JPS5827110A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS5827110A
JPS5827110A JP12417881A JP12417881A JPS5827110A JP S5827110 A JPS5827110 A JP S5827110A JP 12417881 A JP12417881 A JP 12417881A JP 12417881 A JP12417881 A JP 12417881A JP S5827110 A JPS5827110 A JP S5827110A
Authority
JP
Japan
Prior art keywords
image
mirror
refractive index
reflected
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12417881A
Other languages
Japanese (ja)
Inventor
Takeshi Utagawa
健 歌川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP12417881A priority Critical patent/JPS5827110A/en
Publication of JPS5827110A publication Critical patent/JPS5827110A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To provide decreased angles in spreading of luminous fluxes, improved aberrations of a reimaging optical system, higher accuracy of detection and reduction in size by providing a transparent medium of >=1 refractive index on the reflection surface of a reimaging concave mirror roughly in tight contact therewith. CONSTITUTION:The luminous flux past a photographic lens L0 is reflected by a main mirror 12, and formes an image on a focal plate 14. The image is visible through the finder. On the other hand, the light past the mirror 12 is reflected by an auxiliary mirror 13, and forms an image on a primal focal plane F1. Further the light from said image enters a high refractive index medium 10, is reflected by a concave mirror 9, again passes through the medium 10 and forms the images respectively on the two photodetectors 15 disposed on the secondary imaging plane. If the device is arranged in the above-mentioned way, the spreading of the luminous fluxes is decreased and aberrations are suppressed over wide angles, whereby the incident luminous fluxes of large spreading are utilized, the accuracy of detection is improved and the reimaging optical system is confined in a small space.

Description

【発明の詳細な説明】 本発明は焦点検出装置に関する。[Detailed description of the invention] The present invention relates to a focus detection device.

従来技術として、特開昭54−104859に記載され
たカメラの焦点検出装置の光学系を第1図に、そしてド
イツ特許2060194  に開示された光学系を第2
図に示す。
As prior art, the optical system of a camera focus detection device disclosed in Japanese Patent Application Laid-Open No. 54-104859 is shown in Fig. 1, and the optical system disclosed in German Patent No. 2060194 is shown in Fig. 2.
As shown in the figure.

第1図のものは、撮影レンズL。による第1次結像面F
、上の空中像を再結像レンズLa、Lb  により検出
素子1a、1bの面上に、それぞれ撮影レンズL。の射
出瞳の異なる部分を通過した光束による像として結[象
し、その相互の像の非合焦時における相対的変位の方向
と量から合焦判定を行なうだめの光学系である。しかし
、この再結1象光学系Sはその容積が大きすぎてカメラ
のボディ内部に収容するのは難しい。この事は再結像レ
ンズの代わりに凹面鏡を用いて光束を折りたたむ事で少
し容易となる。再結像光学系に凹面鏡2 a。
The one in Figure 1 is the photographing lens L. The primary imaging plane F by
, the above aerial images are re-formed onto the surfaces of the detection elements 1a and 1b by the imaging lenses La and Lb, respectively, and taken by the photographing lens L. It is an optical system that forms images of light beams that pass through different parts of the exit pupil of the lens, and determines focus based on the direction and amount of relative displacement when the images are out of focus. However, the volume of this reconcentration one-zoom optical system S is too large and it is difficult to accommodate it inside the camera body. This can be made a little easier by using a concave mirror instead of a re-imaging lens to fold the light beam. A concave mirror 2a is used in the re-imaging optical system.

2bを用いた例がドイツM!″f2060194  に
見られ、その概要を第2図に示す。
An example using 2b is Germany M! ″f2060194, and its outline is shown in Figure 2.

少しでも暗い被写体に関して検出を可能にするだめには
撮影レンズLn  の両を通過した光束に関してそのな
るべく多くの部分を利用する事が好ましい。撮影レンズ
Lo  を透過した光束に関して明るさFの光束を検出
に利用するとすれば、再結像光学系の入射側の明るさも
当然Fの明るさを要求される。しかしこのように明るい
Fの凹面鏡3a、3bを使用1−れば球面鏡2回転楕円
面鏡を問わず第2次結f象には大巾な収差が発生し、明
るさをかせいだとしても収差による検出精度の低下を生
む欠点を有する。
In order to be able to detect objects that are as dark as possible, it is preferable to utilize as much of the light beam that has passed through both the photographic lenses Ln as possible. If a light beam having a brightness of F is used for detection with respect to the light beam transmitted through the photographing lens Lo, the brightness of the incident side of the re-imaging optical system is naturally required to be F as well. However, if such bright F concave mirrors 3a and 3b are used, large aberrations will occur in the second f-image regardless of whether it is a spherical mirror or a 2-spheroidal mirror. This method has the disadvantage of reducing detection accuracy due to

本発明はこの欠点を解決し、撮影レンズによる結像光束
のできるだけ広い角度にわたる光束、すなわち広い瞳領
域に関する光束を収差を少なくして有効に利用する光学
構成を有する焦点検出装置を与えるものである。
The present invention solves this drawback and provides a focus detection device having an optical configuration that effectively utilizes the light beam formed by the photographing lens over as wide an angle as possible, that is, the light beam relating to a wide pupil area, while reducing aberrations. .

本発明は第3図に示すような瞳分割方式による焦点検出
のみならず、再結像光学系として1個の凹面を用いてボ
ケを検出する場合にも有効なものである。
The present invention is effective not only for focus detection using the pupil division method as shown in FIG. 3, but also for detecting blur using a single concave surface as a re-imaging optical system.

以下ではまず本発明の本質的部分を説明する為に、再結
像光学系が1個の凹面鏡より構成され、かつ入射光と反
射光の主軸が凹面鏡の光軸と一致するような第4図、第
5図の如き例に即して説明を行なう。
Below, in order to first explain the essential part of the present invention, the re-imaging optical system is composed of one concave mirror, and the main axes of the incident light and reflected light are aligned with the optical axis of the concave mirror. , will be explained based on an example as shown in FIG.

第4図、第5図において撮影レンズLoを透過した明る
さFの光束(広がりFの光束)による第1次結像が而F
1  上に形成されている。
In Figs. 4 and 5, the primary image formed by the light flux of brightness F (light flux of spread F) transmitted through the photographing lens Lo is F.
1 Formed on top.

この空中像はやはり入射側の明るさFを有する再結像凹
面鏡4,5により再び同一面F。
This aerial image is again brought to the same plane F by the re-imaging concave mirrors 4 and 5 which also have brightness F on the incident side.

上に第2次結像を形成する。A secondary image is formed thereon.

第4図及び第5図の場合において、同じ広さの結像領域
F、の端の部位に関する2次結像■2  については、
第4図の様に再結像凹面鏡4の位置が面F、の位置から
離れている程収差が小さくなるのは明らかであるが、再
結像光学系の占有容積は大巾に増大1〜−眼レフカメラ
のボディに収容する事は不可能となる。
In the case of FIGS. 4 and 5, regarding the secondary image formation ■2 regarding the end portion of the imaging area F of the same size,
As shown in FIG. 4, it is obvious that the aberration becomes smaller as the position of the re-imaging concave mirror 4 is further away from the position of the surface F, but the volume occupied by the re-imaging optical system increases greatly. -It becomes impossible to accommodate it in the body of an eye reflex camera.

逆に第5図のようにコンパクト化した場合には収差が大
きくなりすぎて実用的でない。
On the other hand, when the lens is made compact as shown in FIG. 5, aberrations become too large to be practical.

本発明の原理は第6図に示すように、撮影レンズLn 
 の焦点面F、から再結像凹面鏡6の反射表面までの空
間を屈折率nの大きい、すなわち空気の屈折率より大き
い屈折率をもつ透明媒質でうめる事、すガわち、透明媒
質の一方を反射表面とほぼ密着して設ける事により、撮
影レンズの結像光束の広がりをFとした時の再結像凹面
鏡6に到る光束の広がりの角度を1に減少させて、再結
像凹面鏡の入射側に要求される明るさをnXFとする事
により、再結像光学系の収差を改良し、かつ系のコンパ
クト化をはかるものである。
The principle of the present invention is as shown in FIG.
The space from the focal plane F of By providing almost in close contact with the reflecting surface, the angle of spread of the light beam reaching the re-imaging concave mirror 6 is reduced to 1 when the spread of the imaging light beam of the photographing lens is F, and the re-imaging concave mirror 6 By setting the required brightness on the incident side to nXF, the aberration of the re-imaging optical system is improved and the system is made more compact.

すなわち、第4図、第6図において、鏡面4.6の曲率
半径は等しく像面捷での距離も等しく、撮影レンズL6
  に関して使用している光束の大きさも等しいが、第
6図の場合は鏡面6のよ巾中夫に近い狭い面積だけ使用
しているので収差的に第4図に比べはるかに有利であり
、又占有体積も減少している。
That is, in FIGS. 4 and 6, the radius of curvature of the mirror surface 4.6 is the same, the distance at the image plane is also the same, and the taking lens L6
The size of the luminous flux used for both is the same, but in the case of Fig. 6, only a narrow area close to the width of the mirror surface 6 is used, so it is much more advantageous in terms of aberrations than in Fig. 4. The occupied volume is also decreasing.

このように第1次結像面を境として屈折率の異なる領域
に分離しても、このような界面の存在が伺ら収差を悪化
させるものではない事は第7図により容易に説明される
。すなわち2つの異なる波長A、Hに対する透明媒質の
屈折率をそれぞれnA、nBとシ、コレラ。
It is easily explained by Figure 7 that even if the primary imaging plane is separated into regions with different refractive indexes as a boundary, the presence of such an interface does not worsen aberrations. . That is, the refractive index of the transparent medium for two different wavelengths A and H is nA and nB, respectively.

光線が入射角ψで1次結像面F、の光軸中心(5) Cに入射した場合、媒質に入射してからの屈折角θい、
θ8はそれぞれ sin ψ= ”A sin 01 81n 9+ =nB l1InθB により与えられ、一段にθ Nθ6である事から色収差
発生の原因となるのであるが、この図の場合には入射点
Cが凹面鏡70曲率の中心になっておシ、両光束は再び
同じCの点にもどる為色収差を生じない。この様に1次
結像面と再結像凹面鏡の間を高屈折率の媒質でうめる事
は、収差の改善とコンパクト化に大きな効果を有する。
When a ray enters the optical axis center (5) C of the primary imaging plane F at an incident angle ψ, the refraction angle θ after entering the medium is
θ8 is given by sin ψ= ”A sin 01 81n 9+ =nB l1InθB, and since it is θ Nθ6, it causes chromatic aberration, but in the case of this figure, the incident point C is at the 70 curvature of the concave mirror. When C is at the center of This has great effects on aberration improvement and compactness.

さらに第8図により空気と高屈折率媒質の境界がより一
般的な場合について説明する。
Furthermore, a case where the boundary between air and a high refractive index medium is more general will be explained with reference to FIG.

凹面8の前方長さLまでの領域が高屈折率媒質(屈折率
n)でうめられているものとする。
It is assumed that the region up to the front length L of the concave surface 8 is filled with a high refractive index medium (refractive index n).

図は媒質表面の高さhの所に入射した異なる波長A、H
の光線が媒質内で丁度凹面鏡8(曲率半径R)の曲率中
心0を通る線上を進むように入射し、又同一線上を反射
してもど(6) る状態を示したものである。この時の空気中で入射光束
1反射光束が光軸をよぎる点は媒質に分散がある為に一
般に異なりその点をA。
The figure shows different wavelengths A and H incident on the medium surface at height h.
This figure shows a state in which a ray of light enters the medium on a line that passes exactly through the center of curvature 0 of the concave mirror 8 (radius of curvature R), and is reflected along the same line and returns (6). At this time, the point where the incident light beam and the reflected light beam cross the optical axis in the air is generally different because there is dispersion in the medium, and that point is A.

Bで表わす。この時媒質表面からA点までの長さを1.
A点とB点との差(色収差)をdlとする。又、θとψ
を図の様に定めると、近軸において、ψ=h/1.θ=
h/(R−L)。
Represented by B. At this time, the length from the medium surface to point A is 1.
Let the difference (chromatic aberration) between point A and point B be dl. Also, θ and ψ
When is defined as shown in the figure, ψ=h/1. θ=
h/(R-L).

nθ=ψが成立ち、dl=(RL)Xdn/n2を得る
。ここにnはA及びBの波長における屈折率(はぼ等し
い)、又dn は両波長における屈折率の差である。実
際には両光線の出発点はそろえて考えるので、その場合
の像面における軸方向の色収差はおよそ2dl である
nθ=ψ holds, and dl=(RL)Xdn/n2 is obtained. Here, n is the refractive index at the wavelengths A and B (which are approximately equal), and dn is the difference in the refractive index at both wavelengths. In reality, since the starting points of both rays are considered to be the same, the chromatic aberration in the axial direction at the image plane in that case is approximately 2 dl.

従って、色収差2dl=2(RL)Xdn/n”が許容
される範囲であればR=Lである必要はなく、例えば本
発明をカメラの焦点検出用に適用した実施例を示す。第
9図のように第1決然点面F、と凹面鏡9の前面に設け
られた高屈折率媒質10に変わる面10aの間に空間を
あけてフィルム面11に到る光束をケルことのないよう
にする事も可能である。
Therefore, as long as the chromatic aberration 2dl = 2(RL) A space is provided between the first point surface F and the surface 10a provided on the front surface of the concave mirror 9 that becomes the high refractive index medium 10, as shown in the figure, so that the light beam reaching the film surface 11 will not be lost. It is also possible.

ここでこの実施例について説明しておく。This example will now be explained.

撮影レンズLo  を通った光束は、主ミラー12と補
助ミラー13が図示の位置にある場合には、一方は主ミ
ラー12で反射されて焦点板14に結像しこれをファイ
ンダから見ることができ、他方は主ミラー12を通過し
た後補助ミラー13で反射されて1次焦点百F。
When the main mirror 12 and the auxiliary mirror 13 are in the positions shown, one of the light beams passing through the photographic lens Lo is reflected by the main mirror 12 and forms an image on the focus plate 14, which can be seen through the finder. , the other one passes through the main mirror 12 and is reflected by the auxiliary mirror 13 to a primary focus of 100F.

上に像を結び更にこの像からの光は高屈折率媒質10に
入って凹面鏡9で反射され再び高屈折率媒質10を通っ
て1次元フォトアレイの如き受光素子15に達する。こ
の凹面鏡9は高屈折率媒質に反射コートして形成される
Further, light from this image enters a high refractive index medium 10, is reflected by a concave mirror 9, passes through the high refractive index medium 10 again, and reaches a light receiving element 15 such as a one-dimensional photo array. This concave mirror 9 is formed by applying a reflective coating to a high refractive index medium.

この際、凹面鏡9を2つの部分に分けて、各部分の反射
面を互いに微小量傾けて第2次結像面上に配置された2
つの受光素子15に夫々像を結ぶ。伺、本実施例は瞳分
割方式を採用しており反射方向の異なる凹面鏡、受光素
子は2つ設けである。次に、主ミラー12と補助ミラー
13が撮影レンズL。からフィルム面11に至る光束か
ら退避している場合には、第1決然点面F l +フィ
ルム面11、及び焦点板14がレンズL。の光学的な共
役面となっているのでこの光束はフィルム面11上に結
像する。再び高屈折率媒質の設は方の説明に戻ると、第
10図のように空間16を媒質間であって、反射面17
の直前に設けここに絞シ等を設ける事も可能である。
At this time, the concave mirror 9 is divided into two parts, and the reflecting surfaces of each part are tilted slightly to each other, and two parts are placed on the secondary imaging plane.
The images are focused on two light receiving elements 15, respectively. This embodiment employs a pupil division method, and is provided with two concave mirrors and two light-receiving elements with different reflection directions. Next, the main mirror 12 and the auxiliary mirror 13 are the photographing lens L. When the light beam reaches the film surface 11 from the first point surface F l +the film surface 11 and the focus plate 14 are removed from the lens L. Since this is an optically conjugate surface, this light beam forms an image on the film surface 11. Returning to the explanation of how to set up the high refractive index medium, as shown in FIG.
It is also possible to provide a diaphragm or the like here immediately before.

しかし、この高屈折率の媒質で充填されていない間隙1
8が第11図のように反射面19の表面から始まる時は
、なんら前に記載された本発明の効果を生じない。この
場合は第12図(即ち第5図)と収差的にほぼ等しく、
高屈折率のブロック20の存在にょシ光路が少し延びた
だけにすぎ々い。又、第13図のように再結1象光学系
にレンズ21を使用する場合にも途中の光路を高屈折率
媒質のブロック22m、22bで充填する事は単に光路
を引き延ばすだけで特に収差を改良するような効果は生
じない。即ち本発明の効果が認められるには、再結1象
光学系が反射鏡により構成されかつ該反射鏡の表面から
第1次結像面の近傍′までが高屈折率媒質で充填されて
いる事を必要とする。
However, the gap 1 that is not filled with this high refractive index medium
When 8 starts from the surface of reflective surface 19 as in FIG. 11, it does not produce any of the effects of the invention described previously. In this case, the aberrations are almost the same as in Fig. 12 (i.e., Fig. 5),
The presence of the high refractive index block 20 merely extends the optical path a little. In addition, even when the lens 21 is used in a reconcentration one-quadrant optical system as shown in FIG. 13, filling the optical path midway with blocks 22m and 22b of high refractive index medium simply lengthens the optical path and particularly reduces aberrations. There is no improvement effect. That is, in order for the effects of the present invention to be recognized, the refocusing one-quadrant optical system is constituted by a reflecting mirror, and the area from the surface of the reflecting mirror to the vicinity of the primary imaging plane is filled with a high refractive index medium. need something.

さて、瞳分割方式の再結像光学系を採用した本発明のさ
らなる具体例にふれる前に、反射光学系について簡単に
説明を行なう。まず第1次像面と2つの第2次像面が重
ならないようにする為に反射光学系の光軸を第14図に
見るように互いに少しずつ傾ける必要がある。この場合
第1次像面F、及び2つの2次像面F2a+ F2bが
近い時には反射面は球面でも可能であるが、反射面は面
F1  と一方の面Fta(又は面F、と・他方の面F
tb)  を2つの焦点にもつような回転楕円体面とす
ることがさらに有効である。第14図の場合は面F、と
面F、a(又は而Ftb)を2つの焦点にもつような回
転楕円体面鏡23a、23bを2分割して相互に光軸を
傾けて配置した場合である。
Now, before touching on a further specific example of the present invention that employs a pupil division type re-imaging optical system, a brief explanation will be given of the reflective optical system. First, in order to prevent the primary image plane and the two secondary image planes from overlapping, it is necessary to tilt the optical axes of the reflective optical system little by little with respect to each other as shown in FIG. In this case, when the primary image plane F and the two secondary image planes F2a+F2b are close, the reflecting surface can be a spherical surface, but the reflecting surface is the surface F1 and one surface Fta (or the surface F, and the other surface Fta). Face F
It is more effective to make tb) a spheroidal surface having two foci. In the case of Fig. 14, the spheroidal mirrors 23a and 23b, which have two focal points at surfaces F and F and a (or Ftb), are divided into two halves and arranged with their optical axes tilted to each other. be.

瞳分割を行なう凹面鏡による再結像光学系(第14図)
に本発明の条件を適用した具体的構成例を第15図以降
に示す。
Re-imaging optical system using concave mirror for pupil division (Figure 14)
A specific example of a configuration to which the conditions of the present invention are applied is shown in FIG. 15 and subsequent figures.

第15図(a) 、 (b) 、 (c)はそれぞれ側
面図、正面図、平面図である。
FIGS. 15(a), 15(b), and 15(c) are a side view, a front view, and a plan view, respectively.

第1次結像面F、には必要な部分を除いて余分な光を除
くように入射スリット24が設けられ、この而を境に高
屈折率媒質で充填された角結像光学系を構成する。光束
はその広がりをnFに狭められて高屈折率媒質中を進み
互いに軸の傾いた反射鏡25a、25bにより、瞳分割
されて反射収束され、それぞれ出射スリット26が設け
られた第2結像面F。
An entrance slit 24 is provided on the primary imaging surface F to remove unnecessary light except for the necessary portion, and an angular imaging optical system filled with a high refractive index medium is configured around this slit 24. do. The light beam has its spread narrowed to nF, travels through a high refractive index medium, is divided into pupils by reflecting mirrors 25a and 25b whose axes are tilted to each other, and is reflected and converged. F.

に再結像する。re-image.

第16図は第15図の変形例の平面図で、ここでは、高
屈折率媒質との界面は第1次結像面F1  より幾分離
れた所に設定され、高屈折率媒質には反射面27 a 
+ 27 bが設けられている。第17図は反射鏡28
a、28bによる2つの再結像の方向を入射光に対して
対称に配置した場合であシ、反射鏡28a。
FIG. 16 is a plan view of a modified example of FIG. Surface 27 a
+27 b is provided. Figure 17 shows the reflecting mirror 28.
This is the case when the two reimaging directions by a and 28b are arranged symmetrically with respect to the incident light, and the reflecting mirror 28a.

28bで反射された光は高屈折率媒質の反射面29a、
29bでさらに反射されレンズ30a、30bを通って
再結像される。第18図は第17図の変形例であり、1
次結像11からの光は反射面31、反射fi32a、3
2b及び反射面33a、33bで反射されて2次結浄I
2  を作る。
The light reflected by 28b is reflected by a reflection surface 29a of a high refractive index medium,
It is further reflected by 29b and reimaged through lenses 30a and 30b. FIG. 18 is a modification of FIG. 17, and 1
The light from the next image formation 11 is reflected by the reflection surface 31, reflection fi 32a, 3
2b and reflecting surfaces 33a and 33b to form secondary condensation I.
Make 2.

第19図は凹面@34a、34bに対する入射光と反射
光の主軸をなるべく平行に近くした場合で、両者の分離
はハーフミラ−35により行なう。
FIG. 19 shows a case where the main axes of the incident light and the reflected light on the concave surfaces @34a and 34b are made as close to parallel as possible, and the separation of the two is performed by a half mirror 35.

以上は瞳を2分割する場合の例であるが、第20図のよ
うな構成にして瞳を4分割する事により上下方向のパタ
ーン変化に対しても検出可能たらしむるようにしたもの
も可能である。第1決然点面F、上の縦長の検出ゾーン
は反射面36aにより第2次結像面F2aに又、反射面
36bにより同様に2次結像面Ftbに結像され、第1
決然点面F、上の横長の検出ゾーンは反射面36aによ
如2次結像面F2oに、又反射面36dによシ2次結像
面F2dに結像される。2次結像面Fza、F2bの像
の相対的変位、もしくは2次結像面FtcF2dの像の
相対的変位を検出するととによシ焦点検出が行なわれる
The above is an example of a case where the pupil is divided into two, but it is also possible to use a configuration as shown in Figure 20 to divide the pupil into four, thereby making it possible to detect pattern changes in the vertical direction as well. It is. The vertically elongated detection zone on the first fixed point plane F is imaged by the reflective surface 36a on the secondary imaging plane F2a, and similarly by the reflective surface 36b on the secondary imaging plane Ftb, and the first
The horizontally elongated detection zone above the point plane F is imaged by the reflective surface 36a on the secondary imaging plane F2o, and by the reflective surface 36d on the secondary imaging plane F2d. Focus detection is performed whenever the relative displacement of the images on the secondary imaging planes Fza and F2b or the relative displacement of the image on the secondary imaging plane FtcF2d is detected.

又、第21図の実施例においては、第1次結像面F、 
 の近傍に、再結像凹面鏡面37a。
In addition, in the embodiment shown in FIG. 21, the primary imaging plane F,
In the vicinity of , there is a reimaging concave mirror surface 37a.

37bと撮影レンズの瞳面には)Y −fさせるような
曲率を有するフィールドレンズ38を設け、瞳分割によ
る像の照度分布の対称性を補償すると共に、更に受光素
子面39a。
37b and the pupil plane of the photographic lens) is provided with a field lens 38 having a curvature such as Y-f to compensate for the symmetry of the illuminance distribution of the image due to pupil division, and further to the light-receiving element surface 39a.

39bの位置する第2結像面の手前に凹レンズ(又は凹
円柱レンズ) 40 a + 40 bを設けて、凹面
鏡3γa、37bのみでは補正しきれない像面歪曲を補
正している。伺、高屈折率媒質41内の一部には、第1
次結像面F。
A concave lens (or concave cylindrical lens) 40 a + 40 b is provided in front of the second image forming surface where the concave mirror 39b is located to correct field distortion that cannot be corrected by the concave mirrors 3γa and 37b alone. However, in a part of the high refractive index medium 41, the first
Next imaging plane F.

からの入射1光束を凹面鏡37a、37bの方へ反射す
るだめの埋め込みミラー42が設けられている。
An embedded mirror 42 is provided to reflect one beam of light incident thereon toward the concave mirrors 37a and 37b.

ところで以上において、高屈折率媒質(ガラス材)の一
端を所定の曲率の球面状に形成し、ここにアルミ等を蒸
着して一体の凹面鏡としてもよいが、凹面鏡と高屈折率
媒質を別物にして接合することもできる。この際、高屈
折率媒質の一端の曲率とそれに接合される凹面鏡の曲率
とを必ずしも厳密に一致させる必要はなく、両者をほぼ
等しくし凹面鏡の反射表面と高屈折率媒質との間に微か
な間隙が生じたとしても、本発明の効果は十分に奏され
る。
By the way, in the above, one end of the high refractive index medium (glass material) may be formed into a spherical shape with a predetermined curvature, and aluminum or the like may be deposited thereon to form an integrated concave mirror, but it is also possible to make the concave mirror and the high refractive index medium separate. They can also be joined together. At this time, it is not necessary to make the curvature of one end of the high refractive index medium and the curvature of the concave mirror joined to it exactly match, but to make them almost equal so that there is a slight difference between the reflective surface of the concave mirror and the high refractive index medium. Even if a gap occurs, the effects of the present invention can be sufficiently achieved.

以上のように本発明によれば、撮影レンズからの入射光
束を再結像させる場合に広い角度にわたって収差を押さ
えることにより、広がりの大きい入射光束を有効に利用
する事が可能であるから、検出精度を向上させ暗い対象
でも焦点検出を可能にするという利点があるのみならず
、光束の広がりが1に押えられかつ光束を多重に折りた
たんでいる為、小さな空間で再結像光学系をまとめあげ
ることができ、カメラボディへの実装を可能にするもの
である。
As described above, according to the present invention, by suppressing aberrations over a wide angle when re-imaging the incident light beam from the photographing lens, it is possible to effectively utilize the wide-spread incident light beam. Not only does it have the advantage of improving accuracy and enabling focus detection even on dark objects, but it also suppresses the spread of the light beam to 1 and folds the light beam multiple times, making it possible to integrate the re-imaging optical system in a small space. This allows it to be mounted on the camera body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来技術及びその欠点を説明する為
の図、第4図乃至第8図は本発明の詳細な説明する為の
図、第9図は本発明の原理と共に本発明をカメラの焦点
検出用に適用した例を説明する図、第10図乃至第14
図は本発明の詳細な説明する為の図、第15図は本発明
による一実施例の正面、側面。 平面を示す図、第16図は第15図の実施例の変形例の
平面図、第17図は同じく一実施例の正面と平面を示す
図、第18図は第17図の実施例の変形例の正面と平面
を示す図、第19図は同じく一実施例の正面と平面を示
す図、第20図は瞳を4分割する例を示す図、第21図
は同じく一実施例の正面と平面を示す図である。 〔主要部分の符号の説明〕 凹面鏡”” 9,25a、25b、28m、28b。 32a、32b、34m、34b。 36a〜36d、37a、37b (15) 受光素子” 15.39a、 asb 透明媒質・・・・・10.41 出 願 人 : 日本光学工業株式会社代 理 人  
:  岡   部   正   夫安   井   幸
   − 栗   林       貢 井   上   義   雄 山   1)  隆   − 倉   持       裕 (16) 区      区     図 47 区   区   区
Figures 1 to 3 are diagrams for explaining the prior art and its drawbacks, Figures 4 to 8 are diagrams for explaining the present invention in detail, and Figure 9 is a diagram for explaining the principle of the present invention as well as the present invention. 10 to 14 are diagrams illustrating an example in which the method is applied to focus detection of a camera.
The figure is a diagram for explaining the present invention in detail, and FIG. 15 is a front and side view of one embodiment according to the present invention. 16 is a plan view of a modification of the embodiment shown in FIG. 15, FIG. 17 is a front view and a top view of the embodiment, and FIG. 18 is a modification of the embodiment shown in FIG. 17. FIG. 19 is a diagram showing a front view and a plane view of an embodiment. FIG. 20 is a diagram showing an example in which the pupil is divided into four parts. FIG. 21 is a diagram showing a front view of an example embodiment. It is a figure showing a plane. [Explanation of symbols of main parts] Concave mirror 9, 25a, 25b, 28m, 28b. 32a, 32b, 34m, 34b. 36a to 36d, 37a, 37b (15) Photo-receiving element 15.39a, asb Transparent medium...10.41 Applicant: Nippon Kogaku Kogyo Co., Ltd. Agent
: Masa Okabe, Yuyasu I, Yuki Kuribayashi, Mitsui Kami, Yuzan 1) Takashi - Hiroshi Kuramochi (16) Ward Ward Figure 47 Ward Ward Ward

Claims (1)

【特許請求の範囲】 焦点検出すべき対象物の像を第1結像面に結像可能な光
学系と;該第1結像面の像を第2結像面に再結像する凹
面鏡と;該第2結像面に配置された受光素子とを有し、
該受光素子の出力信号に応じて焦点検出する装置におい
て、 前記凹面鏡の反射表面に屈折率1以上の透明媒質をほぼ
密着して設けたことを特徴とする焦点検出装置。
[Claims] An optical system capable of forming an image of an object whose focus is to be detected on a first image forming plane; and a concave mirror that refocuses the image of the first image forming plane on a second image forming plane. ; a light-receiving element disposed on the second imaging plane;
A focus detection device for detecting a focus according to an output signal of the light receiving element, characterized in that a transparent medium having a refractive index of 1 or more is provided in substantially close contact with the reflective surface of the concave mirror.
JP12417881A 1981-08-10 1981-08-10 Focus detector Pending JPS5827110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12417881A JPS5827110A (en) 1981-08-10 1981-08-10 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12417881A JPS5827110A (en) 1981-08-10 1981-08-10 Focus detector

Publications (1)

Publication Number Publication Date
JPS5827110A true JPS5827110A (en) 1983-02-17

Family

ID=14878898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12417881A Pending JPS5827110A (en) 1981-08-10 1981-08-10 Focus detector

Country Status (1)

Country Link
JP (1) JPS5827110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295511A (en) * 1985-10-22 1987-05-02 Canon Inc Focus adjustment state detecting device
JPS62138808A (en) * 1985-12-12 1987-06-22 Canon Inc Focus detecting device
US5345291A (en) * 1991-12-27 1994-09-06 Olympus Optical Co., Ltd. Compact focus detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295511A (en) * 1985-10-22 1987-05-02 Canon Inc Focus adjustment state detecting device
JPS62138808A (en) * 1985-12-12 1987-06-22 Canon Inc Focus detecting device
US5345291A (en) * 1991-12-27 1994-09-06 Olympus Optical Co., Ltd. Compact focus detecting device

Similar Documents

Publication Publication Date Title
US4992819A (en) Focus detecting device having a plurality of detecting areas and camera provided with the same
JP3108697B2 (en) Focus detection device
JPS6318166B2 (en)
JPS6333683B2 (en)
EP0433613B1 (en) Microscopic spectrometer with Cassegrain objective
US4723845A (en) Optical apparatus for the detection of position
US5212514A (en) Camera having a focus detecting optical system
JPS63118112A (en) Focus detector
JPH047484B2 (en)
JPS5827110A (en) Focus detector
US4437746A (en) Photo metering device for single lens reflex camera
JPH08152554A (en) Optical branching optical system
US5037188A (en) Optical system for detecting focusing condition
US4322615A (en) Focus detecting device with shielding
JPH0713699B2 (en) Projection system for automatic focus detection
JP3232692B2 (en) Focus detection device
US6188846B1 (en) Optical system for focus detecting device
US4428653A (en) Mirror reflex camera with an electronic range finder
JPH023168B2 (en)
JPS6173119A (en) Focus detecting device
JPH07120667A (en) Focus detecting device
JPS5942508A (en) Focal position detector
JPH11352396A (en) Focus detector and optical equipment using the same
JPH0411845B2 (en)
JPH02910A (en) Focus detection optical device