JPS6327533B2 - - Google Patents

Info

Publication number
JPS6327533B2
JPS6327533B2 JP54125121A JP12512179A JPS6327533B2 JP S6327533 B2 JPS6327533 B2 JP S6327533B2 JP 54125121 A JP54125121 A JP 54125121A JP 12512179 A JP12512179 A JP 12512179A JP S6327533 B2 JPS6327533 B2 JP S6327533B2
Authority
JP
Japan
Prior art keywords
fuel
fuel supply
increase
period
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125121A
Other languages
Japanese (ja)
Other versions
JPS5647631A (en
Inventor
Masumi Kinugawa
Yutaka Kawashima
Tomihide Suzuki
Takashi Arimura
Mitsuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12512179A priority Critical patent/JPS5647631A/en
Publication of JPS5647631A publication Critical patent/JPS5647631A/en
Publication of JPS6327533B2 publication Critical patent/JPS6327533B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は特定の運転条件で、スロツトル弁上流
での燃料供給を遮断する機能を有する内燃機関用
の燃料供給装置における遮断から再び燃料供給を
おこなう際の増量を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention controls the increase in fuel supply when restarting fuel supply after shutoff in a fuel supply system for an internal combustion engine that has a function of shutting off fuel supply upstream of a throttle valve under specific operating conditions. Regarding the method.

燃料の遮断から再び燃料供給を開始した場合、
特に間欠的に各気筒に燃料噴射をおこなう燃料噴
射装置を有する内燃機関では急激なトルク変動に
よつて発生する機関の振動を防止するため一定量
の増量をおこなつている場合がある。また、気化
器付内燃機関では遮断中吸気管壁に付着した燃料
が蒸発して再び燃料供給を開始してもしばらくの
間燃料が吸気管壁に一部付着するため、燃焼に寄
与する混合気の実質空燃比が極めて薄くなり、失
火によつて有害なエミツシヨンを排出する問題を
生じるので、大部分の燃料はカツトするものの1
部分の燃料は流し続けて吸気管壁をぬらし続ける
様配慮してある。
When restarting the fuel supply after cutting off the fuel,
Particularly in internal combustion engines equipped with a fuel injection device that injects fuel into each cylinder intermittently, the amount of fuel may be increased by a certain amount in order to prevent engine vibrations caused by sudden torque fluctuations. In addition, in an internal combustion engine with a carburetor, the fuel that adheres to the intake pipe wall during shutoff evaporates, and even if fuel supply is restarted, some of the fuel remains on the intake pipe wall for a while, causing the air-fuel mixture to contribute to combustion. The actual air-fuel ratio of the fuel becomes extremely lean, causing the problem of emitting harmful emissions due to misfire, so although most of the fuel is cut, only a small portion
Care has been taken to ensure that the fuel continues to flow and wet the walls of the intake pipe.

しかしながら、燃料遮断中においても吸気管壁
をねらしておくためにわずかながらでも燃料を供
給することは機関のエネルギ変換にまつたく役立
たないということであるから、燃料の節約の面か
ら好ましくない。また、完全に遮断し再び燃料供
給を開始する時に一定量増量すればある条件では
前記のごときしばらくの間空燃比が薄くなること
を防止できるが、吸気管壁の燃料蒸発度合は燃料
遮断の時間によつて異なるためこの時間が長い場
合は空燃比がしばらくの間うすくなり、逆にこの
時間が短かい場合は空燃比が濃過ぎて一時的に有
害排気成分を発生するという欠点があることも判
つた。特に、スロツトル弁上流で燃料を噴射供給
するシステムでは、燃料噴射部分から各気筒に至
るまでの吸気通路が長く、かつ吸気通路壁面積が
大きくなるため、この通路に付着していた燃料の
蒸発を燃料供給再開時に最適に補償することが困
難であつた。
However, even during fuel cutoff, supplying even a small amount of fuel to keep the intake pipe wall slanted is not useful in energy conversion of the engine, and is therefore undesirable from the standpoint of fuel conservation. In addition, if the amount is increased by a certain amount when restarting fuel supply after a complete shutoff, under certain conditions, it is possible to prevent the air-fuel ratio from becoming lean for a while as described above, but the degree of fuel evaporation on the intake pipe wall depends on the time of fuel shutoff. If this time is long, the air-fuel ratio will become lean for a while, whereas if this time is short, the air-fuel ratio will be too rich, which may temporarily generate harmful exhaust components. I understand. In particular, in systems that inject and supply fuel upstream of the throttle valve, the intake passage from the fuel injection part to each cylinder is long and the wall area of the intake passage is large. It was difficult to optimally compensate when fuel supply was resumed.

本発明は上記に鑑みなされたもので、機関のス
ロツトル弁上流で燃料を間欠的に噴射供給するシ
ステムにおいて、燃料を遮断すべき運転条件では
完全に遮断し、再び燃料供給を開始した場合は増
量をおこなうこととし、遮断の状態にあつた時間
またはその時間に対応する機関回転の積算数が大
きいほど増量の場合を大きくするようにし、更に
はこの増量を時間経過と共に徐々に減少させるよ
うにし燃料供給開始時に有害な排気ガス成分を生
じることなく燃料の節約をより向上させることを
目的とするものである。
The present invention has been made in view of the above, and is a system for intermittently injecting and supplying fuel upstream of a throttle valve of an engine, in which the fuel is completely cut off under operating conditions where the fuel should be cut off, and when the fuel supply is restarted, the amount is increased. The larger the amount of time the engine is in a shut-off state or the cumulative number of engine revolutions corresponding to that time, the larger the increase in fuel amount will be, and the amount of increase will be gradually reduced over time. The aim is to further improve fuel savings without producing harmful exhaust gas components at the start of supply.

以下、本発明を図に示す実施例につき説明す
る。第1図は本発明の構成を示す概略構成図であ
り、1は機関の各気筒に吸気マニホルドを介して
連通する吸気管、2は電磁作動式の燃料噴射弁で
燃料圧力を一定に調整した燃料が圧送される構成
である。燃料噴射弁2は機関に流入する空気流量
を調節するスロツトル弁3の真上に取付けられ下
流側つまりスロツトル弁3に向けて間欠的に燃料
噴射をおこない、多気筒内燃機関4の各気筒に燃
料供給をおこなう。5は燃料噴射制御用のマイク
ロコンピユータで回転センサをなすデイストリビ
ユータ8の点火信号(回転角信号)、スロツトル
弁に連動して動きスロツトル弁の全閉を検出する
アイドルスイツチ6の信号、吸気管の圧力を検出
する圧力センサ7の信号、および機関の冷却水温
度を検出する水温センサ9を信号が入力され、ま
た、噴射弁2を作動させるため噴射弁と電気的に
接続されている。
The present invention will be explained below with reference to embodiments shown in the drawings. Fig. 1 is a schematic configuration diagram showing the configuration of the present invention, in which 1 is an intake pipe that communicates with each cylinder of the engine via an intake manifold, and 2 is an electromagnetically actuated fuel injection valve that adjusts the fuel pressure to a constant level. This is a configuration in which fuel is pumped. The fuel injection valve 2 is installed directly above the throttle valve 3 that adjusts the flow rate of air flowing into the engine, and intermittently injects fuel toward the downstream side, that is, the throttle valve 3, to supply fuel to each cylinder of the multi-cylinder internal combustion engine 4. supply. 5 is a microcomputer for fuel injection control; ignition signal (rotation angle signal) of distributor 8 which serves as a rotation sensor; signal of idle switch 6 which operates in conjunction with the throttle valve and detects when the throttle valve is fully closed; and intake pipe. A signal from a pressure sensor 7 that detects the pressure of the engine and a signal from a water temperature sensor 9 that detects the temperature of cooling water of the engine are inputted, and the injection valve 2 is electrically connected to operate the injection valve 2.

第2図は上記マイクロコンピユータ5を詳細に
説明するためのブロツク図で、図において100
は燃料噴射量を演算するマイクロプロセツサユニ
ツト(CPU)である。101はデイストリビユ
ータ8からの点火信号に基いてマイクロプロセツ
サユニツト100に燃料噴射量の演算の割込処理
を指令する割込指令ユニツトでコモンバス123
を通じてマイクロプロセツサユニツト100に情
報伝達される。また、割込指令ユニツト101は
後述のユニツト106の作動開始時間を制御する
タイミング信号をも出力する。102は点火信号
が入力されマイクロプロセツサユニツト100か
らの所定周波数のクロツク信号によつて点火間か
くの周期をカウントしエンジン回転数を算出する
回転数カウンタユニツトである。103はデジタ
ル信号ユニツトで、アイドルスイツチ6のON−
OFF信号を“1”−“0”信号としてマイクロプ
ロセツサユニツト100に送り読み込ませる。1
04はアナログマルチプレクサを含むA−D変換
処理ユニツトで、圧力センサ7と水温センサ9か
らの信号をA−D変換してマイクロプロセツサユ
ニツト100に読み込ませる機能を持つ。これら
の各ユニツト102,103,104の出力情報
はコモンバス123を通してマイクロプロセツサ
ユニツト100に伝達される。105はマイクロ
プロセツサユニツト100の制御プログラムが格
納されると共に各ユニツト101,102,10
3,104からの出力情報を一時記憶する機能を
有するメモリユニツトでマイクロプロセツサユニ
ツト100との間の情報伝達はコモンバス123
を通して行なわれる。106はレジスタを含む燃
料噴射時間用カウンタユニツトでマイクロプロセ
ツサユニツト100で計算された噴射弁2の開弁
時間つまり燃料噴射量を表わすデジタル信号を開
弁時間を与えるパルス時間幅のパルス信号に変換
する。107はこのカウンタユニツト108から
のパルス信号を増幅し、噴射弁2に供給する電力
増幅器である。
FIG. 2 is a block diagram for explaining the microcomputer 5 in detail.
is a microprocessor unit (CPU) that calculates the fuel injection amount. Reference numeral 101 denotes an interrupt command unit that commands the microprocessor unit 100 to perform interrupt processing for calculation of the fuel injection amount based on the ignition signal from the distributor 8, and is connected to the common bus 123.
Information is transmitted to the microprocessor unit 100 through the microprocessor unit 100. The interrupt command unit 101 also outputs a timing signal for controlling the operation start time of a unit 106, which will be described later. Reference numeral 102 denotes a rotational speed counter unit to which an ignition signal is input and which counts the period between ignitions based on a clock signal of a predetermined frequency from the microprocessor unit 100 to calculate the engine rotational speed. 103 is a digital signal unit, which turns the idle switch 6 ON-
The OFF signal is sent to the microprocessor unit 100 as a "1"-"0" signal to be read. 1
04 is an A/D conversion processing unit including an analog multiplexer, which has the function of A/D converting the signals from the pressure sensor 7 and water temperature sensor 9 and reading them into the microprocessor unit 100. Output information from each of these units 102, 103, and 104 is transmitted to microprocessor unit 100 through common bus 123. Reference numeral 105 stores the control program for the microprocessor unit 100, and also stores the control program for each unit 101, 102, 10.
A memory unit having a function of temporarily storing output information from the microprocessor unit 100 and the common bus 123.
It is done through. Reference numeral 106 is a fuel injection time counter unit including a register, which converts a digital signal representing the valve opening time of the injection valve 2 calculated by the microprocessor unit 100, that is, the fuel injection amount, into a pulse signal with a pulse time width giving the valve opening time. do. 107 is a power amplifier that amplifies the pulse signal from this counter unit 108 and supplies it to the injection valve 2.

次に第3図に示す波形図により上記構成の概略
作動を説明する。第3図Aに示すデイストリビユ
ータ8の点火信号(回転角信号)は図示しない波
形整形回路により第3図Bの様に波形整形された
後割込指令ユニツト101とカウンタユニツト1
02に送られる。割込指令ユニツトは第3図Bに
示す波形整形後の回転角信号に同期してマイクロ
プロセツサユニツト100へ噴射時間計算処理の
割込指令とカウンタユニツト106のダウンカウ
ントを開始させる第3図Cの如き指令信号を送
る。マイクロプロセツサユニツト100はこの指
令信号により上記の割込演算をおこない演算結果
をカウンタユニツト106内のレジスタにセツト
する。このカウンタユニツト106は上記指令信
号によりレジスタにセツトしてあるデジタル値を
ダウンカウントし噴射時間に変換して第3図Dに
示す噴射信号を形成する。一方カウンタユニツト
102は第3図Bの波形整形後の回転角信号によ
りこの信号が来てから次の信号がくるまでの時間
の間マイクロプロセツサユニツト100から送ら
れたクロツク信号によりカウントをおこない、カ
ウント結果をマイクロプロセツサユニツトに読み
込ませ回転信号(N)として利用する。
Next, the general operation of the above configuration will be explained with reference to the waveform diagram shown in FIG. The ignition signal (rotation angle signal) of the distributor 8 shown in FIG. 3A is waveform-shaped by a waveform shaping circuit (not shown) as shown in FIG.
Sent to 02. The interrupt command unit issues an interrupt command to the microprocessor unit 100 for injection time calculation processing and causes the counter unit 106 to start counting down in synchronization with the rotation angle signal after waveform shaping shown in FIG. 3B. Send command signals such as Microprocessor unit 100 performs the above-mentioned interrupt operation in response to this command signal, and sets the result of the operation in a register within counter unit 106. This counter unit 106 counts down the digital value set in the register in response to the command signal, converts it into an injection time, and forms the injection signal shown in FIG. 3D. On the other hand, the counter unit 102 performs counting using the clock signal sent from the microprocessor unit 100 during the time period from when this signal arrives until the next signal arrives using the rotation angle signal after the waveform shaping shown in FIG. 3B. The count result is read into the microprocessor unit and used as a rotation signal (N).

第4図,第5図は、マイクロプロセツサユニツ
ト100の概略フロ−チヤートを示す。機関が始
動すると、ステツプ1001でメイルルーチンの起動
をおこない、ステツプ1002で吸気管圧力センサ7
と水温センサ9のアナログ信号をA−D変換処理
ユニツト104で順次A−D変換させた後メモリ
ユニツト105にそのデジタル値を一時記憶す
る、次に、ステツプ1003では前記水温センサ信号
のA−D変換して得た値に基き補正比αの演算を
おこなう。このαは例えばメモリユニツト105
内に格納してあるマツプから水温情報に対応した
値を読み込む公知の手法である。次に後述する燃
料カツト後の増量比を決めるための燃料カツト時
間をはかるロジツクに進む。すなわち決められた
時間(51.2ms)経過したかどうか1004で判定し、
経過したならステツプ1005に進む。このステツプ
1005では、後述の割込処理で求める燃料カツト中
かどうかを表示する値Bを用いて燃料カツト中か
否かを判定し、燃料カツト中ならばステツプ1007
に進みメモリユニツト105内のRAMエリアに
記憶してある値Aに1を加算する。燃料カツト中
でないならステツプ1006に進みAを0とする。し
たがつて燃料カツト中は51.2msごとにAが1ず
つカウントされていくのでAのカウント値で燃料
カツト時間が代表できる。ステツプ1006又は1007
の処理が終了したとき若しくはステツプ1004の処
理で51.2ms経過してないと判定したときはステ
ツプ1002に戻る。
4 and 5 show a schematic flowchart of the microprocessor unit 100. When the engine starts, the mail routine is activated in step 1001, and the intake pipe pressure sensor 7 is activated in step 1002.
and the analog signal of the water temperature sensor 9 are sequentially A-D converted by the A-D conversion processing unit 104, and the digital values are temporarily stored in the memory unit 105.Next, in step 1003, the A-D conversion of the water temperature sensor signal is performed. The correction ratio α is calculated based on the value obtained by conversion. This α is, for example, the memory unit 105
This is a known method of reading values corresponding to water temperature information from a map stored in the system. Next, we proceed to the logic for measuring the fuel cut time to determine the fuel increase ratio after fuel cut, which will be described later. In other words, it is determined in 1004 whether the predetermined time (51.2ms) has elapsed,
If the time has elapsed, proceed to step 1005. This step
In step 1005, it is determined whether or not fuel is being cut using a value B that indicates whether or not fuel is being cut, which is obtained in an interrupt process to be described later.If fuel is being cut, step 1007 is performed.
Then, 1 is added to the value A stored in the RAM area in the memory unit 105. If the fuel is not being cut, the process advances to step 1006 and A is set to 0. Therefore, during fuel cut, A is counted by 1 every 51.2 ms, so the count value of A can represent the fuel cut time. Step 1006 or 1007
When the process in step 1004 is completed, or if it is determined in the process in step 1004 that 51.2 ms has not elapsed, the process returns to step 1002.

以上の様に割込指令ユニツト101から割込信
号が来ない場合は第4図のメインルーチンのプロ
グラムを繰り返し実行している。一旦、割込信号
が来ると、マイクロプロセツサユニツト100は
メインルーチンの計算途中であつてもただちに第
5図に示す割込処理ルーチン入口1010に進む。次
にステツプ1011で吸気管圧力信号のデジタル値
(Pm)および回転信号(N)を取り込み、ステ
ツプ1012でPm、N信号に基づいて噴射時間(ti)
を算出する。次に燃料カツトのロジツクに進む。
すなわちステツプ1013でアイドルスイツチ6が
ON(つまりスロツトル弁全閉)かおよびステツ
プ1014で回転速度(N)があらかじめ設定した回
転速度(No)より大きいかを判定する。この設
定回転速度Noはメモリユニツト105内に格納
してある第7図の如き特性のマツプからそのとき
の水温情報に対応して求める。アイドルスイツチ
がONで回転速度が設定速度以上のときはステツ
プ1024にてメモリユニツト105内のRAMエリ
アに記憶してある燃料カツト中か否かを表示する
値Bを1として次にステツプ1025にてti=0とし
て燃料カツトを実施する。他方ステツプ1013、
1014の処理で前記条件の両方を満足しないと判定
した場合はステツプ1015でB=1かどうかを判定
する。すなわち燃料カツト後再び燃料噴射を開始
する瞬間かどうかを判定する。もしそうであれば
ステツプ1016に進み、メモリユニツト105内に
記憶してある第6図に示すマツプにより燃料カツ
ト時間を表わす値AからこのAに対応した増量比
γoを読み取りγ=γoとし、ステツプ1017でB=
0として燃料カツト中でないことを表示する。
As described above, when no interrupt signal is received from the interrupt command unit 101, the main routine program shown in FIG. 4 is repeatedly executed. Once an interrupt signal is received, the microprocessor unit 100 immediately proceeds to the interrupt processing routine entry 1010 shown in FIG. 5 even if the main routine is in the middle of calculation. Next, in step 1011, the digital value (Pm) and rotation signal (N) of the intake pipe pressure signal are taken in, and in step 1012, the injection time (ti) is determined based on the Pm and N signals.
Calculate. Next, let's move on to the fuel cut logic.
In other words, in step 1013, idle switch 6
ON (that is, the throttle valve is fully closed), and in step 1014 it is determined whether the rotation speed (N) is greater than a preset rotation speed (No). This set rotational speed No. is determined from a characteristic map as shown in FIG. 7 stored in the memory unit 105 in accordance with the water temperature information at that time. When the idle switch is ON and the rotation speed is higher than the set speed, in step 1024, the value B, which indicates whether or not fuel is being cut, stored in the RAM area of the memory unit 105 is set to 1, and then in step 1025. Carry out fuel cut with ti=0. On the other hand, step 1013,
If it is determined in step 1014 that both of the above conditions are not satisfied, it is determined in step 1015 whether B=1. That is, it is determined whether or not it is the moment to start fuel injection again after fuel cut. If so, proceed to step 1016, read the fuel increase ratio γo corresponding to this value A from the value A representing the fuel cut time using the map shown in FIG. 6 stored in the memory unit 105, set γ=γo, and proceed to step B = 1017
0 indicates that fuel is not being cut.

燃料カツト後再び燃料噴射を開始する瞬間でな
い時はステツプ1018に進み、γ>1かどうかを判
別する。すなわち、燃料カツト後の増量中か否か
を判別し、増量中ならばステツプ1019に進む。ス
テツプ1019では増量比γを△γだけ減じる。すな
わちこの割込処理毎につまりは噴射回数毎にγ=
1になるまで△γづつγを減じていく。ステツプ
1020ではγ>1か否かを判定し、否(つまりγ≦
1)のときはステツプ1021でγ=1とする。ステ
ツプ1020でγ>1のときは又はステツプ1021の処
理の後若しくはステツプ1017の処理の後はステツ
プ1022に進み、計算後のγをメモリユニツト10
5に一時記憶する。次にステツプ1023に進みメイ
ンルーチンのステツプ1003で求めた補正比α並び
にステツプ1022における増量比γを用いて噴射時
間tiの補正計算つまりti=ti×α×γの計算を行
なう。次にステツプ1026では補正計算後の噴射時
間ti又はステツプ1025で求めた燃料カツトを表わ
す噴射時間ti=0をカウンタユニツト106内の
レジスタにセツトし、ステツプ1027で割込処理を
終了し再びメインルーチンの演算に戻る。
If it is not the moment to start fuel injection again after fuel cut, the process proceeds to step 1018, and it is determined whether γ>1. That is, it is determined whether or not the amount is being increased after fuel cut, and if the amount is being increased, the process proceeds to step 1019. In step 1019, the increase ratio γ is decreased by Δγ. In other words, for each interrupt process, that is, for each number of injections, γ=
Reduce γ by Δγ until it becomes 1. step
In 1020, it is determined whether γ>1 or not (that is, γ≦
In case 1), γ=1 is set in step 1021. If γ > 1 in step 1020, or after the processing in step 1021 or after the processing in step 1017, the process advances to step 1022, and the calculated γ is stored in the memory unit 10.
5 is temporarily stored. Next, the process proceeds to step 1023, and the injection time ti is corrected using the correction ratio α obtained in step 1003 of the main routine and the increase ratio γ obtained in step 1022, that is, ti=ti×α×γ is calculated. Next, in step 1026, the injection time ti after the correction calculation or the injection time ti = 0 representing the fuel cut obtained in step 1025 is set in the register in the counter unit 106, and in step 1027, the interrupt processing is terminated and the main routine is resumed. Return to the calculation.

上記実施例においては燃料カツト(遮断)時間
によつて増量比γを決定したものであつたが、他
にも上記メインルーチンのステツプ1005、1006、
1007の処理を割込処理ルーチンにて行ない、燃料
カツト期間に対応する機関回転の積算数としてA
を記憶していき、この積算数Aによつて増量比γ
を決定するようにしてもよい。また増量比γは1
回転毎に(つまり1噴射毎に)△γづつ減算する
ようにしたが、他に所定時間毎に△γづつ減算す
ることも可能である。
In the above embodiment, the fuel increase ratio γ was determined based on the fuel cut-off time, but there are also steps 1005, 1006, and 1006 of the main routine.
1007 is performed in the interrupt processing routine, and A is calculated as the cumulative number of engine revolutions corresponding to the fuel cut period.
is memorized, and the increase ratio γ is determined by this cumulative number A.
may be determined. Also, the increase ratio γ is 1
Although Δγ is subtracted every rotation (that is, every injection), it is also possible to subtract Δγ every predetermined time.

また上記実施例は制御回路としてマイクロコン
ピユータを用いるものであつたが、アナログ回路
を用いることによつても達成できる。
Furthermore, although the above embodiment uses a microcomputer as the control circuit, it can also be achieved by using an analog circuit.

以上述べた様に本発明は内燃機関の特定の運転
条件でスロツトル弁上流での燃料噴射供給を遮断
する機能を有する燃料供給装置の制御方法におい
て、遮断の状態から再び燃料供給を開始した場
合、燃料の増量をおこない遮断の状態にあつた期
間またはその期間に対応する機関回転の積算数が
大きいほど増量の割合を大きくするようにしてお
り、更にはこの増量を徐々に減少させるようにし
ており、燃料の遮断の期間(時間)の長さのいか
んにかかわらず再び燃料供給を開始した場合すぐ
に適正な空燃比で機関の運転をおこなえ、有害な
排気ガスを排出することを防止できるという優れ
た効果を奏する。なお、燃料供給再開時の増量割
合を燃料遮断期間のおける回転の積算値によつて
決定する場合には、燃料遮断中における吸気管付
着燃料の蒸発はその期間での回転が多いほど多く
なることに最も合致することになり、燃料供給再
開時の燃料増量が最適になる。
As described above, the present invention provides a control method for a fuel supply device that has a function of cutting off fuel injection supply upstream of a throttle valve under specific operating conditions of an internal combustion engine. The larger the amount of fuel is increased and the period in which the engine is shut off or the cumulative number of engine revolutions corresponding to that period is larger, the larger the percentage of fuel is increased, and furthermore, this increase is gradually reduced. Regardless of the length of the fuel cutoff period (time), the engine can be operated at the appropriate air-fuel ratio as soon as the fuel supply is restarted, preventing harmful exhaust gas from being emitted. It has a great effect. In addition, when determining the increase rate when fuel supply is resumed based on the cumulative value of rotation during the fuel cutoff period, the evaporation of fuel adhering to the intake pipe during fuel cutoff increases as the number of rotations during that period increases. Therefore, the amount of fuel to be increased when fuel supply is restarted is optimal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2
図は第1図に示すマイクロコンピユータのブロツ
ク図、第3図は本発明の作動説明に供する波形
図、第4図並びに第5図は第2図に示すマイクロ
プロセツサユニツトのそれぞれメインルーチンの
概略フローチヤート並びに割込処理ルーチンの概
略フローチヤート、第6図並びに第7図は本発明
の作動説明に供する特性図である。 2……燃料噴射弁、4……内燃機関、5……マ
イクロコンピユータ、6……アイドルスイツチ、
7……圧力センサ、8……デイストリビユータ、
100……マイクロプロセツサユニツト。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
1 is a block diagram of the microcomputer shown in FIG. 1, FIG. 3 is a waveform diagram used to explain the operation of the present invention, and FIGS. 4 and 5 are outlines of the main routines of the microprocessor unit shown in FIG. 2. A flowchart, a schematic flowchart of the interrupt processing routine, and FIGS. 6 and 7 are characteristic diagrams for explaining the operation of the present invention. 2...Fuel injection valve, 4...Internal combustion engine, 5...Microcomputer, 6...Idle switch,
7...Pressure sensor, 8...Distributor,
100...Microprocessor unit.

Claims (1)

【特許請求の範囲】 1 内燃機関の各気筒に連通する吸気管中のスロ
ツトル弁上流に燃料噴射弁を設け、この噴射弁か
らの間欠的な燃料供給を特定の運転条件で遮断す
る機能を有する燃料供給装置の制御方法であつ
て、 燃料供給遮断の期間またはこの期間に対応する
機関回転の積算数を計測すること、 前記燃料供給遮断の状態から再び燃料供給を開
始する際、前記計測値に応じた値の増量比で前記
噴射弁からの燃料供給量を増量すると共にこの増
量の初期値を前記計測値の増大に対して増大する
こと、および 前記増量開始後は前記噴射弁からの複数回の燃
料供給にわたつて燃料の増量を除々に減少させる
こと を特徴とする燃料供給装置の制御方法。 2 前記計測は、前記燃料供給遮断の期間中にお
ける機関回転の積算によるものである特許請求の
範囲第1項に記載の燃料供給装置の制御方法。
[Scope of Claims] 1. A fuel injection valve is provided upstream of a throttle valve in an intake pipe communicating with each cylinder of an internal combustion engine, and has a function of cutting off intermittent fuel supply from this injection valve under specific operating conditions. A method for controlling a fuel supply device, the method comprising: measuring a period of fuel supply cutoff or the cumulative number of engine rotations corresponding to this period; and when restarting fuel supply from the fuel supply cutoff state, the measured value is increasing the amount of fuel supplied from the injector at a corresponding increase ratio, and increasing an initial value of this increase relative to the increase in the measured value; and after starting the increase, increasing the amount of fuel supplied from the injector multiple times. 1. A method of controlling a fuel supply device, characterized in that the increase in fuel amount is gradually reduced over the period of fuel supply. 2. The method of controlling a fuel supply device according to claim 1, wherein the measurement is based on integration of engine rotation during the period of the fuel supply cutoff.
JP12512179A 1979-09-27 1979-09-27 Control of fuel sypply device Granted JPS5647631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12512179A JPS5647631A (en) 1979-09-27 1979-09-27 Control of fuel sypply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12512179A JPS5647631A (en) 1979-09-27 1979-09-27 Control of fuel sypply device

Publications (2)

Publication Number Publication Date
JPS5647631A JPS5647631A (en) 1981-04-30
JPS6327533B2 true JPS6327533B2 (en) 1988-06-03

Family

ID=14902357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12512179A Granted JPS5647631A (en) 1979-09-27 1979-09-27 Control of fuel sypply device

Country Status (1)

Country Link
JP (1) JPS5647631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540095Y2 (en) * 1986-11-27 1993-10-12

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188736A (en) * 1981-05-08 1982-11-19 Honda Motor Co Ltd Fuel supply controller for internal combustion engine
JPS58214626A (en) * 1982-06-08 1983-12-13 Toyota Motor Corp Air-fuel ratio control method for fuel injection internal-combustion engine
JPS5928029A (en) * 1982-08-06 1984-02-14 Toyota Motor Corp Electronic fuel injection controlling method of internal combustion engine
JPS5934428A (en) * 1982-08-20 1984-02-24 Honda Motor Co Ltd Fuel supply control method for internal-combustion engine
JPS59185833A (en) * 1983-04-06 1984-10-22 Honda Motor Co Ltd Fuel feed control method of internal-combustion engine
JPS611844A (en) * 1984-06-15 1986-01-07 Automob Antipollut & Saf Res Center Fuel injection device
JPS62168945A (en) * 1986-01-20 1987-07-25 Mazda Motor Corp Fuel control device for engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108127A (en) * 1978-02-13 1979-08-24 Toyota Motor Corp Electronically-controlled fuel injector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108127A (en) * 1978-02-13 1979-08-24 Toyota Motor Corp Electronically-controlled fuel injector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540095Y2 (en) * 1986-11-27 1993-10-12

Also Published As

Publication number Publication date
JPS5647631A (en) 1981-04-30

Similar Documents

Publication Publication Date Title
US4479186A (en) Method and apparatus for controlling an internal combustion engine
JPS6213499B2 (en)
JP3054360B2 (en) Control method of internal combustion engine
JPH04214947A (en) Torque fluctuation control device for internal combustion engine
JPS6338537B2 (en)
JPS6327533B2 (en)
US5319558A (en) Engine control method and apparatus
JPH0550586B2 (en)
JPH05256172A (en) Fuel control device for engine
JPS58214626A (en) Air-fuel ratio control method for fuel injection internal-combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPS6321816B2 (en)
JPH0623554B2 (en) Engine throttle control device
JP2585037B2 (en) Engine fuel control device
JPH0477142B2 (en)
JP2530213B2 (en) Fuel supply device for internal combustion engine
JPH0480219B2 (en)
JPS5974337A (en) Fuel injector
JPH077560Y2 (en) Engine fuel injection amount control device
JPS61126351A (en) Control device of fuel injection quantity in fuel-injection engine
JPS5830424A (en) Control method of electronically controlled fuel injection
JPS59231149A (en) Fuel injection method for internal-combustion engine
JPH0362895B2 (en)
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine