JPS582655B2 - fibrous reconstituted food - Google Patents

fibrous reconstituted food

Info

Publication number
JPS582655B2
JPS582655B2 JP53028816A JP2881678A JPS582655B2 JP S582655 B2 JPS582655 B2 JP S582655B2 JP 53028816 A JP53028816 A JP 53028816A JP 2881678 A JP2881678 A JP 2881678A JP S582655 B2 JPS582655 B2 JP S582655B2
Authority
JP
Japan
Prior art keywords
protein
group
reconstituted food
starch
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53028816A
Other languages
Japanese (ja)
Other versions
JPS54122762A (en
Inventor
芦田茂樹
酒井政美
石川秋利
田口嘉昭
藤田博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP53028816A priority Critical patent/JPS582655B2/en
Publication of JPS54122762A publication Critical patent/JPS54122762A/en
Publication of JPS582655B2 publication Critical patent/JPS582655B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は小麦蛋白質を主とした蛋白質群及び高分子多糖
類を主成分とする紡糸法によらない繊維状再構成食品に
関寸るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fibrous reconstituted food containing a protein group mainly consisting of wheat protein and a high-molecular polysaccharide, which is not produced by a spinning method.

小麦蛋白質を主とした紡糸法によらない繊維化技術は従
来から紹介されているが、その多くは糸h入ず状であっ
たり、海綿状であったり、又加熱前には良好な繊維を呈
していても加熱によって繊維同七が融着してしまうもの
であったりして、いずれも繊維性の乏しいものでしかな
かった。
Fiberization technologies that do not rely on spinning methods, mainly using wheat protein, have been introduced for some time, but most of them are yarn-free, spongy, or require good fibers to be formed before heating. However, the fibers were often fused together when heated, and all of them had poor fibrous properties.

本発明者は小麦蛋白質が本来有する網目構造を生かした
繊維化技術を種々研究本発明をな寸に至った。
The present inventor has conducted various research into fiberization techniques that take advantage of the network structure inherent in wheat protein, and has reached the present invention.

即ち本発明は、小麦蛋白質を主とした蛋白質群とその蛋
白質固形量に対して約40〜400係の高分子多糖類と
を混合し、食塩を加え、更に蛋白質弛緩剤及びグルコシ
ド結合分解酵素を添加し混練し、得られた混練物を展延
延伸して繊維化させてなる繊維状の再構成食品を内容と
する。
That is, in the present invention, a protein group mainly consisting of wheat protein and a high molecular weight polysaccharide having a ratio of about 40 to 400 relative to the solid amount of the protein are mixed, salt is added, and a protein relaxant and a glucoside bond-degrading enzyme are added. The content is a fibrous reconstituted food product obtained by adding and kneading, and spreading and stretching the obtained kneaded product to form fibers.

本発明を更に詳細に説明すると、小麦粉、生グルテン、
粉末活性グルテンのうち1種又は2種以上の蛋白質換算
30%以上と、他の蛋白質として大豆蛋白質、なたね蛋
白質、コーン蛋白質等の植物蛋白質、カゼイン、ゼラチ
ン、コラーゲン等の動物蛋白質、酵母蛋白質、クロレラ
、スピルリナ等の藻類蛋白質、イカ、オキアミ等の魚介
類蛋白質、マトン、ラビット、ブタ、牛等の畜肉蛋白質
の一種又は二種以上の蛋白質を70%以下を含む蛋白質
群を水分50%〜80%に調整し、次いで蛋白質弛緩剤
例えば、苛性ソーダ、アンモニア等,のアルカリ、酸性
亜硫酸ナトリウム、システイン、グルタチオン等の還元
剤、パパイン、プロテアーゼ等の蛋白質分解酵素を用い
て蛋白質を弛緩(アンフォールデイング)させる。
To explain the present invention in more detail, wheat flour, raw gluten,
30% or more of one or more types of powdered active gluten in terms of protein, and other proteins such as vegetable proteins such as soybean protein, rapeseed protein, and corn protein, animal proteins such as casein, gelatin, and collagen, yeast protein, A protein group containing 70% or less of one or more of algae proteins such as chlorella and spirulina, seafood proteins such as squid and krill, and meat proteins such as mutton, rabbit, pig, and beef, with a moisture content of 50% to 80%. %, and then loosen the protein (unfolding) using a protein relaxant such as an alkali such as caustic soda or ammonia, a reducing agent such as acidic sodium sulfite, cysteine, or glutathione, or a proteolytic enzyme such as papain or protease. let

アンフォールデイングの際に酸性亜硫酸ナ1・リウムを
使用する場合、.蛋白質固形量に対して約0,01%〜
0.1%を作用させた程度、又蛋白質分解酵素の場合、
蛋白質固形量に対しパパインを約0.05%〜0,3%
を作用させた程度のアンフォールデングが好ましい。
When using acidic sodium sulfite during unfolding. Approximately 0.01% to protein solid amount
The degree of action of 0.1%, and in the case of proteolytic enzymes,
Approximately 0.05% to 0.3% papain based on solid protein content
It is preferable to unfold to the extent that .

なお、このアンフォールデイングの際に、高分子多:糖
類を混合しておき、更に高分子多糖類に対し、グルコシ
ド結合分解酵素を作用させると上記蛋白質のアンフォー
ルデイングと多糖類との絡4合いが充分に進み繊細な、
より天然組織に近い繊維組織が得られる。
In addition, during this unfolding, if the polymeric polysaccharide is mixed and a glucoside bond-degrading enzyme is further applied to the polymeric polysaccharide, the interaction between the unfolding of the protein and the polysaccharide 4. The fit is sufficiently advanced and delicate,
A fibrous tissue closer to natural tissue can be obtained.

と又で用いられる高分子多糖類としては、デンプンを高
分子多糖類の50%を越える量を含み、その他の高分子
多糖類としてマンナン、カラギーナン、アルギン酸、ペ
クチン、カンテン等の天然高分子多糖類、キサンタンガ
ム、プルラン、カー、トラン等の微生物産生多糖類、カ
ルボキシメチルセルロース、メチルセルロース等の合成
高分子多糖類及びカルボキシメチル化澱粉、エステル化
澱粉等の化工澱粉の1種又は2種以上を選択し、それを
蛋白質固形量に対し約40%〜400係の、範囲に配合
するのが好ましい。
The polymer polysaccharides used in Tomata include starch in an amount exceeding 50% of the polymer polysaccharides, and other polymer polysaccharides include natural polymer polysaccharides such as mannan, carrageenan, alginic acid, pectin, and agar. , microorganism-produced polysaccharides such as xanthan gum, pullulan, car, and tolan, synthetic polymer polysaccharides such as carboxymethylcellulose and methylcellulose, and modified starches such as carboxymethylated starch and esterified starch. It is preferable to mix it in a range of about 40% to 400% based on the solid amount of protein.

クルコシド結合分解酵素としてはα−アミラーゼ(α−
1 . 4 − Gl ucan − 4 −Cluc
anohy 一drolase),β−アミラーゼ(α
−1,4Gl ucan −ma l t odehy
d ro I ase )グルコアミラ2ーゼ(α−1
. 4 Glucan−Clucohydrolas
e)及びDebronching 酵素が適当で、これ
らは単独ないしは併用することもできる。
α-amylase (α-
1. 4-Glucan-4-Cluc
anohy-drolase), β-amylase (α
-1,4Glucan -maltodehy
d ro Iase ) glucoamyl 2ase (α-1
.. 4 Glucan-Clucohydrolas
e) and Debronching enzymes are suitable, and these can be used alone or in combination.

α−アミラーゼはグルコシド結合のα−1,4結合のろ
をランダムに切断する作用をもち、β−アミラーゼはグ
ルコシド結合のα−1,4結合を非還元性末端からグル
コース2個単位で切断寸るものである。
α-amylase has the effect of randomly cleaving the α-1,4 bond of glucosidic bonds, and β-amylase cleaves the α-1,4 bond of glucosidic bonds from the non-reducing end in units of two glucose units. It is something that

グルコアミラーゼはグルコシド結合のα−1,4結合及
びα−1,6結合の両方に作用するが非還元性末端側か
らグルコース1個単位で切断して行くものである。
Glucoamylase acts on both α-1,4 and α-1,6 glucosidic bonds, and cleaves one glucose unit at a time from the non-reducing end.

Deb ranch ing 酵素はグルコシド結合
のび−1,6結合のみに作用するもので、この内にはイ
ソアミラーゼ(Amylopect in −6 −G
lucanohydrolase) + R一酵素、
プルラナーセが含まれる。
Deb ranching enzymes act only on glucoside bonds and -1,6 bonds, and among these enzymes is isoamylase (Amylopect in -6-G).
lucanohydrolase) + R-enzyme,
Contains pullulanase.

酵素添加量としては酵素の種類によって異なるが、例え
ばBlue−Value法、pH6.0で1 0,0
0 0 U/gのα−アミラーゼの場合、多糖類に対し
て001%〜05%の範囲が望ましい。
The amount of enzyme added varies depending on the type of enzyme, but for example, using the Blue-Value method, 10.0 at pH 6.0.
In the case of α-amylase of 0 0 U/g, a range of 0.001% to 0.05% relative to the polysaccharide is desirable.

これらの酵素を添加することによって二重ラセン構造を
とっていると云われている多糖類の構造がゆるめられ、
又分解して低分子化された多糖類が多糖類の親水性官能
基(例えばカルボキシル基、カルバミル基、ヒドロキシ
ル基、燐酸基)とアンフオールデイングされた蛋白質と
会合したり、蛋白質に直接イオン結合したり、又蛋自分
子間の水素結合を弱めたりして蛋白質と多糖類が再構成
されていく効果を奏するものと考えられる。
By adding these enzymes, the structure of the polysaccharide, which is said to have a double helical structure, is loosened,
In addition, polysaccharides that have been decomposed into low molecular weight molecules may associate with hydrophilic functional groups of polysaccharides (e.g., carboxyl groups, carbamyl groups, hydroxyl groups, phosphate groups) and unfolded proteins, or may directly ionic bond with proteins. It is thought that it also has the effect of weakening the hydrogen bonds between protein molecules and reorganizing proteins and polysaccharides.

そして、蛋白質と多糖類は再構成ざれ乍ら展延、延伸を
受け繊維化が進み、更にグルコシド結合が切断され、低
分子化した多糖類とアンフオールデイングした蛋白質と
の再構成は加熱工程初期段階まで進行して繊維化がなさ
れるものと思われる。
Proteins and polysaccharides are then spread and stretched while being reconstituted, resulting in fibrous formation.Glucosidic bonds are further severed, and the reconstitution of low-molecular polysaccharides and unfolded proteins occurs at the beginning of the heating process. It is thought that the process progresses to a stage where fibrosis occurs.

そして、加熱終了時には再構成は終了しランダムにから
み合った連続した繊維組織を得ることが出来る。
Then, at the end of heating, the reconstruction is completed and a continuous fiber structure that is randomly intertwined can be obtained.

この反応に於て更に食塩を添加すると、食塩により蛋白
質可溶化現象とアンフォールデイングとの相乗効果を奏
し、高分子多糖類に対しては分子ミセルの膨潤効果を奏
する。
When salt is further added in this reaction, the salt has a synergistic effect on protein solubilization and unfolding, and has a molecular micelle swelling effect on the high molecular weight polysaccharide.

例えば高分子多糖類として澱粉を例にとって説明すると
、澱粉のミセルは通常は水も入らないほど緻密になって
いるが澱粉と水の加熱によって澱粉分子の運動が激しく
なってミセル間に水が入り分子鎖が不規則な配列になっ
て膨潤させることが出来るが、一方、電解質が存在すれ
ばその物性に影響を与え特に多量の電解質があると加熱
なしでも膨潤寸る性質がある。
For example, using starch as a polymeric polysaccharide, starch micelles are normally so dense that even water cannot enter, but when starch and water are heated, the movement of starch molecules increases, causing water to enter between the micelles. The molecular chains become irregularly arranged and can be caused to swell, but on the other hand, the presence of an electrolyte affects its physical properties, and if a large amount of electrolyte is present, it tends to swell even without heating.

即ち、食塩の添加によって澱粉の室温での膨潤化が起り
前記の蛋白質の可溶化とアンフォールデイングの効果が
相乗的に働くものと思われる。
That is, the addition of salt causes starch to swell at room temperature, and the effects of protein solubilization and unfolding described above appear to work synergistically.

食塩の添加量は、小麦蛋白質固形量に対して8〜30%
が望ましい範囲である。
The amount of salt added is 8-30% based on the solid amount of wheat protein.
is the desired range.

加熱温度は約75〜122℃の範囲が望ましく、加熱方
法としては蒸煮、熱湯、熱風、オートクレープ、マイク
ロ波加熱等が可能であるが、好ましくは湿熱加熱による
方法が繊維性は、より良好なものとなる。
The heating temperature is preferably in the range of about 75 to 122°C, and the heating methods include steaming, boiling water, hot air, autoclaving, microwave heating, etc., but moist heat heating is preferable because the fibrous properties are better. Become something.

なお、本発明の繊維状再構成食品の製造工程は、ほぼ中
性域で処理されるのが望ましく、この事は高7/L,カ
リ側あるいは強酸性側での処理にろられる蛋白質分解に
よる異臭の発生がなく風味がよいこと、また、蛋白質分
解による歩留の低下がないことの利点があげられる。
In the manufacturing process of the fibrous reconstituted food of the present invention, it is preferable that the process be carried out in an approximately neutral range. The advantages are that there is no generation of off-flavors, the flavor is good, and there is no decrease in yield due to protein decomposition.

上記の如くして得られた繊維状の再構成食品は新しいス
ナック食品、珍味食品、肉様食品として市場二−ズに充
分応えられるものである。
The fibrous reconstituted food obtained as described above can fully meet the needs of the market as a new snack food, delicacy food, or meat-like food.

本発明に於いてポイントとなるグルコシド結合分解酵素
添加によるもう1つの効果は、紡糸法によらない繊維化
技術で特願昭52−93708で提案した如《多糖類と
小麦蛋白質等による繊維化ニオいては、延伸、展延時に
アルカリ金属の塩化物あるいはアルカリ士類金属の塩化
物を用いて揉解することが必須であったが、本発明に於
ては必ずしも必要としない点である。
Another effect of the addition of a glucoside bond-degrading enzyme, which is a key point in the present invention, is that it is possible to use fiber-forming technology that does not involve spinning, as proposed in Japanese Patent Application No. 52-93708. In the present invention, it was essential to use an alkali metal chloride or an alkali metal chloride to disintegrate the film during stretching and spreading, but this is not necessarily necessary in the present invention.

これは蛋白質のアンフォールデイングと多糖類の分解が
繊維化に相互に有効に働いた為、蛋白質繊維が多糖類を
とり込みながら再構成され、一定方向に延伸されること
によって繊維化されるため揉解を必要としないと考えら
れる。
This is because the unfolding of proteins and the decomposition of polysaccharides mutually worked effectively to form fibers, and the protein fibers were reconstituted while taking in polysaccharides, and were formed into fibers by being stretched in a certain direction. It is thought that no clarification is necessary.

即ち、酵素作用による多糖類分解の効果がアルカリ金属
及びアルカリ十類金属の塩化物による揉解での繊維の発
現効果に代り得るものであると判断される。
In other words, it is considered that the effect of polysaccharide decomposition by enzymatic action can replace the fiber-forming effect caused by kneading with chlorides of alkali metals and alkali metals.

尚、予め低分子化された多糖類例えばデキストリンを添
加して酵素による多糖類分解をしない場合は繊維性はグ
ルコシド結合分解酵素を用いた時に比し劣るし、又、展
延、延伸時にアルカリ金属の塩化物またはアルカリ十類
金属の塩化物の揉解を必要と寸る。
In addition, if a polysaccharide with a low molecular weight, such as dextrin, is added in advance and the polysaccharide is not decomposed by an enzyme, the fibrous property will be inferior to that when a glucoside bond-degrading enzyme is used. chlorides or chlorides of alkali group 10 metals.

本発明に於て、展延、延伸時に該塩化物を必ずしも必要
としないことは、工業的スケールに移した場合に、特に
排水処理設備の簡略化に大きく寄与するところである。
In the present invention, the fact that the chloride is not necessarily required during spreading and stretching greatly contributes to the simplification of wastewater treatment equipment, especially when transferred to an industrial scale.

次に、実施例を記載して、本発明を説明する。Next, the present invention will be explained by describing examples.

実施例 1 粉末活性グルテンI KPに大豆分離蛋白500gに水
6.0lを加えミキサーにて練る。
Example 1 500 g of soybean isolate protein and 6.0 liters of water were added to powdered active gluten I KP and kneaded with a mixer.

次いで、酸性亜硫酸ナトリウム08g、食塩25cl、
バレイショデンプン2K2、キサンタンガム1oog、
カルボキシメチルセルロース2 0 g ヲ加エ、α−
アミラーゼ(Blue −Va I ue法1 0,0
0 0 U/g)を0.3.9加え再び混練を続ける
Next, 08 g of acidic sodium sulfite, 25 cl of salt,
Potato starch 2K2, xanthan gum 1oog,
Carboxymethyl cellulose 20 g Wokae, α-
Amylase (Blue-Va Iue method 1 0,0
0.3.9 U/g) was added and kneading was continued again.

次に、得られた混練物を約2.5倍程度延伸をかけてや
ると繊維が発現してくる。
Next, the obtained kneaded material is stretched by about 2.5 times to develop fibers.

次いで、スチーム雰囲気で延伸状態のま又約80℃で1
0分間加熱処理をすると約10Kpの繊維状の再構成食
品を得ることが出来た。
Then, it was stretched in a steam atmosphere for 1 time at about 80°C.
When heat-treated for 0 minutes, a fibrous reconstituted food with a weight of about 10 Kp could be obtained.

この内I KPを任意の方法で肉様の調味、適量の牛脂
の添加、着色を施しブロック状としたところ食感も繊維
組織を充分感じさせる肉様食品約I Kpを得ることが
出来た。
When IKP was made into a block by adding a meat-like seasoning, adding an appropriate amount of beef tallow, and coloring using an arbitrary method, it was possible to obtain a meat-like food with a texture that was sufficiently fibrous.

実施例 2一 生グルテン5KP、スケソウスリ身I Kp、大豆分離
蛋白2Kgに水301を加え食塩360g、パパイン3
5g、更に小麦デンプン6 KPにアルギン酸I K?
、キサンタンガム200g、カルボキシメチルセルロー
ス5(lを加え、それにα−アミラーゼ(Blue −
Va Iue法]. 0,0 0 0 U/.9 ’
)を1.4g加えて混練する。
Example 2 Lifetime gluten 5 KP, pollack scallion meat 1 Kp, soybean isolate protein 2 kg, water 301 added, salt 360 g, papain 3
5g, plus wheat starch 6 KP and alginic acid IK?
, 200 g of xanthan gum, 5 (l) of carboxymethyl cellulose, and α-amylase (Blue-
Va Iue method]. 0,0 0 0 U/. 9'
) and knead.

蛋白質がアンフオールデイングされ充分に混練された時
点で混線をやめ、得られた混練物をロールにかけながら
約3倍延伸し繊維を発現させ、次いで熱湯中に延伸し乍
も約80〜90℃の温度域で加熱処理して繊維状の再構
成食品約50Kgを得た。
When the protein has been unfolded and sufficiently kneaded, the mixing is stopped, and the resulting kneaded material is stretched about 3 times while being rolled to develop fibers, and then stretched in hot water at a temperature of about 80 to 90°C. Approximately 50 kg of fibrous reconstituted food was obtained by heat treatment in a temperature range.

この内I Kgを更にロール処理をしてシート状にのし
て網目状のシートを作り、これにイカエキス、ミリン、
醤油、砂糖、食塩その他調味料を加えて調味、乾燥し、
水分約25%の7シイ力状の珍味食品約400gを得た
Of this, 1 kg is further rolled and rolled into a sheet to make a mesh sheet, which is then filled with squid extract, mirin,
Add soy sauce, sugar, salt and other seasonings, season and dry.
Approximately 400 g of a delicacy food containing approximately 25% water content was obtained.

実施例 3 活性粉末グルテンl Kpに水4KP,更にミンチにか
けたマトン500gとゼラチン50g、酸性亜硫酸ナト
リウム0.6g、食塩70.9を加え混合し、次にコー
ンスターチ500Lタピオカデンプン200gとビオザ
イムA(天野製薬、アミラーゼ製剤)0.075’を合
せ混練を続け、充分に混練さ;れたと判断された時点で
混練を止める。
Example 3 Add and mix 4 KP of water, 500 g of minced mutton, 50 g of gelatin, 0.6 g of sodium acid sulfite, and 70.9 g of salt to 1 Kp of activated gluten powder, then 500 L of corn starch, 200 g of tapioca starch, and Biozyme A (Amano). (Pharmaceuticals, amylase preparation) 0.075' and continue kneading, and stop kneading when it is judged that the mixture has been sufficiently kneaded.

次に、混練物をジー1・状に約5倍程度延伸し繊維を発
現さす。
Next, the kneaded material is stretched approximately 5 times in a gee shape to develop fibers.

次に、加圧された蒸気雰囲気内で約110°〜120℃
で10分間加熱して約6.5K5’の繊維状の再構成食
品を得た。
Next, in a pressurized steam atmosphere at about 110° to 120°C
was heated for 10 minutes to obtain a fibrous reconstituted food of approximately 6.5K5'.

この内I Kpをとり焼肉様の風味付けをして水分約2
0〜25%迄乾燥する。
Of this, I take I Kp and season it with Yakiniku-like flavor, and the moisture content is about 2.
Dry to 0-25%.

次いで、適当な長さに切断し、八木産業機械製作所製の
(八木式)イカ裂き機にかけサキイカタイプのスナック
食品約400gを得た。
Next, it was cut into appropriate lengths and passed through a (Yagi type) squid tearing machine manufactured by Yagi Sangyo Kikai Seisakusho to obtain about 400 g of a squid-type snack food.

Claims (1)

【特許請求の範囲】 1 小麦蛋白質を主とした蛋白質群と蛋白質群の蛋白質
量に対し、40%〜400%の高分子多糖類、食塩、蛋
白質弛緩剤及びグルコシド結合分解酵素を添加し混練し
、得られた混線物を展延、延伸して繊維化させ、又は更
にそれを熱処理してなる繊維状の再構成食品。 2 蛋白質群として小麦蛋白質を蛋白質群の30%以上
を含み、その他の蛋白質として大豆蛋白質、なたね蛋白
質、コーン蛋白質、カゼイン、ゼラチン、コラーゲン、
酵母蛋白質、クロ1ノラ蛋白質、スピルリナ蛋白質、ス
ケソウ、カジキ、イカ、オキアミ、マトン、ラビット、
ブタ、牛からなる群より選ばれる蛋白質の1種又は2種
以上を含む特許請求の範囲第1項記載の再構成食品。 3 高分子多糖類としてデンプンをその内の50係を超
える量を含み、その他の高分子多糖類として、マンナン
、カラギーナン、アルギン酸、ベクチン、カンデン、キ
サンタンガム、プルラン、カードラン、カルボキシメチ
ルセルロース、メチルセルD−ス、カルホキシメチル化
澱粉、エステル化澱粉からなる群より選ばれる1種又は
2種以上を含む特許請求の範囲第1項記載の再構成食品
。 4 弛緩剤として苛性ソーダ、アンモニア、酸性亜硫酸
ナトリウム、グルタチオン、システイン、パパイン、プ
ロテアーゼからなる群より選ばれる特許請求の範囲第1
項記載の再構成食品。 5 グルコシド結合分解酵素としてα−アミラーゼ、β
−アミラーゼ、グルコアミラーゼ及びデブランチング(
Debranching)酵素からなる群より選ばれる
特許請求の範囲第1項記載の再構成食品。 6 熱処理として約75〜122℃の温度域で湿熱加熱
する特許請求の範囲第1項記載の再構成食品。
[Scope of Claims] 1. A protein group consisting mainly of wheat protein and the protein amount of the protein group are mixed with 40% to 400% of a high molecular weight polysaccharide, salt, a protein relaxant, and a glucoside bond degrading enzyme. A fibrous reconstituted food product obtained by spreading and stretching the obtained mixed wire material to make it into fibers, or by further heat-treating it. 2 Contains 30% or more of wheat protein as a protein group, and other proteins include soybean protein, rapeseed protein, corn protein, casein, gelatin, collagen,
Yeast protein, blackberry protein, spirulina protein, pollack, swordfish, squid, krill, mutton, rabbit,
The reconstituted food according to claim 1, which contains one or more proteins selected from the group consisting of pigs and cows. 3 Contains starch as a polymeric polysaccharide in an amount exceeding 50%, and other polymeric polysaccharides as mannan, carrageenan, alginic acid, vectin, campdene, xanthan gum, pullulan, curdlan, carboxymethyl cellulose, methyl cell D- The reconstituted food according to claim 1, which contains one or more selected from the group consisting of starch, carboxymethylated starch, and esterified starch. 4. Claim 1 in which the relaxant is selected from the group consisting of caustic soda, ammonia, sodium acid sulfite, glutathione, cysteine, papain, and protease.
Reconstituted food as described in section. 5 α-amylase and β as glucoside bond degrading enzymes
- amylase, glucoamylase and debranching (
The reconstituted food according to claim 1, which is selected from the group consisting of debranching enzymes. 6. The reconstituted food according to claim 1, which is subjected to moist heat heating in a temperature range of about 75 to 122°C as the heat treatment.
JP53028816A 1978-03-13 1978-03-13 fibrous reconstituted food Expired JPS582655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53028816A JPS582655B2 (en) 1978-03-13 1978-03-13 fibrous reconstituted food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53028816A JPS582655B2 (en) 1978-03-13 1978-03-13 fibrous reconstituted food

Publications (2)

Publication Number Publication Date
JPS54122762A JPS54122762A (en) 1979-09-22
JPS582655B2 true JPS582655B2 (en) 1983-01-18

Family

ID=12258923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53028816A Expired JPS582655B2 (en) 1978-03-13 1978-03-13 fibrous reconstituted food

Country Status (1)

Country Link
JP (1) JPS582655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512442A (en) * 2005-10-19 2009-03-26 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Process for producing a food composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537134A (en) * 1978-09-05 1980-03-15 Kanegafuchi Chem Ind Co Ltd Preparation of processed food material having fibrous structure
JP2985193B2 (en) * 1989-10-26 1999-11-29 日清製粉株式会社 Method for producing hydrolyzed gluten
JP6649640B1 (en) * 2018-10-19 2020-02-19 不二製油株式会社 Delicious food-like food manufacturing method
WO2022097745A1 (en) * 2020-11-09 2022-05-12 天野エンザイム株式会社 Production method for meat-like processed food product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512442A (en) * 2005-10-19 2009-03-26 ヒルズ・ペット・ニュートリシャン・インコーポレーテッド Process for producing a food composition

Also Published As

Publication number Publication date
JPS54122762A (en) 1979-09-22

Similar Documents

Publication Publication Date Title
JP3055693B2 (en) Anti-aging process and drugs
EP0382576A1 (en) Cellulose derivative hydrolysate and fractions thereof
JPH04229157A (en) Low molecular weight polysaccharide derivative for food ingredient
JP2007537339A (en) Oxidized reversibly expanding granular starch product
Chen et al. Impact of maltogenic α-amylase on the structure of potato starch and its retrogradation properties
CN114591446B (en) Preparation method and application of modified starch polysaccharide derivative
JP3918078B2 (en) Dietary fiber-reinforced composition and dietary fiber-reinforced food using the same
JPS582655B2 (en) fibrous reconstituted food
CN110353166A (en) A kind of preparation method of the green group of anti-retrogradation
JP2017192356A (en) Lobster meat-like food and manufacturing method therefor
Xu et al. Structure of tapioca pearls compared to starch noodles from mung beans
JPH03157402A (en) Compound substance of bacterium cellulose
CN110604287A (en) A food containing starch gel
JPH0731396A (en) Quality-improving agent having age-preventing and softening actions on food
JP2997082B2 (en) Processed bran and its manufacturing method
Kraithong et al. Encapsulated starch characteristics and its shell matrix mechanisms controlling starch digestion
JPH02245001A (en) Hydrolysed product of cellulose derivative hydrolysed with enzyme and preparation thereof
KR100637730B1 (en) Manufacturing method for fresh noodles
JP6505434B2 (en) Hardening accelerator for starch gelatinized dough
CA2048813C (en) Food products containing degraded cellulose derivatives
JP3708591B2 (en) Method for producing cellulose derivative
JP2003002901A (en) Method for lowering viscosity of polysaccharide, viscosity-lowering agent for polysaccharide and polysaccharide lowered in viscosity
JPH06237709A (en) Preparation of gelatinous food
JPH09187239A (en) Glutinous rice cake-like food and its production
JP2996986B2 (en) Manufacturing method of starch gel food