operating state of the engine. The digital computer has a function to use the acceleration state from the sensor output, a function to determine the acceleration fuel supply amount based on the engine speed when the acceleration state is detected, and a function to determine the acceleration fuel supply amount based on the engine speed when the acceleration state is detected. A fuel supply device for a motorcycle engine, characterized by having a function of instructing a fuel supply means to immediately supply acceleration fuel.
JP18128682A 1982-10-18 1982-10-18 Fuel feeder for motorcycle engine Pending JPS5970841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18128682A JPS5970841A (en) 1982-10-18 1982-10-18 Fuel feeder for motorcycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18128682A JPS5970841A (en) 1982-10-18 1982-10-18 Fuel feeder for motorcycle engine

Publications (1)

Publication Number Publication Date
JPS5970841A true JPS5970841A (en) 1984-04-21

Family

ID=16098030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18128682A Pending JPS5970841A (en) 1982-10-18 1982-10-18 Fuel feeder for motorcycle engine

Country Status (1)

Country Link
JP (1) JPS5970841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332138A (en) * 1986-07-28 1988-02-10 Japan Electronic Control Syst Co Ltd Electronic-controlled fuel injector for internal combustion engine
KR100587769B1 (en) * 2004-04-19 2006-06-12 조시래 Motorcycle controlling system
CN102330628A (en) * 2010-07-13 2012-01-25 北汽福田汽车股份有限公司 Method and equipment for detecting oil spraying rule of electric control mono-block pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427491A (en) * 1977-08-01 1979-03-01 Daido Steel Co Ltd Defect distinguishing apparatus by fluorecent magnetic crack detection
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427491A (en) * 1977-08-01 1979-03-01 Daido Steel Co Ltd Defect distinguishing apparatus by fluorecent magnetic crack detection
JPS5459525A (en) * 1977-10-19 1979-05-14 Toyota Motor Corp Control method and apparatus for fuel injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332138A (en) * 1986-07-28 1988-02-10 Japan Electronic Control Syst Co Ltd Electronic-controlled fuel injector for internal combustion engine
KR100587769B1 (en) * 2004-04-19 2006-06-12 조시래 Motorcycle controlling system
CN102330628A (en) * 2010-07-13 2012-01-25 北汽福田汽车股份有限公司 Method and equipment for detecting oil spraying rule of electric control mono-block pump

Similar Documents

Publication Publication Date Title
JPS623303B2 (en)
US4469072A (en) Method and apparatus for controlling the fuel-feeding rate of an internal combustion engine
JPH0112931B2 (en)
JPS6315465B2 (en)
JPS63143348A (en) Fuel injection controller
JPS5970841A (en) Fuel feeder for motorcycle engine
JP2737426B2 (en) Fuel injection control device for internal combustion engine
JPH01211647A (en) Fuel controller of internal combustion engine
JPH0217703B2 (en)
JPH04166637A (en) Air-fuel ratio controller of engine
JPS60249651A (en) Electronic control type fuel injector
JPS63109257A (en) Air-fuel ratio control device of internal combustion engine
JPH0246777B2 (en)
JPS60261947A (en) Accelerative correction of fuel injector
US5103788A (en) Internal combustion engine ignition timing device
JPS6166825A (en) Acceleration judging device of internal-combustion engine
JPS5968530A (en) Control method of internal-combustion engine
JP2745797B2 (en) Idling speed controller
JP4006743B2 (en) Fuel injection control device for internal combustion engine
JPH0610443B2 (en) Electronic fuel injection device
JPS5827829A (en) Fuel injecting device for internal combustion engine
JPS6146442A (en) Fuel injection control device
JP2001342874A (en) Fuel injection control device of internal combustion engine
JPS6035148A (en) Air-fuel ratio control device
JPH0323330A (en) Fuel injection amount control device for internal combustion engine