JPS5826769B2 - Manufacturing method of impregnated cathode - Google Patents
Manufacturing method of impregnated cathodeInfo
- Publication number
- JPS5826769B2 JPS5826769B2 JP53074607A JP7460778A JPS5826769B2 JP S5826769 B2 JPS5826769 B2 JP S5826769B2 JP 53074607 A JP53074607 A JP 53074607A JP 7460778 A JP7460778 A JP 7460778A JP S5826769 B2 JPS5826769 B2 JP S5826769B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- impregnated
- electron
- polishing
- impregnated cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
本発明は、含浸型陰極の製造方法に係り、特に高電流密
度を必要とする電子管に用いる含浸型陰極の製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an impregnated cathode, and more particularly to a method for manufacturing an impregnated cathode for use in electron tubes that require high current density.
従来、含浸型基極はタングステン、モリブデン等高融点
金属の粉末を焼結し、それに無酸素銅等を溶融含浸させ
て所定の形状に機械加工し、その後真空中での加熱又は
酸による溶解等で銅を除去するいわゆる脱銅を行ない、
しかる後電子放射性物質を溶融含浸し、タングステンタ
ワシあるいはサンドペーパー等によって付着している余
分な電子放射性物質を除去するといった工程で製造され
ていた。Conventionally, impregnated base electrodes are made by sintering powder of high melting point metal such as tungsten or molybdenum, melting and impregnating it with oxygen-free copper, etc., machining it into a predetermined shape, and then heating it in a vacuum or dissolving it with acid. We perform so-called decoppering, which removes copper.
After that, the material is melted and impregnated with an electron radioactive material, and the excess electron radioactive material adhering to the material is removed using a tungsten scrubber or sandpaper.
すなわち従来は機械加工によって所定の形状にした後研
磨作業の工程を行なうことなく脱銅をするため陰極の表
面は第1図に示す如く素材1010本来有本来孔102
の開口部103がつぶれて開口部103が細長い溝状に
なり開口面積が非常に狭くなっている。In other words, in the past, the surface of the cathode was formed into a material 1010 and an original hole 102, as shown in FIG.
The opening 103 of the opening 103 is collapsed, and the opening 103 becomes an elongated groove, and the opening area becomes extremely narrow.
したがって電子放射性物質を溶融含浸させる場合に素材
である多孔質高融点金属基体がもともと有している孔に
十分に溶融含浸できず、しかも電子放射性物質の含浸後
にこの陰極を動作させるに当り、陰極表面の開口が小さ
いために電子放射性物質の表出が悪く、電子放射面が電
子放射性物質により完全に被覆されず電流密度に大きな
バラツキを生じたり電流密度が十分に得られないといっ
た欠点があった。Therefore, when melting and impregnating an electron radioactive substance, the pores originally possessed by the porous high-melting point metal base material cannot be sufficiently melted and impregnated, and furthermore, when the cathode is operated after being impregnated with the electron radioactive substance, the cathode Due to the small openings on the surface, the exposure of the electron radioactive material was poor, and the electron emitting surface was not completely covered with the electron radioactive material, resulting in large variations in current density or insufficient current density. .
本発明の目的は、上記欠点を除去するために多孔質高融
点金属基体が本来布する孔を全くつぶさない様な研磨を
行なうことにより、含浸型陰極の電子放射特性の向上を
計りかつ電流密度のバラツキの少ない陰極を製造するこ
とにある。The purpose of the present invention is to improve the electron emission characteristics of an impregnated cathode and to improve the current density by polishing the porous high melting point metal substrate in a manner that does not crush the pores originally formed in the porous high melting point metal substrate in order to eliminate the above-mentioned drawbacks. The objective is to manufacture a cathode with less variation.
以下、図示実施例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on illustrated embodiments.
第2図には、本発明に係る含浸型陰極の製造方法の製造
工程を示す模式図が示されている。FIG. 2 is a schematic diagram showing the manufacturing process of the method for manufacturing an impregnated cathode according to the present invention.
工程1において適当な粒度分布をもった高融点金属粉末
を準備し、工程2において準備した金属粉末を機械プレ
ス、静水圧プレス又は鋳込み等の方法により適当な形状
に成形する。In step 1, a high melting point metal powder with an appropriate particle size distribution is prepared, and in step 2, the prepared metal powder is molded into an appropriate shape by a method such as mechanical pressing, isostatic pressing, or casting.
成形した素材は、工程3において陰極に直接通電する方
法あるいは炉中又はホットプレス等によって焼結する。The formed material is sintered in step 3 by directly applying electricity to the cathode, in a furnace, hot pressing, or the like.
焼結した素材すなわち焼結体は工程4において溶融した
銅の中に浸漬し、多孔質体である焼結体に銅を含浸する
。The sintered material, that is, the sintered body, is immersed in molten copper in step 4 to impregnate the porous sintered body with copper.
銅含浸が終ると、工程5において施盤等通常の機械加工
により所定の陰極形状に加工する。When the copper impregnation is completed, in step 5, the cathode is processed into a predetermined cathode shape by ordinary machining such as lathing.
工程5において陰極形状に加工すると、工程6において
サンドペーパー、ダイヤモンドペースト、タッピング研
磨、ケミカルメカニカルポリッシュ、センタレス研磨等
適宜方法をもって、表面研磨を施す。After processing into a cathode shape in Step 5, surface polishing is performed in Step 6 using an appropriate method such as sandpaper, diamond paste, tapping polishing, chemical mechanical polishing, centerless polishing, etc.
表面研磨が終ると工程7において機械加工を容易にする
ため含浸した銅を真空中における加熱あるいは酸による
溶解等の方法をもって銅を除去するいわゆる脱銅を行な
う。After the surface polishing is completed, in step 7, the impregnated copper is heated in a vacuum or dissolved with an acid to remove the copper, so-called decopper removal, to facilitate machining.
工程7において脱銅がなされると、次に工程8において
焼結体の微細孔の量を適宜方法で測定し、焼結体の良否
を判定する。After the copper is removed in step 7, the amount of micropores in the sintered body is measured in step 8 by an appropriate method to determine the quality of the sintered body.
工程8において気孔率が良と判定されると、工程9にお
いて酸化バリウムを主とした酸化物の混合物又はその原
料である炭酸塩を含む混合物からなる電子放射性物質を
焼結体に塗布し環元性雰囲気または真空中で溶融含浸す
る。If the porosity is determined to be good in step 8, in step 9, an electron-emitting substance made of a mixture of oxides mainly containing barium oxide or a mixture containing carbonate, which is a raw material thereof, is applied to the sintered body to remove the ring element. Melt impregnation in a neutral atmosphere or vacuum.
電子放射性物質の含浸が終ると、工程10において、電
子放射性物質の含浸が終った陰極の表面形状が平板状の
ものについてはサンドペーパー、ダイヤモンドペースト
、タッピング研磨、ケミカルメカニカルポリッシュ、セ
ンタレス研磨、放電加工等により、陰極表面に付着した
余剰電子放射性物質を除去すると共に仕上げ研磨を行な
う。After the impregnation with the electron radioactive substance is completed, in step 10, if the surface of the cathode that has been impregnated with the electron radioactive substance is flat, sandpaper, diamond paste, tapping polishing, chemical mechanical polishing, centerless polishing, or electric discharge machining is performed. Excess electron radioactive material adhering to the surface of the cathode is removed by polishing, etc., and final polishing is performed.
したがって、本実施例によれば、従来の含浸型陰極の製
造方法の機械加工の工程のあとに表面研磨加工の工程を
加えたため多孔質タングステン基体の表面が第3図に示
す如く、従来の製造方法によって製造した多孔質タング
ステン基体のように、多孔質タングステン基体1100
本来有する孔120が閉塞されることなく、電子放射性
物質の含浸が充分になされ、電流密度のバラツキがなく
高電流密度の得られる陰極を得ることができる。Therefore, according to this embodiment, since the surface polishing step was added after the machining step of the conventional impregnated cathode manufacturing method, the surface of the porous tungsten substrate was as shown in FIG. A porous tungsten substrate 1100, such as a porous tungsten substrate made by the method
It is possible to obtain a cathode which is sufficiently impregnated with the electron radioactive material without clogging the original pores 120 and which can provide a high current density without any variation in current density.
第5図に従来の方法で製造し、研磨加工しない含浸1極
の電子放射面と本発明による研磨加工を施した含浸型陰
極の電子放射面とを500倍の電子顕微鏡で撮影した写
真を対比させて示しである。Figure 5 compares the electron emitting surface of an impregnated monopole produced by the conventional method without polishing with the electron emitting surface of an impregnated cathode polished according to the present invention, taken with an electron microscope at 500x magnification. This is an indication.
第5図aが従来のもので、第5図すが本発明のものであ
り、写真中黒い部分が孔、白い部分が基体金属を示して
いる。FIG. 5a shows the conventional one, and FIG. 5 shows the one of the present invention, where the black parts in the photographs show the holes and the white parts show the base metal.
また第5図aの従来のものの写真で横方向の黒い線は機
械加工時の跡を示している。In addition, in the photograph of the conventional product shown in FIG. 5a, the horizontal black lines indicate marks from machining.
第4図に電流放射特性が示されている。Figure 4 shows the current radiation characteristics.
縦軸に電流密度、横軸に陰極温度をとり本発明に係る含
浸型陰極と従来の含浸型陰極とを比較したもので、第4
図Aが本発明の実施例に係る含浸型陰極の特性曲線であ
り第4図Bが従来の含浸型陰極の特性曲線である。This is a comparison between the impregnated cathode according to the present invention and the conventional impregnated cathode, with current density plotted on the vertical axis and cathode temperature plotted on the horizontal axis.
FIG. 4A shows a characteristic curve of an impregnated cathode according to an embodiment of the present invention, and FIG. 4B shows a characteristic curve of a conventional impregnated cathode.
第4図から明らかなとおり、同一の陰極温度において、
従来の含浸型陰極よりも本発明に係る含浸型陰極の方が
電流密度が高い。As is clear from Fig. 4, at the same cathode temperature,
The impregnated cathode according to the present invention has a higher current density than the conventional impregnated cathode.
本実施例では脱銅前に表面研磨をする例で説明したが、
脱銅後の工程又は電子放射性物質の含浸後の工程あるい
は機械加工しないで直接陰極形状に成形する含浸型陰極
にも適用できることはいう1でもない。In this example, the example of surface polishing before copper removal was explained.
It goes without saying that it is also applicable to a process after copper removal, a process after impregnation with an electron radioactive substance, or an impregnated cathode that is directly formed into a cathode shape without machining.
以上説明したように本発明によれば、多孔質高融点金属
基体が本来布する孔を閉塞することがなく電子放射性物
質の含浸を充分に行えることにより含浸型陰極の電子放
射特性の向上を計りかつ、電流密度のバラツキの少ない
陰極を製造することができる。As explained above, according to the present invention, the electron emission characteristics of the impregnated cathode can be improved by sufficiently impregnating the electron radioactive substance without clogging the pores originally formed in the porous high melting point metal substrate. Moreover, a cathode with less variation in current density can be manufactured.
第1図は従来の含浸型陰極の電子放射面の一部断面図、
第2図は本発明に係る含浸型陰極の一実施例を示す工程
図、第3図は本発明に係る含浸型陰極の電子放射面の一
部断面図、第4図は従来の含浸型陰極と、本発明に係る
含浸型陰極とを比較した陰極温度−電流密度特性曲線図
、第5図は従来例と本発明による含浸型陰極の電子放射
面の500倍の電子顕微鏡写真である。
5・・・機械加工工程 6・・・表面研磨加工工程、7
・・・脱銅工程、120・・・孔。Figure 1 is a partial cross-sectional view of the electron emitting surface of a conventional impregnated cathode.
FIG. 2 is a process diagram showing an example of an impregnated cathode according to the present invention, FIG. 3 is a partial cross-sectional view of the electron emitting surface of the impregnated cathode according to the present invention, and FIG. 4 is a conventional impregnated cathode. and a cathode temperature-current density characteristic curve diagram comparing the impregnated cathode according to the present invention, and FIG. 5 is an electron micrograph of the electron emitting surface of the conventional example and the impregnated cathode according to the present invention at a magnification of 500 times. 5... Machining process 6... Surface polishing process, 7
... Copper removal process, 120 ... hole.
Claims (1)
点金属多孔質体を形成する工程と、前記高融点金属多孔
質体を所望の陰極形状となるように機械加工し陰極基体
を形成する工程と、前記陰極基体の電子放射面を応力の
加わらない研磨加工により研磨する工程と、前記研磨加
工後の陰極基体に電子放射性物質を含浸させる工程とか
らなることを特徴とする含浸型陰極の製造方法。1. A step of sintering powder of tungsten, molybdenum, etc. to form a high melting point metal porous body, and a step of machining the high melting point metal porous body into a desired cathode shape to form a cathode substrate. A method for producing an impregnated cathode, comprising the steps of polishing the electron emitting surface of the cathode substrate by a stress-free polishing process, and impregnating the cathode substrate after the polishing process with an electron emitting substance. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53074607A JPS5826769B2 (en) | 1978-06-20 | 1978-06-20 | Manufacturing method of impregnated cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53074607A JPS5826769B2 (en) | 1978-06-20 | 1978-06-20 | Manufacturing method of impregnated cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS551046A JPS551046A (en) | 1980-01-07 |
JPS5826769B2 true JPS5826769B2 (en) | 1983-06-04 |
Family
ID=13552018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53074607A Expired JPS5826769B2 (en) | 1978-06-20 | 1978-06-20 | Manufacturing method of impregnated cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5826769B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56110588A (en) * | 1980-02-01 | 1981-09-01 | Kyoei Zoki Kk | Air pump |
JPH056731A (en) * | 1991-01-08 | 1993-01-14 | Nec Corp | Impregnation type cathode and manufacture thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5011416A (en) * | 1973-06-01 | 1975-02-05 | ||
JPS5121770A (en) * | 1974-08-16 | 1976-02-21 | Tokyo Shibaura Electric Co | GANSHINGATAINKYOKUNO SEIZOHOHO |
-
1978
- 1978-06-20 JP JP53074607A patent/JPS5826769B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5011416A (en) * | 1973-06-01 | 1975-02-05 | ||
JPS5121770A (en) * | 1974-08-16 | 1976-02-21 | Tokyo Shibaura Electric Co | GANSHINGATAINKYOKUNO SEIZOHOHO |
Also Published As
Publication number | Publication date |
---|---|
JPS551046A (en) | 1980-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58154131A (en) | Impregnation type cathode | |
JP4224238B2 (en) | Cathode and manufacturing method thereof | |
US3818581A (en) | Capacitor electrode | |
JPS5826769B2 (en) | Manufacturing method of impregnated cathode | |
JP3378275B2 (en) | Porous sintered substrate, method for producing the same, and impregnated cathode using the same | |
JPS612226A (en) | Impregnated cathode | |
JP3205638B2 (en) | Manufacturing method of impregnated cathode | |
KR100382060B1 (en) | Cathode using cermet pellet and method for manufacturing the same | |
JPH0785782A (en) | Impregnation-type-cathode manufacturing method, and cathode obtained thereby | |
KR950006088B1 (en) | Sinking pallet of sinking form cathode structure and method of manufacturing the same | |
CA1091291A (en) | Method of manufacturing a dispenser cathode and dispenser cathode manufactured according to said method | |
JPS5826768B2 (en) | Manufacturing method of impregnated cathode | |
US3166836A (en) | Manufacture of electron tube cathodes | |
KR930010266B1 (en) | Method of making a dispenser-type cathode | |
US1610560A (en) | Vacuum-tube-filament construction and method of manufacturing same | |
JP3068160B2 (en) | Impregnated cathode and method for producing the same | |
JP3472882B2 (en) | Oxide dispersion type alloy and method for producing the same | |
JPH04202635A (en) | Production of porous metallic base material | |
JP2775261B2 (en) | Manufacturing method of cathode | |
JP3204809B2 (en) | Method for producing impregnated cathode assembly | |
KR960012870B1 (en) | Method of manufacturing tho2-w wire | |
JPS55122806A (en) | Production of porous high melting point metal member | |
KR920004898B1 (en) | Impregnated ype cathode | |
JPH04126333A (en) | Manufacture of immersion type cathode | |
JP2006041170A (en) | Sintered body for heatsink, its manufacturing method, and semiconductor carrier |