JPS582764A - Direction finding system using hyperbolic navigation - Google Patents

Direction finding system using hyperbolic navigation

Info

Publication number
JPS582764A
JPS582764A JP10267981A JP10267981A JPS582764A JP S582764 A JPS582764 A JP S582764A JP 10267981 A JP10267981 A JP 10267981A JP 10267981 A JP10267981 A JP 10267981A JP S582764 A JPS582764 A JP S582764A
Authority
JP
Japan
Prior art keywords
pair
navigation
azimuth
phase difference
loran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267981A
Other languages
Japanese (ja)
Inventor
Kazumichi Baba
馬場 一道
Kimimasa Matsubara
公正 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP10267981A priority Critical patent/JPS582764A/en
Publication of JPS582764A publication Critical patent/JPS582764A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To measure the direction of a local ship with a comparatively simple constitution, by using a hyperbolic navigation receiver which measures the position presently the ship is navigating. CONSTITUTION:Loran signals received by antennas 1 and 2 which are set in positions different by a specified range D on the bow line are led to gate circuits 5 and 6, and the loran signal received by the antenna 1 is led to a loran receiver 7 to perform the normal loran navigation. A pair of phase difference data measured by the receiver 7 is sent to a latitude and longitude operating circuit 9, and the latitude and the longitude are operated in the circuit 9 on a basis of data of the transmitting station position from a storage circuit 10 and are displayed on a position display part 11 and are sent to a direction operating circuit 12 also. Gate signals generated in the receiver 7 pass through gate circuits 5 and 6 and are compared with each other in phase by a phase comparing circuit 14 simultaneously with the appearance of a station signal designated by a measuring station setting equipment 13, and arrangement directions of antennas 1 and 2 are operated in a direction operating circuit 12 and are displayed on a direction display part 15.

Description

【発明の詳細な説明】 この発明は、双曲線航法受信器を用いて自船の方位、す
なわち船首方位を測定することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to measure the heading of a ship using a hyperbolic navigation receiver.

自船の方位測定は、一般には、磁気コンパス、ジャイロ
コンパスを用いて行なわれる。この種の装置は比較的高
価であシ、設置場所も誤差要因の極力小さい所を選定し
なければならない。又、測定方位を電気信号として処理
することが比較的困難である。
The direction of the own ship is generally measured using a magnetic compass or a gyro compass. This type of device is relatively expensive, and the installation location must be selected to have as few error factors as possible. Furthermore, it is relatively difficult to process the measured orientation as an electrical signal.

この発明は、航行位置を測定する双曲線航法、例えば、
ロラン航法、デツカ航法、オメガ航法等を行なう航法受
信器を用いて、比較的簡単な構成で自船の方位を測定す
る。
This invention utilizes hyperbolic navigation to measure navigational positions, e.g.
Using a navigation receiver that performs Loran navigation, Detsuka navigation, Omega navigation, etc., the ship's direction is measured with a relatively simple configuration.

以下この発明をロラン航法を用いて行なう実施例につい
て説明する。
An embodiment in which the present invention is carried out using Loran navigation will be described below.

第1図において、1及び2はロラン信号の受信アンテナ
で、例えば船首線上の一定距離りだけ異なる位置に設定
される。
In FIG. 1, reference numerals 1 and 2 are receiving antennas for Loran signals, which are set, for example, at different positions on the bow line by a certain distance.

受信アンテナ1.2の各々に受信されたロラン信号はそ
れぞれの前置増巾器3.4で増巾された後1伝送線t1
・t2を経てそれぞれのゲート回路5.6に導かれる。
The Loran signal received by each of the receiving antennas 1.2 is amplified by a respective preamplifier 3.4 and then connected to one transmission line t1.
- Guided to each gate circuit 5.6 via t2.

一方、受信アンテナ1に受信され九ロラン信号はロラン
受信器7に導かれて通常のロラン航法が行なわれる。す
なわち、ロラン受信器7は、チェーン選出器8で選出し
た所望の送信局チち−ン、例えばロランC航法において
は1つの主送信局と2つの逆送信局を選出して、主局信
号に対する各従局信号の位相差を公知のごとくして測定
する。
On the other hand, the nine loran signals received by the receiving antenna 1 are guided to the loran receiver 7, where normal loran navigation is performed. That is, the Loran receiver 7 selects the desired transmitting station chain selected by the chain selector 8, for example, one main transmitting station and two reverse transmitting stations in Loran C navigation, and selects the desired transmitting station chain selected by the chain selector 8, for example, one main transmitting station and two reverse transmitting stations, and The phase difference between each slave signal is measured in a known manner.

ロラン受信器7の測定した一対の位相差データーは緯度
経度演算回路9へ送出される。緯度経度演算回路9は上
記位相差測定を行なった地点の緯度、経度を演算するも
ので、送信局位置記憶回路    ゞ。
A pair of phase difference data measured by the Loran receiver 7 is sent to the latitude/longitude calculation circuit 9. The latitude and longitude calculation circuit 9 calculates the latitude and longitude of the point where the phase difference measurement was performed, and serves as a transmitting station position storage circuit.

10から送出される送信局位置データーに基すいて上記
緯度、経度計算を行なう。なお、送信局位置記憶回路I
Oはあらかじめ各送信局の位置データーを記憶しており
、その記憶データーのうちからチェーン選出器8で選出
した送信局チェーンの位置データーが緯度経度演算回路
9へ送出される。
The above latitude and longitude calculations are performed based on the transmitting station position data sent from 10. In addition, the transmitting station position storage circuit I
O stores position data of each transmitting station in advance, and the position data of the transmitting station chain selected by the chain selector 8 from among the stored data is sent to the latitude/longitude calculation circuit 9.

上記の緯度、経度演算は公知のようにして行なうことが
できる。すなわち、ロラン受信器7で測定した位相差は
一対の送信局からの距離差が一定である双曲線上の位置
として表わされるから、ロラン受信器7から送出される
一対の位相差データーに相当する双曲線の交点に相当す
る緯度、経度を演算する。
The above latitude and longitude calculations can be performed in a known manner. That is, since the phase difference measured by the Loran receiver 7 is expressed as a position on a hyperbola where the distance difference from the pair of transmitting stations is constant, the hyperbola corresponding to the pair of phase difference data sent from the Loran receiver 7 Calculate the latitude and longitude corresponding to the intersection.

緯度経度演算回路9の演算結果は位置表示器11へ送出
されて表示されると同時に、方位演算回路12へも送出
される。方位演算回路12は受信アンテナ1と2の配列
方位を演算するもので、以下これについて説明する。
The calculation results of the latitude and longitude calculation circuit 9 are sent to the position display 11 for display, and are also sent to the azimuth calculation circuit 12 at the same time. The orientation calculation circuit 12 calculates the arrangement orientation of the receiving antennas 1 and 2, and this will be explained below.

ゲート回路5及び6は受信アンテナ1.2の各々に到来
する各局ロラン信号のうちから特定局のロラン信号のみ
を通過させる。この信号選出は測定局設定器13によっ
て行なわれる。測定局設定器13はロジン受信器7が位
相差測定を行なう送信局チェーンのうちからいずれかの
送信局を指定する。
Gate circuits 5 and 6 allow only the Loran signal of a specific station to pass among the Loran signals of each station arriving at each receiving antenna 1.2. This signal selection is performed by the measurement station setter 13. The measurement station setter 13 specifies one of the transmitting stations from the transmitting station chain on which the rosin receiver 7 performs phase difference measurement.

ロラン受信器は位相差測定を行なう場合、ますロラン信
号の局識別を行なうようになされている。
When performing phase difference measurements, the Loran receiver is designed to perform station identification of the Loran signal.

この局識別は、例えば、ロランC航法においては主局信
号と各従局信号の時間関係はあらかじめ定従って、この
時間関係を有するロラン信号を受信することにより主局
、従局各ロラン信号を識別することができる。そして、
各局信号の識別後、測定局設定器13で指定した局信号
の出現時に一致して、ロラン受信器7内で生成したゲー
ト波をゲート回路5.6へ送出してその入出力間を導通
させる。その結果、測定局設定器13で指定した局信号
のみがゲート回路5.6を通過して位相比較器14に導
かれる。
For example, in Loran C navigation, the time relationship between the main station signal and each slave station signal is fixed in advance, and by receiving the Loran signal having this time relationship, the master station and slave station Loran signals can be identified. Can be done. and,
After each station signal is identified, the gate wave generated in the Loran receiver 7 is sent to the gate circuit 5.6 to establish continuity between its input and output, coinciding with the appearance of the station signal specified by the measurement station setter 13. . As a result, only the station signal designated by the measuring station setter 13 passes through the gate circuit 5.6 and is guided to the phase comparator 14.

位相比較器14はゲート回路5.6から導かれる同一局
のロラン信号の位相差測定を行なう。この位相差は受信
アンテナ1と2の配置間隔りによって生じる。第2図に
おいて、At、A2位置に受信アンテナ1.2をそれぞ
れ配置して位ftQから送信されるロラン信号の位相差
を測定する場合、受信点までの距離Rが受信アンテナ1
.2の配置間隔りに比して充分に大きいとき、送信信号
の等位相波面は送信点Qと受信点A1とを結ぶ直線りに
垂直な直線Wで表わされる。従って、位相比較器14で
測定される位相差θは、受信点A1、A2の送信局方向
の距離差dに比例して変化し、 d= 、−、a          ■で表わされる。
The phase comparator 14 measures the phase difference between the Loran signals of the same station derived from the gate circuit 5.6. This phase difference is caused by the spacing between the receiving antennas 1 and 2. In Fig. 2, when measuring the phase difference of the Loran signal transmitted from position ftQ by placing receiving antennas 1.2 at positions At and A2, the distance R to the receiving point is
.. 2, the equiphase wavefront of the transmitted signal is represented by a straight line W perpendicular to the straight line connecting the transmitting point Q and the receiving point A1. Therefore, the phase difference θ measured by the phase comparator 14 changes in proportion to the distance difference d between the receiving points A1 and A2 in the direction of the transmitting station, and is expressed as d=, -, a.

但しAは波長を示す。However, A indicates the wavelength.

従りて、送信局方向に対する受信点A1、A2の相対方
位、すなわち、受信アンテナ1.2を配置した相対方位
αは 1d          ■ から知ることができる。
Therefore, the relative orientation of the receiving points A1 and A2 with respect to the direction of the transmitting station, that is, the relative orientation α in which the receiving antenna 1.2 is arranged can be known from 1d2.

位相比較器14の測定位相差θは方位演算回路12へ送
出されて、受信アンテナ1.2の配置方位が演算される
The measured phase difference θ of the phase comparator 14 is sent to the azimuth calculation circuit 12, where the orientation of the receiving antenna 1.2 is calculated.

方位演算回路12は、まず、上記位相差−を用いて■、
0式を演算することによシ相対方位αを演算する。他方
、緯度経度演算回路9から送出される受信点A1の緯度
、軽度データーと送信同位1tQの緯度、経度とに基す
いて送信局方位βを演算しくa+β) よシ受信アンテナ1.2の配置方位を演算する。
The azimuth calculation circuit 12 first uses the above phase difference - to calculate
The relative orientation α is calculated by calculating the equation 0. On the other hand, the transmitting station direction β is calculated based on the latitude and light data of the receiving point A1 sent from the latitude and longitude calculating circuit 9 and the latitude and longitude of the transmitting point 1tQ. Calculate direction.

そして、この演算結果は方位表示器15へ送出されて表
示される。
The result of this calculation is then sent to the direction display 15 and displayed.

なお、上記において、送信局位置Qの緯度、経度データ
ーは送信局位置記憶回路10から導かれるもので、送信
局位置記憶回路10から緯度経度演算回路9へ導かれる
主局、従局の緯度、経度データーのうちから、測定局設
定器13で指定された局の緯度、経度データーが選択回
路16から方位演算回路12へ送出される。又、位相比
較器140位相差出力は位相調整器17によって調整さ
れるようになされている。これは、受信アンテナ1.2
に到達+1 したロラン信号が前置増巾器3.4、伝送線路4、t2
によって生じる移相量を較正するもので、受信アンテナ
1.2に同相の信号が受信されたとき、位相比較器14
の測定位相差が零になるようにあらかじめ調整を行なう
In the above, the latitude and longitude data of the transmitting station position Q are derived from the transmitting station position memory circuit 10, and the latitude and longitude data of the master station and slave station are derived from the transmitting station position memory circuit 10 to the latitude and longitude calculation circuit 9. Among the data, the latitude and longitude data of the station specified by the measurement station setter 13 is sent from the selection circuit 16 to the azimuth calculation circuit 12. Further, the phase difference output of the phase comparator 140 is adjusted by a phase adjuster 17. This is the receiving antenna 1.2
The Loran signal that reached +1 is sent to preamplifier 3.4, transmission line 4, and t2.
The phase comparator 14 calibrates the amount of phase shift caused by the phase comparator 14.
Adjustments are made in advance so that the measured phase difference is zero.

第2図において、受信点A + 、A2間の送信局方向
の距離差d1すなわち受信点A1A2の受信信号の位相
差θに相当する受信点A1、A2の相対方位αは、直線
りに対称な方位−aに対しても同じ位  。
In Fig. 2, the relative azimuth α of the receiving points A1 and A2, which corresponds to the distance difference d1 in the direction of the transmitting station between the receiving points A + and A2, that is, the phase difference θ of the received signals of the receiving points A1 and A2, is symmetrical to a straight line. The same is true for direction -a.

相差が測定され、不明確方位が生じる。この不明確方位
は、上記相対方位aが900に近い場合は、互いにほぼ
逆方向となるため、比較的容易に識別可能である。又、
前記■、0式から明きらかなように、測定位相差θに対
する相対方位αの変化率は、相対方位αが900方向に
あるとき最も小さく、相対方位αが小さくなるに大きく
なる。従って、受信点AI、A2の相対方位αは90’
方向にあるとき最も誤差が小さくなシ、上記不明確方位
の識別も容易である。従って、測定局設定器13で設定
する送信局は上記相対方位αが900にできるだけ近く
なるような送信局を指定することが望ましい。
The phase difference is measured, resulting in an unambiguous orientation. When the relative orientation a is close to 900, the uncertain orientations are substantially opposite to each other, and therefore can be identified relatively easily. or,
As is clear from the equations (2) and 0 above, the rate of change of the relative azimuth α with respect to the measured phase difference θ is the smallest when the relative azimuth α is in the 900 direction, and increases as the relative azimuth α becomes smaller. Therefore, the relative orientation α of receiving points AI and A2 is 90'
The error is smallest when the direction is in the direction, and the above-mentioned unclear direction can be easily identified. Therefore, it is desirable that the transmitting station set by the measurement station setter 13 be such that the relative azimuth α is as close to 900 as possible.

第3図は、上記に基すいて、複数の送信局に対する比相
対方位αを各々別個に測定し、その内から90’に最も
近い相対方位を自動的に選出する実施例を示し、第1図
と同番号のものは同一の動作を行なう。
FIG. 3 shows an embodiment in which, based on the above, the relative relative azimuths α for a plurality of transmitting stations are each measured separately, and the relative azimuth closest to 90' is automatically selected from among them. Items with the same numbers as in the figure perform the same operations.

第3図において、位相比較器14A、 14B、 14
0の各々は異なる送信局信号の位相差測定を行なう。
In FIG. 3, phase comparators 14A, 14B, 14
0 performs a phase difference measurement of a different transmitting station signal.

例えば、位相比較器14Aは受信アンテナ1.2に到来
する主局信号の位相差を測定する。この主局信号は、ロ
ラン受信器7において主局信号到来時に生成されるゲー
ト信号によってゲー回路5A と6Aで選出される。又
、位相比較器14Bは、従局信号到来時にロラン受信器
7から送出されるゲート信号によってゲート回路5B、
6Bから送出される従局信号の位相差を測定する。同様
にして、位相比較器140は、ゲート回路50,60か
ら送出される他の従局信号の位相差を測定する。
For example, phase comparator 14A measures the phase difference between the main station signals arriving at receiving antenna 1.2. This main station signal is selected by the gate circuits 5A and 6A based on the gate signal generated in the Loran receiver 7 when the main station signal arrives. Further, the phase comparator 14B operates to control the gate circuit 5B,
Measure the phase difference of the slave signal sent from 6B. Similarly, phase comparator 140 measures the phase difference between other slave signals sent from gate circuits 50 and 60.

位相比較器14A、 14B、 140のそれぞれの測
定位相差は比較回路18へ導かれる。比較回路18はこ
れらの位相差のうちから、前記の相対方位αが90°に
最も近くなる位相差、すなわち、位相差の最も小さいも
のを選出して方位演算回路12’へ送出する。又、比較
回路18は上記選出した局データーを選択回路16゛へ
送出して、その局の位置データーを選択回路16’から
方位演算回路12°へ送出させる。
The measured phase differences of each of phase comparators 14A, 14B, 140 are directed to comparator circuit 18. The comparator circuit 18 selects, from among these phase differences, the phase difference in which the relative orientation α is closest to 90°, that is, the one with the smallest phase difference, and sends it to the orientation calculation circuit 12'. Further, the comparator circuit 18 sends the selected station data to the selection circuit 16', and causes the selection circuit 16' to send the position data of the station to the azimuth calculation circuit 12'.

方位演算回路12°は第1図と同様にして方位演算を行
なう。又、このとき、位相比較器14A、 14B14
0の測定データーを用いて、前記相対方位αの不明確方
位の識別も同時に行なう。
The azimuth calculation circuit 12° performs azimuth calculation in the same manner as in FIG. Also, at this time, the phase comparators 14A, 14B14
Using the measurement data of 0, identification of the uncertain direction of the relative direction α is also performed at the same time.

以上説明のように、この発明によると、双曲線航法信号
を用いて自船の方位を比較的高精度に測定することがで
き、又、測定方位を容易に電気信号として取り出すこと
ができるから、方位データーを操船装置に応用すること
も可能である。
As explained above, according to the present invention, it is possible to measure the own ship's bearing with relatively high accuracy using hyperbolic navigation signals, and since the measured bearing can be easily extracted as an electrical signal, the bearing It is also possible to apply the data to ship maneuvering equipment.

※なお、上記実施例はロラン航法を用いた場合について
説明したが、デツカ航法、オメガ航法を用いた場合も同
様に実施可能である。すなわち、デツカ航法の場合は、
第1図ので一ト回路5.6の代わりにそれぞれの周波用
の受信器を用いればよい。又、上記実施例における方位
角の演算、その他のデーター処理等はマイクロコンビ瓢
−ターを用いてプロセス的に行なうことも容易に可能で
あ第1図はこの発明の実施例を示し、第2図はその動作
を説明するための図、第3図は他の実施例を示す。
*Although the above embodiment has been described using Loran navigation, it is also possible to implement it in the same way using Detsuka navigation or Omega navigation. In other words, in the case of Detsuka navigation,
As shown in FIG. 1, receivers for each frequency may be used in place of the single circuit 5.6. Further, the computation of the azimuth angle and other data processing in the above embodiment can easily be performed in a process manner using a microcombinator. The figure is a diagram for explaining the operation, and FIG. 3 shows another embodiment.

出願人  古野電気株式会社 第1目 一: 、+2.目Applicant: Furuno Electric Co., Ltd. 1st eye one: , +2. eye

Claims (2)

【特許請求の範囲】[Claims] (1)一対の送信局の各々から送信される航法信号の到
達時間差(位相差)を測定して自船位置を測定する双曲
線航法において、 船上の異なる位置に配置される一対の受信アンテナと、 上記送信局のいずれかの航法信号が該一対の受信アンテ
ナに到達する時間差(位相差)に基ずいて上記一対の受
信アンテナの配置方向と該時間差(位相差)を測定した
送信局との相対方位を測定する手段と、 該測定した相対方位と該相対方位を測定した送信局位置
と上記双曲線航法を用いて測定した自船位置とに基ず諭
て上記一対のアンテナの配置方位を演算する手段とを具
備してなる双曲線航法を用いた方位測定方式。
(1) In hyperbolic navigation, which measures the arrival time difference (phase difference) of navigation signals transmitted from each of a pair of transmitting stations to determine the own ship's position, a pair of receiving antennas placed at different positions on the ship; Based on the time difference (phase difference) in which a navigation signal from one of the transmitting stations reaches the pair of receiving antennas, the relative positioning direction of the pair of receiving antennas and the transmitting station that measured the time difference (phase difference). means for measuring the azimuth, and calculating the arrangement azimuth of the pair of antennas based on the measured relative azimuth, the transmitting station position where the relative azimuth was measured, and the own ship position measured using the hyperbolic navigation. A direction measurement method using hyperbolic navigation comprising:
(2)一対の送信局の各々から送信される航法信号の到
達時間差(位相差)を測定して自船位置を測定する双曲
線航法において、 船上の異なる位置に配置される一対の受信アンテナと、 上記送信局のいずれかの航法信号が該一対の受信アンテ
ナに到達する時間差(位相差)に基すいて上記一対の受
信アンテナの配置方向と該時間差(位相差)を測定した
送信局との相対方位を測定する第1の相対方位測定手段
と、 該第1の相対方位測定手段が測定した送信局と異なる他
の送信局の航法信号が上記一対の受信アンテナに到達す
る時間差(位相差)に基すいて該時間差(位相差)を測
定した送信局に対する上記一対のアンテナを配置した相
対方位を測定する第2の相対方位測定手段と、 上記第1、第2の相対方位測定手段が測定した各々の相
対方位を互いに比較して相対方位角が90゜に近い方の
相対方位を選出する手段と、該選出された相対方位と該
選出された相対方位を測定した送信局付蓋と上記双曲線
航法を用いて測定した自船位置とに基すいて上記一対の
受信アンテナの配置方位を演算する手段とを具備してな
る双曲線航法を用いた方位測定方式。
(2) In hyperbolic navigation, which measures the arrival time difference (phase difference) of navigation signals transmitted from each of a pair of transmitting stations to determine the ship's position, a pair of receiving antennas placed at different positions on the ship; Based on the time difference (phase difference) in which a navigation signal from one of the transmitting stations reaches the pair of receiving antennas, the relative positioning direction of the pair of receiving antennas and the transmitting station where the time difference (phase difference) was measured. A first relative azimuth measuring means for measuring the azimuth, and a time difference (phase difference) between the navigation signals of another transmitting station different from the transmitting station measured by the first relative azimuth measuring means reaching the pair of receiving antennas. a second relative azimuth measuring means for measuring the relative azimuth in which the pair of antennas are arranged relative to the transmitting station where the time difference (phase difference) was measured; means for comparing the respective relative azimuths with each other and selecting a relative azimuth with a relative azimuth angle closer to 90°, the selected relative azimuth, a lid with a transmitting station that measures the selected relative azimuth, and the hyperbola. An azimuth measurement method using hyperbolic navigation, comprising means for calculating the arrangement azimuth of the pair of receiving antennas based on the ship's own position measured using navigation.
JP10267981A 1981-06-30 1981-06-30 Direction finding system using hyperbolic navigation Pending JPS582764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267981A JPS582764A (en) 1981-06-30 1981-06-30 Direction finding system using hyperbolic navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267981A JPS582764A (en) 1981-06-30 1981-06-30 Direction finding system using hyperbolic navigation

Publications (1)

Publication Number Publication Date
JPS582764A true JPS582764A (en) 1983-01-08

Family

ID=14333914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267981A Pending JPS582764A (en) 1981-06-30 1981-06-30 Direction finding system using hyperbolic navigation

Country Status (1)

Country Link
JP (1) JPS582764A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416979A (en) * 1987-07-10 1989-01-20 Japan Radio Co Ltd Method for measuring direction of moving body
JPH01122788A (en) * 1987-11-06 1989-05-16 Suzuki Motor Co Ltd Hub center mechanism of motorcycle
JPH0193639U (en) * 1987-12-15 1989-06-20
JP2005351878A (en) * 2003-07-28 2005-12-22 Rcs:Kk Rfid tag system
JP2006023261A (en) * 2003-07-28 2006-01-26 Rcs:Kk Active tag device
JP2008139292A (en) * 2007-11-05 2008-06-19 Fujitsu Ltd Positioning system, program and positioning method for determining position of mobile radio station

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416979A (en) * 1987-07-10 1989-01-20 Japan Radio Co Ltd Method for measuring direction of moving body
JPH0513586B2 (en) * 1987-07-10 1993-02-22 Japan Radio Co Ltd
JPH01122788A (en) * 1987-11-06 1989-05-16 Suzuki Motor Co Ltd Hub center mechanism of motorcycle
JPH0193639U (en) * 1987-12-15 1989-06-20
JPH0519867Y2 (en) * 1987-12-15 1993-05-25
JP2005351878A (en) * 2003-07-28 2005-12-22 Rcs:Kk Rfid tag system
JP2006023261A (en) * 2003-07-28 2006-01-26 Rcs:Kk Active tag device
JP2008139292A (en) * 2007-11-05 2008-06-19 Fujitsu Ltd Positioning system, program and positioning method for determining position of mobile radio station

Similar Documents

Publication Publication Date Title
AU617781B2 (en) Method and device in the antenna and receiving system of a radio theodolite
CA1184280A (en) Navigation system
GB2370707A (en) Carrier phase-based relative positioning apparatus
US10852386B2 (en) Method for calibrating a local positioning system based on time-difference-of-arrival measurements
JP2001505666A (en) Exploration method including exploration method and wireless navigation device
JPH09506233A (en) Method and apparatus for calibrating an antenna array
JP5179054B2 (en) Positioning method and positioning device
US2940076A (en) Passive position determining system
US3445847A (en) Method and apparatus for geometrical determinations
KR100715178B1 (en) Method For Determining Position Of An Object
US4387376A (en) Phase linear interferometer system and method
US7515104B2 (en) Structured array geolocation
JPS582764A (en) Direction finding system using hyperbolic navigation
US20080186232A1 (en) Method of and apparatus for true north azimuth determination using the combination of crossed loop antenna and radio positioning system technologies
KR101957291B1 (en) Apparatus and method for detecting direction of arrival signal in Warfare Support System
JPS63221217A (en) Relative-position navigation system
JP3520856B2 (en) Airspace monitoring system and method
EP0524771A2 (en) D F method
JP2916708B2 (en) Current position measurement device for moving objects
JPS592870B2 (en) GPS gyroscope
JPS6120873A (en) Hyperbolic navigation position measuring device
JP2002257921A (en) Transponder calibration method
JPH1026660A (en) Position measuring system
JP3389882B2 (en) Radio wave arrival direction measurement device and radio wave arrival direction measurement method
JPH04151509A (en) Surveying method using global positioning system