JP6505434B2 - Hardening accelerator for starch gelatinized dough - Google Patents

Hardening accelerator for starch gelatinized dough Download PDF

Info

Publication number
JP6505434B2
JP6505434B2 JP2014258278A JP2014258278A JP6505434B2 JP 6505434 B2 JP6505434 B2 JP 6505434B2 JP 2014258278 A JP2014258278 A JP 2014258278A JP 2014258278 A JP2014258278 A JP 2014258278A JP 6505434 B2 JP6505434 B2 JP 6505434B2
Authority
JP
Japan
Prior art keywords
starch
dough
gelatinized
partially degraded
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258278A
Other languages
Japanese (ja)
Other versions
JP2016116483A (en
Inventor
亨 小川
亨 小川
理栄 向井
理栄 向井
尚樹 工藤
尚樹 工藤
学 宮田
学 宮田
修也 小出
修也 小出
角二 鳥越
角二 鳥越
山本 拓生
拓生 山本
西本 友之
友之 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashibara Seibutsu Kagaku Kenkyujo KK
Original Assignee
Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Seibutsu Kagaku Kenkyujo KK filed Critical Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority to JP2014258278A priority Critical patent/JP6505434B2/en
Priority to TW104137915A priority patent/TW201622578A/en
Priority to CN201510961753.3A priority patent/CN105707662A/en
Priority to KR1020150182755A priority patent/KR20160076470A/en
Publication of JP2016116483A publication Critical patent/JP2016116483A/en
Application granted granted Critical
Publication of JP6505434B2 publication Critical patent/JP6505434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、澱粉糊化生地の硬化を促進するための硬化促進剤、前記硬化促進剤を用いる澱粉糊化生地又は澱粉糊化食品の製造方法、及び、前記製造方法で得られる澱粉糊化生地又は澱粉糊化食品に関する。   The present invention relates to a curing accelerator for promoting the curing of a starch gelatinization dough, a method for producing a starch gelatinization dough or a starch gelatinization food using the above-mentioned curing accelerator, and a starch gelatinization dough obtained by the above production method Or it relates to a starch gelatinized food.

澱粉糊化生地を用いて製造される食品の一種である米菓は、米から製造される菓子であり、主原料となる米又は米粉を蒸練して澱粉糊化生地を作り、当該生地を成型、冷却、切断し、乾燥させた後、焼成又は油調し、醤油、塩、砂糖等の調味料で味付けして調製される。せんべい、おかき、あられ、柿の種等が知られ、軽く、サクサクした特有の食感を有する菓子である。   Rice confectionery which is a kind of food manufactured using starch gelatinized dough is a confectionery manufactured from rice, and rice or rice flour as a main raw material is cooked to make starch gelatinized dough, and the dough is After molding, cooling, cutting and drying, it is prepared by baking or oiling and seasoning with seasonings such as soy sauce, salt and sugar. It is a confectionery that is known for its senbei, oysters, hail, and persimmon seeds, etc., and has a light and crispy peculiar texture.

米菓の製造に際しては、一般に、成型した米菓生地を1乃至4日間冷蔵して硬化させ、生地を切断しやすくすることが行われているが、冷蔵によるエネルギーコストが高価であるという問題があるため、米菓生地の硬化時間の短縮が切望されている。また、十分に硬化していない生地は、切断時に扱いにくく、米菓の生産効率の低下を引き起こすという問題もある。   In the production of rice confectionery, in general, the molded rice confectionery material is refrigerated and hardened for 1 to 4 days to make it easy to cut the material, but there is a problem that the energy cost due to the refrigeration is expensive Because of this, there is a strong demand for shortening the curing time of rice dough. In addition, there is also a problem that dough which is not sufficiently cured is difficult to handle at the time of cutting and causes a decrease in production efficiency of rice confectionery.

特許文献1には、ワキシーコーンスターチを硬化促進剤として添加することにより、米菓生地の硬化を促進する方法が開示されている。また、特許文献2には、ハイアミロースコーンスターチを硬化促進剤として添加することにより、米菓生地の硬化を促進する方法が開示されている。さらに、特許文献3には、漂白タピオカ澱粉、酸化タピオカ澱粉、アセチル化タピオカ澱粉、アセチル化漂白タピオカ澱粉及びアセチル化酸化タピオカ澱粉から選ばれる1種又は2種以上の加工タピオカ澱粉を硬化促進剤として添加することにより、米菓生地の硬化を促進する方法が開示されている。しかしながら、特許文献1乃至3に開示された方法は、硬化促進剤として添加した澱粉又は加工澱粉の影響により、米菓の風味が損なわれてしまい、さらには、米菓の食感が損なわれてしまう場合もあるため、米菓の品質上好ましいものではなかった。   Patent Document 1 discloses a method of promoting the curing of a rice confectionery dough by adding waxy corn starch as a curing accelerator. In addition, Patent Document 2 discloses a method of promoting the curing of a rice confectionery dough by adding high amylose corn starch as a curing accelerator. Furthermore, Patent Document 3 discloses one or more modified tapioca starches selected from bleached tapioca starch, oxidized tapioca starch, acetylated tapioca starch, acetylated bleached tapioca starch and acetylated oxidized tapioca starch as a curing accelerator. Disclosed is a method of promoting hardening of rice dough by the addition. However, according to the methods disclosed in Patent Documents 1 to 3, the flavor of rice confection is impaired by the influence of starch or modified starch added as a curing accelerator, and further, the texture of rice confection is impaired. In some cases, it was not desirable for the quality of rice confectionery.

また、特許文献4には、エリスリトール又はグリセロールを硬化促進剤として添加することにより、餅生地の硬化を促進する方法が開示されているが、この方法は、硬化促進剤として添加したエリスリトール又はグリセロール自体の甘味により、餅の風味が損なわれてしまうため、餅の品質上十分に満足し得るものではなかった。   In addition, Patent Document 4 discloses a method of accelerating the curing of a persimmon dough by adding erythritol or glycerol as a curing accelerator, but this method is based on erythritol or glycerol itself added as a curing accelerator. Because the sweet taste of sweet potato is not good enough in terms of the quality of sweet potato because the taste of sweet potato is lost.

特開昭52−102465号公報JP-A-52-102465 特開平9−28297号公報Japanese Patent Application Laid-Open No. 9-28297 特開2013−179842号公報JP, 2013-179842, A 特許第2990895号Patent No. 2990895

本発明は、澱粉糊化食品の本来の風味や食感を損なうことなく、澱粉糊化生地の硬化を促進することができる澱粉糊化生地用硬化促進剤、前記硬化促進剤を添加することを特徴とする澱粉糊化生地の製造方法、前記硬化促進剤を添加することを特徴とする澱粉糊化食品の製造方法、及び、前記製造方法で得られる澱粉糊化生地又は澱粉糊化食品を提供することを課題とする。   The present invention is to add a hardening accelerator for starch gelatinization dough which can accelerate the hardening of starch gelatinization dough without impairing the original flavor and texture of starch gelatinization food, and the above-mentioned hardening accelerator The present invention provides a method for producing a starch gelatinized dough, a method for producing a starch gelatinized food comprising the addition of the curing accelerator, and a starch gelatinized dough or a starch gelatinized food obtainable by the production method. To be a task.

本発明者らは、米菓における上記課題を解決すべく鋭意研究を行う過程において、意外にも、澱粉部分分解物、具体的には、加水分解率が8%以下である澱粉部分分解物、前記加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物、及び、前記加水分解率が8%以下である澱粉部分分解物の還元末端のグルコースを還元した澱粉部分分解物から選ばれる1種又は2種以上が、ワキシーコーンスターチやハイアミロースコーンスターチ、さらには、タピオカ澱粉、馬鈴薯澱粉などの澱粉よりも澱粉糊化生地の硬化促進剤として優れていることを見出し、本発明を完成した。   In the course of conducting earnest research to solve the above-mentioned problems in rice confectionery, the present inventors surprisingly have starch partial decomposition products, specifically, starch partial decomposition products having a hydrolysis rate of 8% or less, A partially digested starch partially introduced with a trehalose structure at the reducing end of partially degraded starch having a hydrolysis rate of 8% or less, and glucose at the reduced end of partially degraded starch having a hydrolysis rate of 8% or less One or more selected from reduced starch partial decomposition products are superior as wax accelerator for starch gelatinized dough to starches such as waxy corn starch, high amylose corn starch, and tapioca starch and potato starch And completed the present invention.

すなわち、本発明は、加水分解率が8%以下である澱粉部分分解物、前記加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物、及び、前記加水分解率が8%以下である澱粉部分分解物の還元末端のグルコースを還元した澱粉部分分解物から選ばれる1種又は2種以上を有効成分とする澱粉糊化生地用硬化促進剤を提供することにより上記課題を解決するものである。   That is, according to the present invention, there are provided a partially degraded starch having a hydrolysis rate of 8% or less, a partially degraded starch having a trehalose structure introduced to the reducing end of the partially degraded starch having a hydrolysis rate of 8% or less, Provided is a curing accelerator for starch gelatinized dough comprising, as an active ingredient, one or more selected from starch partial decomposition products obtained by reducing glucose at the reducing end of starch partial decomposition products having a hydrolysis rate of 8% or less The above problems are solved by

また、本発明は、当該澱粉糊化生地用硬化促進剤を、澱粉糊化生地又はその原料に、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で1乃至20質量%添加する工程を含んでなる澱粉糊化生地の製造方法を提供することにより上記課題を解決するものである。   Furthermore, the present invention relates to the starch gelatinization dough or its raw material, the starch gelatinization dough or its raw material, the starch gelatinization cloth or the raw material thereof, the starch gelatinization cloth or the solid substance of the starch contained in the raw material, converts to anhydride The present invention solves the above-mentioned problems by providing a method for producing a starch pastelized dough comprising the step of adding 1 to 20% by mass.

さらに、本発明は、澱粉糊化生地の原料を加熱して澱粉糊化生地を調製する工程、及び、澱粉糊化生地を所定形状に成型する工程を含み、さらに、当該澱粉糊化生地用硬化促進剤を、澱粉糊化生地又はその原料に、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で1乃至20質量%添加する工程を含んでなる澱粉糊化食品の製造方法を提供することにより上記課題を解決するものである。   Furthermore, the present invention includes the steps of heating the raw material of starch gelatinization dough to prepare starch gelatinization dough, and molding the starch gelatinization dough into a predetermined shape, and further, curing the starch gelatinization dough. Adding an accelerator to the starch gelatinized dough or its raw material in an amount of 1 to 20% by mass in terms of anhydride as a partially degraded starch, based on the solid matter of starch contained in the starch gelatinized dough or its raw material The above problems are solved by providing a method for producing a starch gelatinized food.

本明細書でいう澱粉糊化生地とは、澱粉を主原料とし、これらを加工時に蒸煮する、炊く、茹でるなどの方法により加熱して含まれる澱粉を糊化して調製した生地であって、食品分野において、澱粉糊化食品の製造に好適に用いることのできるものを意味する。   The starch gelatinized dough referred to in the present specification is a dough prepared by gelatinizing starch contained by heating starch by a method such as cooking, cooking or boiling at the time of processing. In the field, it means what can be suitably used for the production of a starch gelatinized food.

また、本明細書でいう澱粉糊化生地の硬化とは、生地中の糊化した澱粉が冷却によって老化することにより硬くなる現象であり、硬化促進とは、硬化の速度を速め、硬化に要する期間を短縮することである。   Moreover, hardening of a starch gelatinized dough as referred to in the present specification is a phenomenon in which gelatinized starch in the dough is hardened by aging due to cooling, and hardening acceleration accelerates the speed of hardening and requires hardening. It is to shorten the period.

本発明の澱粉糊化生地用硬化促進剤は、澱粉糊化生地の原料に比較的少量添加した後、糊化させて冷却するか、又は、原料を糊化して得た澱粉糊化生地に比較的少量添加した後、冷却することで、澱粉糊化生地の硬化を促進することができるので、冷蔵による硬化に要する時間を短縮することにより、冷蔵エネルギーコストの削減を行うことができる。本発明の澱粉糊化生地用硬化促進剤を澱粉糊化食品の製造に適用した場合には、澱粉糊化生地を短期間で硬化させることができ、澱粉糊化生地の切断が容易になるまで硬化させるために必要な冷蔵時間を著しく短縮するばかりでなく、硬化した澱粉糊化生地の切断性が向上するため、澱粉糊化食品の生産効率を向上させることができる。また、澱粉部分分解物を有効成分とする本発明の澱粉糊化生地用硬化促進剤は、澱粉特有の糊臭がないため、硬化促進剤として澱粉を用いる従来技術の課題であった澱粉糊化食品の本来の風味の損失がなく、且つ、澱粉糊化食品本来の食感を維持した澱粉糊化食品を提供することができる。   The hardening accelerator for starch gelatinization dough of the present invention is added to a raw material of starch gelatinization dough in a relatively small amount, and then gelatinized and cooled, or compared to the starch gelatinization dough obtained by gelatinizing the raw material After the addition of a small amount, cooling can promote the hardening of the starch gelatinized dough, so that shortening the time required for hardening by refrigeration can reduce refrigeration energy costs. When the hardening accelerator for starch gelatinized dough of the present invention is applied to the production of a starch gelatinized food, the starch gelatinized dough can be hardened in a short period of time until the starch gelatinized dough is easily cut. Not only is the refrigeration time required for hardening significantly shortened, but also the cuttability of the hardened starch gelatinized dough is improved, so that the production efficiency of the starch gelatinized food can be improved. In addition, the hardening accelerator for starch pasting gelatinized dough of the present invention, which contains a partially degraded starch product as an active ingredient, has no pasty odor peculiar to starch, and therefore starch pasting which was a problem of the prior art using starch as a hardening accelerator It is possible to provide a starch gelatinized food which has no loss of the original flavor of the food and maintains the original texture of the starch gelatinized food.

本発明は、加水分解率が8%以下である澱粉部分分解物、前記加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物、及び、前記加水分解率が8%以下である澱粉部分分解物の還元末端のグルコースを還元した澱粉部分分解物から選ばれる1種又は2種以上を有効成分とする澱粉糊化生地用硬化促進剤を提供するものである。   The present invention provides a starch partial decomposition product having a hydrolysis ratio of 8% or less, a starch partial decomposition product having a trehalose structure introduced at the reducing end of the starch partial decomposition product having a hydrolysis ratio of 8% or less, and Provided is a curing accelerator for starch gelatinized fabric comprising, as an active ingredient, one or two or more selected from starch partial decomposition products obtained by reducing glucose at the reducing end of starch partial decomposition products having a decomposition rate of 8% or less It is.

本明細書でいう澱粉部分分解物とは、澱粉を部分的に加水分解して得られる分解物を意味する。澱粉の加水分解の程度は、下記数式(数1)で算出される加水分解率で表すことができる。加水分解率は、全糖量に対する還元糖量の割合であり、澱粉部分分解物の平均グルコース重合度の指標としても用いることができる。全糖量は、例えば、グルコースを標準物質として、アンスロン硫酸法やフェノール硫酸法などを用いて測定することができる。また、還元糖量は、例えば、グルコースを標準物質として、ソモギー・ネルソン法やパーク・ジョンソン法などを用いて測定することができる。加水分解率が低い澱粉部分分解物は、分解の程度が低く、平均グルコース重合度が大きいことを意味し、逆に、加水分解率が100%のものは、澱粉がグルコースにまで完全に分解されていることを意味する。澱粉の大部分を構成するアミロペクチンは、通常、平均グルコース重合度が10,000乃至100,000であるといわれており、そのアミロペクチン分子において還元末端は1つであるから、その加水分解率は、理論上、0.001乃至0.01%となる。したがって、本明細書でいう澱粉部分分解物とは、澱粉を人為的に加水分解したものであって、その加水分解率が、通常、0.01%超であるものを意味することとする。   The starch partial decomposition product as used herein means a decomposition product obtained by partially hydrolyzing starch. The degree of hydrolysis of starch can be represented by the hydrolysis rate calculated by the following equation (Equation 1). The hydrolysis rate is a ratio of the amount of reducing sugar to the total amount of sugar, and can also be used as an indicator of the average glucose polymerization degree of partially degraded starch. The total sugar amount can be measured, for example, using glucose as a standard substance and using the anthrone sulfate method, the phenol sulfate method, or the like. In addition, the amount of reducing sugar can be measured, for example, using glucose as a standard substance and using Somogyi-Nelson method, Park-Johnson method or the like. Partially hydrolyzed starch partial decomposition products with low hydrolysis rate mean low degree of decomposition and high average degree of polymerization of glucose, conversely, those with 100% hydrolysis ratio completely decompose starch to glucose Means that Amylopectin, which makes up the majority of starch, is usually said to have an average glucose polymerization degree of 10,000 to 100,000, and there is only one reducing end in its amylopectin molecule, so its hydrolysis rate is It is theoretically 0.001 to 0.01%. Therefore, a partially degraded starch as referred to herein means an artificially hydrolyzed starch having a degree of hydrolysis of usually greater than 0.01%.

Figure 0006505434
Figure 0006505434

なお、本明細書でいう加水分解率とは、全糖量及び還元糖量を、グルコースを標準物質として、それぞれアンスロン硫酸法及びソモギー・ネルソン法を用いて測定し、前記数1に基づき、算出される値を意味する。   In addition, with the hydrolysis rate as used in the present specification, the total amount of sugar and the amount of reducing sugar are measured using anthrone sulfuric acid method and the somogie Nelson method, respectively, using glucose as a standard substance, and calculated based on the above number 1 Means the value to be

本明細書でいう加水分解率が8%以下である澱粉部分分解物とは、加水分解率が8%以下になる程度に澱粉を部分的に加水分解したものを意味する。   The starch partial decomposition product having a hydrolysis rate of 8% or less as used herein means a partially hydrolyzed starch to such an extent that the hydrolysis rate is 8% or less.

また、本明細書でいう加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造が導入された澱粉部分分解物とは、当該澱粉部分分解物の還元末端のグルコースの結合様式をα−1,4結合からα,α−1,1結合へ変換したものを意味する。   Moreover, the starch partial decomposition product into which the trehalose structure is introduced at the reduction end of the starch partial decomposition product having a hydrolysis rate of 8% or less as referred to herein means the bonding mode of glucose at the reduction terminal of the starch partial decomposition product. Means an α-1,4 bond to an α, α-1,1 bond.

さらに、本明細書でいう加水分解率が8%以下である澱粉部分分解物の還元末端のグルコースを還元した澱粉部分分解物とは、当該澱粉部分分解物の還元末端のグルコースのアルデヒド基を還元し、水酸基に変換したものを意味する。   Furthermore, the starch partial decomposition product obtained by reducing glucose at the reduction end of the starch partial decomposition product having a hydrolysis rate of 8% or less as referred to herein means the aldehyde group of glucose at the reduction terminal of the starch partial decomposition product. Mean those converted to hydroxyl groups.

本発明で用いる加水分解率が8%以下である澱粉部分分解物は、いかなる製造方法によって得られる澱粉部分分解物であってもよく、例えば、澱粉をα−アミラーゼなどの酵素で部分的に加水分解して得られる澱粉部分分解物であってもよく、塩酸などの酸で部分的に加水分解して得られる澱粉部分分解物であってもよい。これらの内、酵素による分解の方が、澱粉部分分解物の溶液が着色しない点でより好適に利用できる。   The starch partial decomposition product having a hydrolysis rate of 8% or less used in the present invention may be a starch partial decomposition product obtained by any production method. For example, starch is partially hydrolyzed with an enzyme such as α-amylase It may be a starch partial decomposition product obtained by decomposition, or may be a starch partial decomposition product obtained by partial hydrolysis with an acid such as hydrochloric acid. Among these, enzymatic degradation is more preferably used in that the solution of the partially degraded starch does not stain.

本発明で用いる加水分解率が8%以下である澱粉部分分解物の好適な一例としては、澱粉にα−アミラーゼや澱粉枝切り酵素などの酵素を作用させて得られる澱粉部分分解物が挙げられる。また、α−アミラーゼや澱粉枝切り酵素などに加え、澱粉枝作り酵素や、特開2014−054221号公報に開示されているような重合度2以上のα−1,4グルカンを澱粉質の内部のグルコース残基にα−1,6転移する活性を有する酵素、国際公開第WO2008/136331号パンフレットにおいて開示されているα−グルコシル転移酵素などを併用して得られる澱粉部分分解物であってもよい。   As a suitable example of a starch partial decomposition product having a hydrolysis rate of 8% or less used in the present invention, a starch partial decomposition product obtained by reacting starch with an enzyme such as α-amylase or starch debranching enzyme can be mentioned. . Further, in addition to α-amylase and starch debranching enzyme, starch branching enzymes, and α-1, 4 glucan having a degree of polymerization of 2 or more as disclosed in JP-A-2014-054221 are starchy. Even if it is a partially degraded starch product obtained by using an enzyme having an activity of transferring α-1, 6 to glucose residues of α, an α-glucosyltransferase etc. disclosed in WO 2008/136331 pamphlet Good.

前記α−アミラーゼの由来は、特に限定されるものではなく、例えば、微生物や植物由来のものであってもよく、遺伝子組換えによって得られるものであってもよい。前記α−アミラーゼの作用量に、特に制限はなく、通常、澱粉固形物1g当たり0.1乃至100単位の範囲内で適宜選択される。また、前記α−アミラーゼを作用させる温度及びpHは、酵素反応が進行する範囲内で適宜選択することができ、例えば、反応温度は10乃至120℃、反応pHはpH3乃至9の範囲が好適である。また、反応時間は酵素反応の進行具合に応じて適宜選択することができ、例えば0.1乃至100時間の範囲から選択すればよい。   The origin of the α-amylase is not particularly limited. For example, it may be derived from a microorganism or a plant, or may be obtained by genetic recombination. There is no restriction | limiting in particular in the action amount of the said alpha- amylase, Usually, it selects suitably in the range of 0.1-100 units per 1 g of starch solid substances. The temperature and pH at which the α-amylase is allowed to act can be appropriately selected within the range in which the enzyme reaction proceeds. For example, the reaction temperature is preferably 10 to 120 ° C, and the reaction pH is preferably pH 3 to 9. is there. The reaction time can be appropriately selected depending on the progress of the enzyme reaction, and may be selected, for example, from the range of 0.1 to 100 hours.

前記澱粉枝切り酵素は、澱粉のα−1,6結合を分解する酵素であればよく、例えば、イソアミラーゼやプルラナーゼが挙げられる。また、前記澱粉枝切り酵素の由来は、特に限定されるものではなく、例えば、微生物由来や植物由来のものであってもよく、遺伝子組換えによって得られるものであってもよい。前記澱粉枝切り酵素の作用量に、特に制限はなく、通常、澱粉固形物1g当たり100乃至100,000単位の範囲内で適宜選択される。また、前記澱粉枝切り酵素を作用させる温度及びpHは、酵素反応が進行する範囲内で適宜選択することができ、例えば、反応温度は10乃至60℃、反応pHはpH3乃至9の範囲が好適である。また、反応時間は酵素反応の進行具合に応じて適宜選択することができ、例えば0.1乃至100時間の範囲から選択すればよい。   The starch debranching enzyme may be any enzyme that degrades the α-1, 6 bond of starch, and examples thereof include isoamylase and pullulanase. Further, the origin of the starch debranching enzyme is not particularly limited, and may be, for example, a microorganism or a plant, or may be obtained by genetic recombination. There is no restriction | limiting in particular in the action amount of the said starch debranching enzyme, Usually, it selects suitably in the range of 100-100,000 units per 1 g of starch solid substances. The temperature and pH at which the starch debranching enzyme is allowed to act can be appropriately selected within the range in which the enzyme reaction proceeds, for example, the reaction temperature is preferably 10 to 60 ° C., and the reaction pH is preferably pH 3 to 9. It is. The reaction time can be appropriately selected depending on the progress of the enzyme reaction, and may be selected, for example, from the range of 0.1 to 100 hours.

また、本発明で用いる、加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物の好適な一例としては、加水分解率が8%以下である澱粉部分分解物にグリコシルトレハロース生成酵素を作用させて得られる、還元末端にトレハロース構造が導入された澱粉部分分解物が挙げられる。   In addition, as a preferred example of a partially degraded starch having a trehalose structure introduced to the reduced end of partially degraded starch having a hydrolysis rate of 8% or less, starch having a hydrolysis rate of 8% or less is used in the present invention. A partially degraded starch obtained by reacting a glycosyl trehalose-producing enzyme with a partially degraded product, in which a trehalose structure is introduced at the reducing end, can be mentioned.

前記グリコシルトレハロース生成酵素は、酵素番号(EC)5.4.99.15で示される酵素であり、α−1,4結合を介して連結した重合度3以上のグルカンの還元末端のグルコース残基に作用して、その結合様式をα−1,4結合からα,α−1,1結合へ変換することにより、還元末端にトレハロース構造を導入する酵素である。また、前記グリコシルトレハロース生成酵素の由来は、特に限定されるものではなく、例えば、微生物由来や植物由来のものであってもよく、遺伝子組換えによって得られるものであってもよい。前記グリコシルトレハロース生成酵素の作用量に、特に制限はなく、通常、澱粉固形物1g当たり0.1乃至100単位の範囲内で適宜選択される。また、前記グリコシルトレハロース生成酵素を作用させる温度及びpHは、酵素反応が進行する範囲内で適宜選択することができ、例えば、反応温度は10乃至90℃、反応pHはpH3乃至9の範囲が好適である。また、反応時間は酵素反応の進行具合に応じて適宜選択することができ、例えば0.1乃至100時間の範囲から選択すればよい。なお、グリコシルトレハロース生成酵素の活性は、例えば、特許第3958884号の段落0026に記載された方法、すなわち、マルトペンタオースを基質とし、グリコシルトレハロース生成酵素の作用による還元末端へのトレハロース構造の導入に伴う還元力の減少を測定する方法などにより測定することができる。本明細書でいうグリコシルトレハロース生成酵素の活性1単位は、上記測定方法において、1分間に1μmolのマルトペンタオースに相当する還元力を減少させる酵素量である。   The glycosyl trehalose-producing enzyme is an enzyme represented by the enzyme number (EC) 5.4.99.15, and a glucose residue at the reducing end of a glucan having a degree of polymerization of 3 or more linked via an α-1,4 bond The enzyme is an enzyme that introduces a trehalose structure at the reducing end by acting on the .alpha.-1,4 bond to convert the .alpha.-1,4 bond to an .alpha.,. Alpha.-1,1 bond. Moreover, the origin of the said glycosyl trehalose production | generation enzyme is not specifically limited, For example, it may be microbial origin or plant origin, and may be obtained by genetic recombination. There is no restriction | limiting in particular in the action amount of the said glycosyl trehalose production | generation enzyme, Usually, it selects suitably in the range of 0.1-100 units per 1 g of starch solid substances. The temperature and pH at which the glycosyl trehalose-producing enzyme is allowed to act can be appropriately selected within the range in which the enzyme reaction proceeds, for example, the reaction temperature is preferably 10 to 90 ° C., and the reaction pH is preferably pH 3 to 9. It is. The reaction time can be appropriately selected depending on the progress of the enzyme reaction, and may be selected, for example, from the range of 0.1 to 100 hours. The activity of the glycosyl trehalose producing enzyme can be determined, for example, by the method described in paragraph 0026 of Patent No. 3958884, ie, using maltopentaose as a substrate and introducing trehalose structure to the reducing end by the action of glycosyl trehalose producing enzyme. It can measure by the method of measuring the reduction of the reduction power accompanying it. One unit of activity of the glycosyl trehalose producing enzyme as referred to in the present specification is the amount of the enzyme that reduces the reducing power equivalent to 1 μmol maltopentaose per minute in the above-mentioned measuring method.

さらに、本発明で用いる、加水分解率が8%以下である澱粉部分分解物の還元末端のグルコースを還元した澱粉部分分解物の好適な一例としては、加水分解率が8%以下である澱粉部分分解物を水素添加して得られる、還元末端のグルコース残基が還元された澱粉部分分解物が挙げられる。   Furthermore, as a suitable example of the starch partial decomposition product which reduced the glucose at the reduction end of the starch partial decomposition product having a hydrolysis ratio of 8% or less used in the present invention, a starch component having a hydrolysis ratio of 8% or less The partial decomposition product of starch which is obtained by hydrogenating the decomposition product and in which the glucose residue at the reducing end has been reduced is mentioned.

前記水素添加は、例えば、固形物濃度30質量%の澱粉部分分解物水溶液に、触媒としてラネーニッケル8乃至15質量%を添加した後、オートクレーブを用いて、水素分圧2乃至15MPa、温度90乃至150℃で数時間反応させることにより行うことができる。   The hydrogenation is carried out, for example, by adding 8 to 15% by mass of Raney nickel as a catalyst to an aqueous solution of partially decomposed starch having a solid concentration of 30% by mass, and using an autoclave, hydrogen partial pressure 2 to 15 MPa, temperature 90 to 150 It can be carried out by reacting for several hours at ° C.

以下、本明細書では、「加水分解率が8%以下である澱粉部分分解物、前記加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物、及び、前記加水分解率が8%以下である澱粉部分分解物を水素添加した澱粉部分分解物から選ばれる1種又は2種以上」を、単に「澱粉部分分解物」という場合がある。   Hereinafter, in the present specification, “a starch partial decomposition product having a hydrolysis ratio of 8% or less, a starch partial decomposition product having a trehalose structure introduced to the reducing end of the starch partial decomposition product having a hydrolysis ratio of 8% or less, And, one or two or more kinds selected from starch partial decomposition products obtained by hydrogenation of starch partial decomposition products having a hydrolysis rate of 8% or less may be simply referred to as “starch partial decomposition products”.

本発明の澱粉糊化生地用硬化促進剤の有効成分である澱粉部分分解物の原料は、とりわけその植物種や品種などによって限定されるものではなく、例えば、タピオカ澱粉、馬鈴薯澱粉、トウモロコシ澱粉、小麦澱粉、米澱粉、甘藷澱粉などが挙げられる。これらの内、タピオカ澱粉、馬鈴薯澱粉、トウモロコシ澱粉を原料とするものは、とりわけ顕著な硬化促進作用を有し、より好適に利用できる。   The raw material of the partially degraded starch product, which is an active ingredient of the hardening accelerator for starch gelatinized dough of the present invention, is not particularly limited by its plant species and varieties, and, for example, tapioca starch, potato starch, corn starch, Wheat starch, rice starch, sweet potato starch etc. are mentioned. Among these, those based on tapioca starch, potato starch and corn starch have particularly remarkable curing accelerating action and can be used more suitably.

本発明の澱粉糊化生地用硬化促進剤の有効成分である加水分解率が8%以下の澱粉部分分解物は、硬化促進作用を良好に発揮させる上で、望ましくは、加水分解率が0.1%以上8%以下、より望ましくは、加水分解率が0.1%以上3%以下、さらに望ましくは、加水分解率が0.4%以上1.4%以下であるものがより好適に利用できる。   The partially degraded starch having a degree of hydrolysis of 8% or less, which is an active ingredient of the hardening accelerator for starch gelatinized dough of the present invention, desirably exhibits a degree of hydrolysis of 0. 1% or more and 8% or less, more preferably, the hydrolysis rate is 0.1% or more and 3% or less, more preferably, the hydrolysis rate is 0.4% or more and 1.4% or less, more preferably used it can.

また、本発明の澱粉糊化生地用硬化促進剤の有効成分である加水分解率が8%以下の澱粉部分分解物は、硬化促進作用を良好に発揮させる上で、その重量平均分子量が、望ましくは、10,000乃至500,000、より望ましくは、50,000乃至500,000、さらに望ましくは、60,000乃至350,000であるものがより好適に利用できる。   In addition, a partially degraded starch having a hydrolysis rate of 8% or less, which is an effective component of the curing accelerator for starch gelatinized dough of the present invention, desirably has a weight-average molecular weight in order to exhibit the curing promoting effect well. Is preferably 10,000 to 500,000, more preferably 50,000 to 500,000, and still more preferably 60,000 to 350,000.

さらに、本発明の澱粉糊化生地用硬化促進剤の有効成分である加水分解率が8%以下の澱粉部分分解物は、β−アミラーゼ消化物の固形物当たりのマルトースの割合が40質量%以上であるものがより好適に利用できる。本発明の澱粉糊化生地用硬化促進剤は、澱粉糊化食品の食感を損なうことなく、澱粉糊化生地の硬化を促進するものであり、これらをともに実現させる上で、β−アミラーゼ消化物の固形物当たりのマルトースの割合が、望ましくは、40質量%以上80質量%未満、より望ましくは、40質量%以上60質量%以下である澱粉部分分解物が有効成分としてより好適に利用できる。一方、澱粉糊化生地の硬化を促進し、且つ、澱粉糊化食品の食感をより軽くすることが要求される場合には、β−アミラーゼ消化物の固形物当たりのマルトースの割合が80質量%以上である澱粉部分分解物が有効成分としてより好適に利用できる。   Furthermore, a starch partial decomposition product having a hydrolysis rate of 8% or less, which is an active ingredient of the hardening accelerator for starch gelatinized dough of the present invention, has a maltose ratio of 40% by mass or more per solid of β-amylase digested product Are more preferably available. The hardening accelerator for starch gelatinized dough of the present invention promotes the hardening of starch gelatinized dough without impairing the texture of starch gelatinized food, and in realizing both of them, β-amylase digestion is carried out. The partially degraded starch having a maltose ratio of 40% by mass to less than 80% by mass, more preferably 40% by mass to 60% by mass, can be more suitably used as an active ingredient. . On the other hand, if it is required to accelerate the hardening of the starch gelatinized dough and to make the texture of the starch gelatinized food lighter, the proportion of maltose per solid of the β-amylase digest is 80%. Partially degraded starches having% or more can be more suitably used as an active ingredient.

β−アミラーゼは、澱粉質を非還元末端からマルトース単位で加水分解するエキソ型の酵素であり、澱粉を構成するα−グルカンのα−1,6−グリコシド結合した分岐部で加水分解反応が停止する。したがって、β−アミラーゼ消化物の固形物当たりのマルトースの割合は、澱粉質の非還元末端から分岐構造部分までの直鎖構造の長さとその含量の指標であり、この値が大きいほど直鎖構造が長く、その含量が多いことを意味する。   β-Amylase is an exo-type enzyme that hydrolyzes starch from non-reducing end with maltose unit, and the hydrolysis reaction is stopped at the α-1,6-glycosidic-linked branch of α-glucan that constitutes starch. Do. Therefore, the maltose ratio per solid of the β-amylase digest is an indicator of the length of the linear structure from the non-reducing end of the starch to the branched structural portion and the content thereof, and the larger this value, the more linear structure Means that the content is long.

本発明の澱粉糊化生地用硬化促進剤は、所望の硬化促進作用を発揮する限り、それに有効成分として含有される澱粉部分分解物の量には特に制限はなく、例えば、澱粉部分分解物を1乃至100質量%の範囲で含有することができる。   As long as the hardening accelerator for starch gelatinized dough of the present invention exerts a desired hardening promoting action, there is no particular limitation on the amount of partially degraded starch contained as an active ingredient in it, for example, partially degraded starch It can be contained in the range of 1 to 100% by mass.

本発明の澱粉糊化生地用硬化促進剤は、澱粉部分分解物に加えて、必要に応じて、水、澱粉、加工澱粉、難消化性の多糖類、甘味料、蛋白質、酵素、ペプチド、ミネラル、着色料、着香料、糊料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を適宜添加することも随意である。   The hardening accelerator for starch gelatinized dough of the present invention is, in addition to partially degraded starch, optionally, water, starch, modified starch, non-digestible polysaccharide, sweetener, protein, enzyme, peptide, mineral It is also optional to appropriately add one or more components selected from coloring agents, flavoring agents, pastes, stabilizers, excipients, fillers, pH adjusters and the like.

また、本発明は、当該澱粉糊化生地用硬化促進剤を、澱粉糊化生地又はその原料に、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で1乃至20質量%添加する工程を含んでなる澱粉糊化生地の製造方法を提供するものである。   Furthermore, the present invention relates to the starch gelatinization dough or its raw material, the starch gelatinization dough or its raw material, the starch gelatinization cloth or the raw material thereof, the starch gelatinization cloth or the solid substance of the starch contained in the raw material, converts to anhydride The present invention provides a method for producing a starch gelatinized dough comprising the step of adding 1 to 20% by mass.

さらに、本発明は、澱粉糊化生地の原料を加熱して澱粉糊化生地を調製する工程、及び、澱粉糊化生地を所定形状に成型する工程を含み、さらに、当該澱粉糊化生地用硬化促進剤を、澱粉糊化生地又はその原料に、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で1乃至20質量%添加する工程を含んでなる澱粉糊化食品の製造方法、及び、前記製造方法で得られる澱粉糊化食品を提供するものである。   Furthermore, the present invention includes the steps of heating the raw material of starch gelatinization dough to prepare starch gelatinization dough, and molding the starch gelatinization dough into a predetermined shape, and further, curing the starch gelatinization dough. Adding an accelerator to the starch gelatinized dough or its raw material in an amount of 1 to 20% by mass in terms of anhydride as a partially degraded starch, based on the solid matter of starch contained in the starch gelatinized dough or its raw material The present invention provides a method for producing a starch gelatinized food, and a starch gelatinized food obtained by the above production method.

本発明において、澱粉糊化生地及び澱粉糊化食品の主原料である澱粉としては、澱粉を含有する植物又は当該植物から得られる澱粉である限り利用でき、とりわけその植物種や品種などによって限定されるものではない。植物種としては、コメ(サティバ種(ジャポニカ種、ジャバニカ種並びにインディカ種)、グラベリマ種及びネリカなど)、トウモロコシ、オオムギ、モチムギ、ハダカムギ、コムギ、ライムギ、カラスムギ、エンバク、ハトムギ、キビ、アワ、ヒエ、モロコシ、シコクビエ、トウジンビエ、テフ、フォニオ、コドラ、マコモ、ダイズ、アズキ、リョクトウ、ササゲ、インゲンマメ、ライマメ、ラッカセイ、エンドウ、ソラマメ、レンズマメ、ヒヨコマメ、レンズマメ、ベニバナインゲン、ケツルアズキ、モスビーン、テパリービーン、タケアズキ、フジマメ、ホースグラム、バンバラマメ、ゼオカルパマメ、キマメ、ナタマメ、タチナタマメ、グラスピー、クラスタマメ、シカクマメ、ハッショウマメ、イナゴマメ、ルピナス、タマリンド、ソバ、ダッタンソバ、アマランス、キヌア、クズ、ワラビ、カタクリ、サツマイモ、キャッサバ、ジャガイモ、キクイモ、アピオス、タロイモ、コンニャクイモ、ヤムイモ、サゴヤシ、バナナなどが挙げられる。また、澱粉を含有する植物から得られる澱粉としては、米粉(糯粉、白玉粉、求肥粉、及び、上新粉など)、小麦粉、大麦粉、ライ麦粉、トウモロコシ粉、テフ粉、ひえ粉、大豆粉、ヒヨコマメ粉、エンドウマメ粉、緑豆粉、蕎麦粉、アマランサス粉、栗粉、どんぐり粉、バナナ澱粉などの地上澱粉や、タピオカ粉、馬鈴薯粉、片栗粉、甘藷澱粉、葛粉、わらび粉などの地下澱粉が挙げられる。   In the present invention, as starch which is a main raw material of starch gelatinized dough and starch gelatinized food, it can be used as long as it is a plant containing starch or starch obtained from the plant, and is particularly limited by its plant species and varieties. It is not a thing. Examples of plant species include rice (Sativa (Japonica sp., Javanica sp. And Indica sp.), Gravelima sp., And nerica etc.), corn, barley, mochi wheat, lice camphor, wheat, rye, oats, oats, cotton oats, millet, millet, hie , Sorghum, ground bream, pearl millet, tef, phonio, codola, machiko, soybean, azuki bean, azuki bean, mung bean, mung bean, mung bean, lima bean, lima bean, peanut, peas, broad bean, lentils, lentils, safflower bean, moth bean, moss bean, tepary bean, Fuji bean, horse gram, bambara bean, zeocalpa bean, pigeon bean, nata bean, peanut bean, grass pea, glaci bean, cluster bean, red bean, lotus root bean, locust bean, lupine, tamarindo Buckwheat, Tartary buckwheat, amaranth, quinoa, debris, bracken, dogtooth violet, sweet potato, cassava, potato, Jerusalem artichoke, Apios, taro, konjac potatoes, yams, sago palm, such as bananas and the like. In addition, as starch obtained from a plant containing starch, rice flour (starch flour, white ball flour, fertilizer powder, and super powdered flour, etc.), wheat flour, barley flour, rye flour, corn flour, corn flour, tef flour, hoya flour, soybean Ground starch such as flour, chickpea flour, pea flour, green bean flour, oat flour, amaranth flour, chestnut powder, acorn powder, banana starch, etc., and tapioca flour, potato flour, potato starch, sweet potato starch, sweet potato starch, sweet potato starch, straw powder, etc. Starch is mentioned.

本明細書でいう澱粉糊化食品とは、澱粉糊化生地を成型して製造する食品である。具体的には、米菓や餅、葛餅、わらび餅、団子、外郎、軽羹、おこし、春雨、トック、大根餅などを挙げることができる。   The starch gelatinized food as referred to in the present specification is a food manufactured by molding a starch gelatinized dough. Specifically, rice confectionery, rice cake, rice cake, rice bran, warabi rice cake, dumpling, dumpling, scum, scorn, simmering, vermicelli, tok, radish rice cake, etc. can be mentioned.

本発明の澱粉糊化生地用硬化促進剤の添加量は、澱粉糊化食品の製造工程の管理上、所望の硬化促進作用が発揮される適宜の添加量を採用すればよく、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で、望ましくは、1乃至20質量%、より望ましくは、5乃至10質量%の範囲が好適である。澱粉糊化生地の硬化速度は、澱粉糊化生地用硬化促進剤の有効成分である澱粉部分分解物の添加量を調整することにより、適宜調整することができる。   The addition amount of the hardening accelerator for starch gelatinized dough of the present invention may be an appropriate addition amount that can exert a desired hardening accelerating action in the control of the production process of the starch gelatinized food, and the starch gelatinized dough Alternatively, a range of 1 to 20% by mass, more preferably 5 to 10% by mass is preferable in terms of anhydride as a partially degraded starch, based on the solid matter of starch contained in the raw material. The curing rate of the starch gelatinized dough can be appropriately adjusted by adjusting the addition amount of the partially degraded starch which is an active ingredient of the curing accelerator for starch gelatinized dough.

本発明の澱粉糊化食品の製造方法は、本発明の澱粉糊化生地用硬化促進剤を、原料の仕込み段階で、あるいは、澱粉糊化生地を調製した後に、原料又は澱粉糊化生地に添加する点を除けば、従来の澱粉糊化食品の製造方法と特に変わりはなく、種々の澱粉糊化食品それぞれに応じた工程を従前どおり利用することができる。   In the method for producing a starch gelatinized food of the present invention, the hardening accelerator for starch gelatinized dough of the present invention is added to the raw material or starch gelatinized dough at the stage of preparation of the raw material or after preparing the starch gelatinized dough. There is no particular difference from the conventional method for producing a starch gelatinized food, except that the process corresponding to each of various starch gelatinized foods can be used as before.

また、本発明の澱粉糊化生地及び澱粉糊化食品の製造方法においては、硬化促進剤としての澱粉部分分解物とともに、ワキシーコーンスターチ、コーンスターチ、ハイアミロースコーンスターチ、タピオカ澱粉、馬鈴薯澱粉、甘薯澱粉、小麦澱粉、米澱粉、及び、それらの加工澱粉などを添加することも随意である。   Further, in the method for producing a starch gelatinized dough and a starch gelatinized food according to the present invention, waxy corn starch, corn starch, high amylose corn starch, tapioca starch, potato starch, sweet potato starch, wheat together with partially degraded starch as a hardening accelerator It is also optional to add starch, rice starch, and their modified starches and the like.

なお、従来は、澱粉糊化生地用硬化促進剤として、ワキシーコーンスターチやハイアミロースコーンスターチなどの澱粉を利用して澱粉糊化生地の硬化促進が達成されており、澱粉部分分解物は澱粉糊化生地の硬化促進剤として利用されてこなかった。これは、速やかに老化する澱粉の方が、澱粉部分分解物よりも、当然、澱粉糊化生地の硬化を促進すると考えられていたためであり、澱粉よりも老化の遅い澱粉部分分解物が、澱粉よりも顕著に澱粉糊化生地の硬化を促進するとは予想もできなかったためである。すなわち、本発明は、加水分解率が8%以下の澱粉部分分解物を利用して澱粉糊化生地の硬化促進を達成するという点で、従来技術とは全く異なる技術思想に基づくものである。   In addition, conventionally, hardening acceleration | stimulation of starch gelatinization cloth is achieved using starches, such as waxy corn starch and high amylose corn starch, as a hardening accelerator for starch gelatinization cloth, and a starch partial decomposition product is starch gelatinization cloth Has not been used as a curing accelerator. This is because starch which is rapidly aged is naturally considered to accelerate the curing of starch gelatinized dough rather than partially degraded starch, and partially degraded starch which is slower in aging than starch is starch. It is because it could not be expected that the hardening of the starch gelatinized dough was significantly promoted more than that. That is, the present invention is based on an entirely different technical idea from the prior art in that hardening acceleration of a starch pasted dough is achieved using a partially degraded starch having a hydrolysis rate of 8% or less.

以下、実験に基づいて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail based on experiments.

<実験1:澱粉の由来による米菓生地の硬化促進作用の比較>
ワキシーコーンスターチやハイアミロースコーンスターチは、米菓生地の硬化促進作用を有することが知られているが、澱粉の由来により硬化促進作用に違いがあるかどうか調べるため、種々の澱粉を添加して調製した米菓生地の硬度を経時的に測定する実験を行った。
<Experiment 1: Comparison of the hardening acceleration effect of rice confectionery dough by origin of starch>
Waxy corn starch and high amylose corn starch are known to have the effect of promoting hardening of rice confectionery dough, but in order to investigate whether there is a difference in the effect of accelerating hardening depending on the origin of starch, it was prepared by adding various starches An experiment was conducted to measure hardness of rice dough over time.

無水物換算で200gの糯粉に、タピオカ澱粉、馬鈴薯澱粉、ワキシーコーンスターチ、コーンスターチ、又は、ハイアミロースコーンスターチを硬化促進剤として無水物換算で各々10g添加した後、水を加えて総質量410gとした混合物を蒸して糊化させた後に混練し、種々の澱粉を糯粉に対しそれぞれ無水物換算で5質量%添加した米菓生地A1乃至A5を調製した。また、対照として、無水物換算で200gの糯粉に、水を加えて総質量400gとした混合物を蒸した後に混練し、米菓生地A6を調製した。これらの米菓生地A1乃至A6を、内径30mm×内高15mmの容器に気泡が入らないように充填し蓋をして密封し、4℃で1乃至4日間冷蔵保存した。調製時、冷蔵1、2、3及び4日後に容器の蓋を取り外した状態でレオメーター(CR−500DX−SII、株式会社サン科学製)を用いて米菓生地A1乃至A6の硬度を測定した。すなわち、直径15mmの円柱型プランジャーを装備したレオメーターを用いて、各米菓生地を60mm/分の速度で4mm圧縮した際の最大荷重をそれぞれの米菓生地の硬度とし、1cm当たりの荷重(N/cm)に換算した。測定はそれぞれ3回行い、平均値を求めた。結果を表1に示す。なお、測定に用いたレオメーターの測定限界値が55N/cmであったため、測定限界値を超えたものについては、表中に「55超」と示した。 After adding 10 g each of tapioca starch, potato starch, waxy corn starch, corn starch, or high amylose corn starch as a curing accelerator to anhydride conversion to 200 g of blanched flour in an anhydride conversion, water was added to make the total mass 410 g The mixture was steamed and gelatinized and then kneaded to prepare rice confectionery materials A1 to A5 in which 5% by mass of various starches were added to the flour in terms of anhydride, respectively. In addition, as a control, water was added to 200 g of flour converted to anhydride to steam a mixture having a total mass of 400 g, and the mixture was then kneaded to prepare rice confectionery dough A6. These rice cakes A1 to A6 were filled in a container having an inner diameter of 30 mm and an inner height of 15 mm so as to prevent air bubbles from entering, sealed with a lid, and stored refrigerated at 4 ° C. for 1 to 4 days. At the time of preparation, the hardness of rice cake dough A1 to A6 was measured using a rheometer (CR-500DX-SII, manufactured by Sun Scientific Co., Ltd.) with the lid of the container removed after refrigeration 1, 2, 3 and 4 days . That is, using a rheometer equipped with a cylindrical plunger with a diameter of 15 mm, the maximum load when each rice cake is compressed 4 mm at a speed of 60 mm / min is taken as the hardness of each rice cake, and per 1 cm 2 Converted to load (N / cm 2 ). Each measurement was performed 3 times, and an average value was obtained. The results are shown in Table 1. In addition, since the measurement limit value of the rheometer used for measurement was 55 N / cm < 2 >, about what exceeded the measurement limit value, it indicated as "more than 55" in the table.

Figure 0006505434
Figure 0006505434

表1に示されるとおり、対照の米菓生地A6の硬度は、4日後に31.3N/cmであったのに対し、種々の澱粉を添加して調製した米菓生地A1乃至A5の硬度は、4日後にはすべて40N/cm以上であり、対照の米菓生地A6よりも硬化が促進されていた。とりわけ、タピオカ澱粉を添加して調製した米菓生地A1及びワキシーコーンスターチを添加して調製した米菓生地A3は、その硬度が3日後に50N/cmを上回っており、顕著な硬化が認められた。これらの結果は、タピオカ澱粉、馬鈴薯澱粉、ワキシーコーンスターチ、コーンスターチ、及び、ハイアミロースコーンスターチが、いずれも米菓生地の硬化を促進する作用を有しており、とりわけ、タピオカ澱粉、及び、ワキシーコーンスターチの硬化促進作用が顕著であることを物語っている。 As shown in Table 1, while the hardness of the control rice cake dough A6 was 31.3 N / cm 2 after 4 days, the hardness of rice cake doughs A1 to A5 prepared by adding various starches Were all 40 N / cm 2 or more after 4 days, and the curing was promoted more than that of the control rice confectionery A6. In particular, the hardness of the rice confectionery A1 prepared by adding the tapioca starch and the rice confectionery dough A3 prepared by adding the waxy corn starch have a hardness of more than 50 N / cm 2 after 3 days, and remarkable hardening is observed. The These results show that tapioca starch, potato starch, waxy corn starch, corn starch and high amylose corn starch all have an action to accelerate the hardening of rice confectionery dough, and in particular, tapioca starch and waxy corn starch It indicates that the curing accelerating action is remarkable.

<実験2:澱粉部分分解物の調製>
米菓生地の硬化に及ぼす澱粉部分分解物の加水分解率の影響を調べるため、実験1で顕著な米菓生地の硬化促進作用を示したタピオカ澱粉を用いて、種々の加水分解率を有する澱粉部分分解物の調製を行った。
<Experiment 2: Preparation of partially degraded starch>
In order to investigate the influence of the hydrolysis rate of partially degraded starch products on the hardening of rice confectionery dough, starches having various hydrolysis rates using tapioca starch which showed the hardening accelerating action of rice confectionery dough remarkable in Experiment 1 Preparation of partial degradation product was performed.

まず、タピオカ澱粉を固形物濃度20質量%となるよう純水に懸濁し、これに塩化カルシウムを最終濃度1mMとなるように添加した後、pH6.0に調整し、澱粉懸濁液を調製した。得られた澱粉懸濁液に、α−アミラーゼ(商品名『スピターゼHK』、ナガセケムテックス株式会社製)を、固形物1g当たり、0.5又は1.0単位添加し、攪拌しながら100℃で20分間反応させた後、オートクレーブを用いて131℃で10分間加熱して酵素反応を停止させ、澱粉部分分解物1及び2の溶液を得た。   First, tapioca starch was suspended in pure water to a solid concentration of 20% by mass, calcium chloride was added thereto to a final concentration of 1 mM, and the pH was adjusted to 6.0 to prepare a starch suspension. . An α-amylase (trade name "Spitase HK", manufactured by Nagase ChemteX Co., Ltd.) is added to the obtained starch suspension at 0.5 or 1.0 units per 1 g of a solid, and stirred at 100 ° C. The reaction was carried out for 20 minutes, and the enzyme reaction was stopped by heating at 131 ° C. for 10 minutes using an autoclave to obtain a solution of partially degraded starch products 1 and 2.

別途、タピオカ澱粉を固形物濃度30質量%となるよう純水に懸濁し、これに塩化カルシウムを最終濃度1mMとなるように添加した後、pH6.0に調整し、澱粉懸濁液を調製した。得られた澱粉懸濁液に、α−アミラーゼ(商品名『スピターゼHK』、ナガセケムテックス株式会社製)を、固形物1g当たり10単位添加し、連続液化装置に流速1L/分で通液しながら、100℃で25分間、次いで、140℃で5分間加熱して酵素反応を停止させ、澱粉部分分解物3の溶液を得た。次いで、得られた澱粉部分分解物3の溶液に、α−アミラーゼ(商品名『クライスターゼE5C』、ナガセケムテックス株式会社製)を、固形物1g当たり0.1,0.2,0.3,0.5又は1.0単位添加し、50℃で22時間反応させた後、100℃で20分間加熱して酵素反応を停止させ、澱粉部分分解物4乃至8の溶液を得た。   Separately, tapioca starch was suspended in pure water to a solid concentration of 30% by mass, calcium chloride was added thereto to a final concentration of 1 mM, and then adjusted to pH 6.0 to prepare a starch suspension . To the resulting starch suspension, add 10 units of α-amylase (trade name "Spitase HK", manufactured by Nagase ChemteX Co., Ltd.) per 1 g of solid substance, and pass it through a continuous liquefier at a flow rate of 1 L / min. Then, the enzyme reaction was stopped by heating at 100 ° C. for 25 minutes and then at 140 ° C. for 5 minutes to obtain a solution of partially degraded starch 3. Subsequently, an α-amylase (trade name “klytase E5C”, manufactured by Nagase ChemteX Co., Ltd.) was added to the solution of the partially degraded starch partially decomposed product 3 in an amount of 0.1, 0.2, 0.3 per 1 g of a solid. After adding 0.5 or 1.0 units and reacting at 50 ° C. for 22 hours, the enzyme reaction was stopped by heating at 100 ° C. for 20 minutes to obtain a solution of partially degraded starch 4 to 8.

上記の方法で得られた澱粉部分分解物1乃至8の溶液を、それぞれ活性炭を用いて脱色し、イオン交換樹脂を用いて脱塩した後、凍結乾燥して粉末化した。得られた澱粉部分分解物1乃至8の粉末について、加水分解率、重量平均分子量、及び、β−アミラーゼ消化物の固形物当たりのマルトースの割合をそれぞれ求めた。結果を表2に示す。なお、各種分析は以下の方法で行った。   The solutions of partially decomposed starch products 1 to 8 obtained by the above method were decolorized using activated carbon, desalted using an ion exchange resin, and then lyophilized and powdered. The hydrolysis rate, weight average molecular weight, and ratio of maltose per solid of β-amylase digest were determined for each of the powders of the partially degraded starch products 1 to 8 obtained. The results are shown in Table 2. In addition, various analyzes were performed by the following methods.

<加水分解率>
各澱粉部分分解物の全糖量及び還元糖量を、グルコースを標準物質として、それぞれアンスロン硫酸法及びソモギー・ネルソン法を用いて測定し、前記数1に基づき算出した。
<Hydrolysis rate>
The total amount of sugar and the amount of reducing sugar of each partially degraded starch were measured based on the above-mentioned number 1, using glucose as a standard substance and using the anthrone sulfuric acid method and the somogie Nelson method, respectively.

<重量平均分子量>
各澱粉部分分解物を固形物濃度1質量%になるように溶解し、pH7.0に調整した後、サイズ排除クロマトグラフィーに供した。そして、分子量測定用プルラン標準品(株式会社林原製)を同様に分析に供して作成した検量線に基づき、重量平均分子量を算出した。なお、サイズ排除クロマトグラフィーは、カラムに『TSK GEL α−M』(株式会社東ソー製)を2本連結したものを用い、溶離液に10mMリン酸緩衝液(pH7.0)を用いて、カラム温度40℃、流速0.3ml/分の条件で行い、検出は示差屈折計『RID−10A』(株式会社島津製作所製)を用いて行った。
<Weight average molecular weight>
Each partially digested starch was dissolved to a solid concentration of 1% by mass, adjusted to pH 7.0, and subjected to size exclusion chromatography. Then, the weight average molecular weight was calculated based on a calibration curve prepared by similarly subjecting pullulan standard product for molecular weight measurement (manufactured by Hayashibara Co., Ltd.) to analysis. For size exclusion chromatography, use a column obtained by linking two “TSK GEL α-M” (manufactured by Tosoh Corporation), and use 10 mM phosphate buffer (pH 7.0) as the eluent. The temperature was 40 ° C., the flow rate was 0.3 ml / min, and the detection was performed using a differential refractometer “RID-10A” (manufactured by Shimadzu Corporation).

<β−アミラーゼ消化物の固形物当たりのマルトースの割合>
各澱粉部分分解物を固形物濃度1質量%になるように溶解し、pH5.0に調整した後、β−アミラーゼ(商品名『#1500』、ナガセケムテックス株式会社製)を固形物1g当たり50単位添加し、50℃で20時間作用させた後、100℃で10分間加熱して酵素反応を停止させた。次いで、得られたβ−アミラーゼ消化物を高速液体クロマトグラフィーに供し、クロマトグラムの全ピーク面積に対するマルトースのピーク面積の割合を求め、β−アミラーゼ消化物の固形物当たりのマルトースの割合とした。なお、高速液体クロマトグラフィーは、カラムに『MCI gel CK04SS』(三菱化学株式会社製)を2本連結したものを用い、溶離液に超純水を用いて、カラム温度80℃、流速0.4ml/分の条件で行い、検出は示差屈折計『RID−10A』(株式会社島津製作所製)を用いて行った。
<Proportion of maltose per solid of β-amylase digest>
Each starch partial decomposition product is dissolved to a solid concentration of 1% by mass, adjusted to pH 5.0, and then β-amylase (trade name "# 1500" manufactured by Nagase ChemteX Co., Ltd.) per 1 g of solid After 50 units were added and allowed to act at 50 ° C. for 20 hours, the enzyme reaction was stopped by heating at 100 ° C. for 10 minutes. Next, the obtained β-amylase digest was subjected to high performance liquid chromatography, and the ratio of the peak area of maltose to the total peak area of the chromatogram was determined as the ratio of maltose per solid of β-amylase digest. For high performance liquid chromatography, using two columns of “MCI gel CK 04 SS” (manufactured by Mitsubishi Chemical Corporation) in a column, using ultra pure water as an eluent, column temperature 80 ° C., flow rate 0.4 ml The detection was carried out using a differential refractometer “RID-10A” (manufactured by Shimadzu Corporation).

Figure 0006505434
Figure 0006505434

表2に見られるとおり、澱粉部分分解物1乃至8の加水分解率は、0.4%乃至12.1%であり、重量平均分子量は7,060乃至330,000であり、β−アミラーゼ消化物の固形物当たりのマルトースの割合は43.5乃至54.4質量%であった。   As seen in Table 2, the hydrolysis rate of partially degraded starches 1 to 8 is 0.4% to 12.1%, the weight average molecular weight is 7,060 to 330,000, and β-amylase digested The proportion of maltose per solid in the product was 43.5 to 54.4% by mass.

<実験3:米菓生地の硬化に及ぼす澱粉部分分解物の加水分解率の影響>
実験2で得られた澱粉部分分解物1乃至8をそれぞれ硬化促進剤として添加して調製した米菓生地B1乃至B8の硬度を経時的に測定する実験を行い、米菓生地の硬化に及ぼす澱粉部分分解物の加水分解率の影響を調べた。
<Experiment 3: Effect of hydrolysis rate of partially degraded starch on hardening of rice dough>
An experiment was conducted to temporally measure the hardness of rice cakes B1 to B8 prepared by adding the partially degraded starch products 1 to 8 obtained in Experiment 2 as a curing accelerator respectively, and the effect of starch on the hardening of rice cakes The influence of the hydrolysis rate of the partial degradation product was investigated.

実験2で得られた澱粉部分分解物1乃至8を硬化促進剤として用いて米菓生地B1乃至B8を調製した以外は、実験1と同様の方法で硬化試験を行った。なお、米菓生地の硬度の測定は、測定限界を超えた時点で終了とした。結果を表3に示す。表3には、硬化促進作用の比較のため、実験1で得られたタピオカ澱粉を添加して調製した米菓生地A1及び対照の米菓生地A6の結果を併記した。   A curing test was conducted in the same manner as in Experiment 1 except that the rice confectionery doughs B1 to B8 were prepared using the partially degraded starch products 1 to 8 obtained in Experiment 2 as a curing accelerator. In addition, the measurement of the hardness of rice confectionery material was taken as the end when the measurement limit was exceeded. The results are shown in Table 3. Table 3 also shows the results of the rice confectionery dough A1 prepared by adding the tapioca starch obtained in Experiment 1 and the control rice confectionery dough A6 for comparison of the curing promoting action.

Figure 0006505434
Figure 0006505434

表3から明らかなとおり、対照の米菓生地A6の硬度が、2日後及び3日後にそれぞれ3.6N/cm及び15.8N/cmであり、タピオカ澱粉を添加して調製した米菓生地A1の硬度が、2日後及び3日後にそれぞれ25.3N/cm及び52.2N/cmであったのに対し、加水分解率が0.4乃至7.5%である澱粉部分分解物1乃至7を添加して調製した米菓生地B1乃至B7の硬度は、2日後には30N/cm超、3日後には55N/cm超となり、タピオカ澱粉を添加して調製した米菓生地A1よりも硬化が促進されていた。とりわけ、加水分解率が0.4乃至1.4%である澱粉部分分解物1乃至3を添加して調製した米菓生地B1乃至B3は、その硬度が2日後には45N/cmを上回り、顕著な硬化が認められた。一方、加水分解率が12.1%である澱粉部分分解物8を添加して調製した米菓生地B8の硬度は、2日後及び3日後にそれぞれ13.9N/cm及び43.6N/cmにとどまり、対照の米菓生地A6よりも硬化が促進されていたものの、タピオカ澱粉を添加して調製した米菓生地A1よりも硬化が遅かった。 Table 3 As is apparent from, the hardness of the control rice菓生land A6, respectively after and three days after 2 days was 3.6 N / cm 2 and 15.8N / cm 2, rice was prepared by adding tapioca starch snack the hardness of the dough A1 is, while were, respectively after and three days after 2 days at 25.3N / cm 2 and 52.2N / cm 2, partial starch hydrolyzate hydrolysis ratio is 0.4 to 7.5% the hardness of the object 1 to 7 US菓生locations B1 to B7 were prepared by adding the after 2 days 30 N / cm 2 than the US after 3 days, which was prepared by adding 55N / cm 2 ultra next, tapioca starch Hardening was promoted more than the confectionery product A1. In particular, rice cakes B1 to B3 prepared by adding starch partial decomposition products 1 to 3 having a hydrolysis rate of 0.4 to 1.4% have a hardness of more than 45 N / cm 2 after 2 days. There was noticeable hardening. On the other hand, the hardness of rice confectionery material B8 prepared by adding starch partial decomposition product 8 having a hydrolysis rate of 12.1% is 13.9 N / cm 2 and 43.6 N / cm after 2 days and 3 days, respectively. Although staying at 2 and curing was promoted more than the control rice confectionery dough A6, curing was slower than rice confectionery dough A1 prepared by adding the tapioca starch.

加水分解率が7.5%の澱粉部分分解物7にタピオカ澱粉よりも明らかに優れた硬化促進作用が認められたのに対し、加水分解率が12.1%の澱粉部分分解物8には格別顕著な硬化促進作用が認められなかったという事実は、加水分解率が7.5%と12.1%の間に顕著な硬化促進作用を及ぼす臨界点があることを示しており、少なくとも加水分解率が8%以下であれば、澱粉部分分解物7とほぼ同等の優れた硬化促進作用がもたらされると判断された。   The starch partial decomposition product 7 having a hydrolysis ratio of 7.5% clearly showed a hardening acceleration effect superior to that of tapioca starch, while the starch partial decomposition product 8 having a hydrolysis ratio of 12.1% The fact that no remarkable hardening accelerating action was observed indicates that there is a critical point between the 7.5% and 12.1% hydrolysis rates that exerts a remarkable hardening accelerating action, at least It was judged that if the degradation rate is 8% or less, an excellent curing accelerating action almost equivalent to that of the partially degraded starch product 7 is provided.

上記の結果から、加水分解率が8%以下、望ましくは0.1%以上8%以下、より望ましくは0.1%以上3%以下、さらに望ましくは0.4%以上1.4%以下の澱粉部分分解物が、澱粉糊化生地の硬化促進剤として、好適に利用できると結論された。また、その重量平均分子量は、表2に示した加水分解率と重量平均分子量との関係から、望ましくは、10,000乃至500,000、より望ましくは、50,000乃至500,000、さらに望ましくは、60,000乃至350,000と結論された。なお、前記範囲の加水分解率を有する澱粉部分分解物である限り、澱粉の種類にかかわらず、タピオカ澱粉と同様の硬化促進作用を奏すると考えられる。   From the above results, the hydrolysis ratio is 8% or less, preferably 0.1% to 8%, more preferably 0.1% to 3%, and still more preferably 0.4% to 1.4%. It was concluded that partially degraded starch could be suitably used as a curing accelerator for starch gelatinized dough. Also, the weight average molecular weight is preferably 10,000 to 500,000, more preferably 50,000 to 500,000, further preferably, from the relationship between the hydrolysis rate and the weight average molecular weight shown in Table 2. Were concluded to be 60,000 to 350,000. In addition, as long as it is a starch partial decomposition product which has the hydrolysis rate of the said range, regardless of the kind of starch, it is thought that the same hardening acceleration | stimulation effect | action as tapioca starch is exhibited.

なお、別途、同様の方法で調製した米菓生地B1乃至B7及びA6を4℃で4日間保存した後、50×30×4mmの大きさに切断し、常法により、200℃のサラダ油で80秒間油調して調製したおかきを、12人のパネルを用いた官能検査に供したところ、米菓生地B1乃至B7を用いて調製したおかきは、対照の米菓生地A6を用いて調製したおかきと同等の食感と風味を有すると評価された。これらの結果は、澱粉糊化食品の製造に際し、主原料としての澱粉に、加水分解率が8%以下、望ましくは0.1%以上8%以下、より望ましくは0.1%以上3%以下、さらに望ましくは0.4%以上1.4%以下の澱粉部分分解物を硬化促進剤として添加し、澱粉糊化生地を調製することにより、澱粉糊化食品の風味や食感を損なうことなく、澱粉糊化生地の硬化を顕著に促進することができることを物語っている。   Separately, after being stored for 4 days at 4 ° C., the rice dough B1 to B7 and A6 prepared by the same method are cut into a size of 50 × 30 × 4 mm, and 80 in salad oil at 200 ° C. according to a conventional method. The prepared persimmon oiled with oil for a second was subjected to a sensory test using a panel of 12 people. As a result, the persimmon prepared using the rice confectionery dough B1 to B7 was prepared using the rice confectionery dough A6 as a control. It was evaluated to have the same texture and taste as the above. These results show that the starch as a main raw material has a hydrolysis rate of 8% or less, desirably 0.1% or more and 8% or less, more desirably 0.1% or more and 3% or less, in the production of a starch gelatinized food More desirably, 0.4% or more and 1.4% or less of a partially degraded starch is added as a curing accelerator to prepare a starch gelatinized dough, without impairing the flavor and texture of the starch gelatinized food It can be said that it can significantly accelerate the hardening of starch gelatinized dough.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明の技術範囲は、これらの実施例により何ら限定的に解釈されるべきものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the technical scope of the present invention should not be construed as being limited by these examples.

<還元末端にトレハロース構造を導入した澱粉部分分解物を有効成分とする澱粉糊化生地用硬化促進剤>
実験2で得られ、実験3で澱粉糊化生地の硬化促進作用が認められた澱粉部分分解物1乃至7を、それぞれ固形物濃度30質量%になるように純水に溶解した後、特許第3958884号の実施例2−2記載の方法で得られるアルスロバクター・スピーシーズ(Arthrobacter sp.)S34由来のグリコシルトレハロース生成酵素を、固形物1g当たり2単位添加し、50℃で48時間反応させた後、100℃で10分加熱して酵素を失活させた。次いで、活性炭による脱色、及び、イオン交換樹脂による脱塩を行った後、凍結乾燥を行い、還元末端にトレハロース構造が導入された澱粉部分分解物T1乃至T7の粉末を得た。なお、得られた澱粉部分分解物T1乃至T7は、それぞれ澱粉部分分解物1乃至7よりも溶解度が向上しており、粉末の形態だけではなく、水溶液の形態の硬化促進剤としても好適に使用できる。
<A setting accelerator for starch gelatinized dough containing a partially degraded starch having a trehalose structure at the reducing end as an active ingredient>
The starch partial degradation products 1 to 7 obtained in Experiment 2 and in which the hardening acceleration effect of the starch gelatinized dough was observed in Experiment 3 were dissolved in pure water so as to have a solid concentration of 30% by mass, respectively. The glycosyl trehalose producing enzyme derived from Arthrobacter sp. S34 obtained by the method described in Example 2-2 of 3958 884 was added at 2 units per gram of solid and reacted at 50 ° C. for 48 hours Thereafter, the enzyme was inactivated by heating at 100 ° C. for 10 minutes. Next, after decolorization with activated carbon and desalting with an ion exchange resin, lyophilization was performed to obtain powders of partially degraded starch products T1 to T7 having a trehalose structure introduced at the reduction end. The obtained partially degraded starch products T1 to T7 have higher solubility than the partially degraded starch products 1 to 7, respectively, and are suitably used not only as a powder but also as a curing accelerator in the form of an aqueous solution. it can.

次に、澱粉部分分解物1乃至7に代えて、澱粉部分分解物T1乃至T7をそれぞれ用いた以外は、実験3と同様の方法で硬化試験を行い、米菓生地の硬化に及ぼすトレハロース構造が導入された澱粉部分分解物の影響を調べた。その結果、澱粉部分分解物T1乃至T7は、澱粉部分分解物1乃至7と、それぞれ同等の米菓生地の硬化促進作用を有していた。   Next, a curing test is carried out in the same manner as in Experiment 3 except that each of the starch partial decomposition products T1 to T7 is used in place of the starch partial decomposition products 1 to 7, and the trehalose structure exerted on the hardening of the rice cake is The effects of introduced starch partial degradation products were investigated. As a result, the partially degraded starch products T1 to T7 had the effect of accelerating the curing of the rice confectionery dough equivalent to that of partially degraded starch partial degradation products 1 to 7, respectively.

なお、別途、澱粉部分分解物T1乃至T7を用いて調製した米菓生地T1乃至T7、及び、実験1と同様の方法で調製した米菓生地A6を4℃で4日間保存した後、50×30×4mmの大きさに切断し、常法により、200℃のサラダ油で80秒間油調しておかきを調製し、12人のパネルを用いた官能検査に供してその食感と風味を評価したところ、米菓生地T1乃至T7を用いて調製したおかきは、硬化促進剤を添加していない対照の米菓生地A6を用いて調製したおかきと同等の食感と風味を有すると判定され、さらに、米菓生地B1乃至B7を用いて調製したおかきよりも、それぞれメイラード反応による着色が抑制されていた。   In addition, after separately storing rice cake doughs T1 to T7 prepared using partially degraded starch products T1 to T7 and rice cake dough A6 prepared by the same method as experiment 1, after storing at 4 ° C. for 4 days, 50 × It was cut into a size of 30 × 4 mm, and it was oil-conditioned for 80 seconds with a salad oil at 200 ° C. according to a conventional method, and it was subjected to a sensory test using a panel of 12 persons to evaluate its texture and taste. By the way, it was determined that the oysters prepared using the rice confectionery doughs T1 to T7 had the same texture and taste as the oysters prepared using the control rice confectionery dough A6 to which no curing accelerator was added. The color by the Maillard reaction was suppressed more than the oysters prepared using the rice confectionery materials B1 to B7.

これらの結果は、加水分解率が8%以下、望ましくは0.1%以上8%以下、より望ましくは0.1%以上3%以下、さらに望ましくは0.4%以上1.4%以下の澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物であっても、澱粉糊化生地の硬化促進剤として好適に使用することができることを物語っており、トレハロース構造を導入した澱粉部分分解物を用いて調製した澱粉糊化食品は、その風味や食感、さらには色調が損なわれることがないことを物語っている。   These results show that the hydrolysis rate is 8% or less, preferably 0.1% to 8%, more preferably 0.1% to 3%, and still more preferably 0.4% to 1.4%. It has been told that even a partially degraded starch having a trehalose structure introduced at the reducing end of partially degraded starch can be suitably used as a curing accelerator for starch gelatinized dough, and a starch portion having a trehalose structure introduced The starch gelatinized food prepared using the decomposition product demonstrates that the taste, texture and color tone are not impaired.

<水素添加した澱粉部分分解物を有効成分とする澱粉糊化生地用硬化促進剤>
実験2で得られ、実験3で澱粉糊化生地の硬化促進作用が認められた澱粉部分分解物1乃至7を、それぞれ固形物濃度30質量%になるように純水に懸濁又は溶解し、触媒としてラネーニッケル15質量%を添加した後、オートクレーブを用いて、水素分圧3MPa、温度130℃で2時間反応を行った。次いで、ラネーニッケルを除去し、活性炭による脱色、及び、イオン交換樹脂による脱塩を行った後、凍結乾燥を行い、水素添加した澱粉部分分解物H1乃至H7の粉末を得た。
<Hardening accelerator for starch gelatinized dough containing hydrogenated partially degraded starch as an active ingredient>
Suspend or dissolve the partially degraded starch products 1 to 7 obtained in Experiment 2 and in which the curing accelerating action of the starch gelatinized dough is observed in Experiment 3 to a solid concentration of 30% by mass, respectively After adding 15% by mass of Raney nickel as a catalyst, the reaction was carried out using an autoclave at a hydrogen partial pressure of 3 MPa and a temperature of 130 ° C. for 2 hours. Next, Raney nickel was removed, decolorization with activated carbon and desalting with ion exchange resin were performed, followed by lyophilization to obtain powders of partially hydrolyzed starches H1 to H7.

次に、澱粉部分分解物1乃至7に代えて、澱粉部分分解物H1乃至H7をそれぞれ用いた以外は、実験3と同様の方法で硬化試験を行い、米菓生地の硬化に及ぼす水素添加した澱粉部分分解物の影響を調べた。その結果、澱粉部分分解物H1乃至H7は、澱粉部分分解物1乃至7と、それぞれ同等の米菓生地の硬化促進作用を有していた。   Next, a curing test was conducted in the same manner as in Experiment 3 except that each of the partially digested starch products H1 to H7 was used in place of partially degraded starch products 1 to 7, and hydrogen was added to the curing of rice cake dough. The effects of partially degraded starch were investigated. As a result, the partially degraded starch products H1 to H7 had the effect of promoting the curing of the rice confectionery dough equivalent to the partially degraded starch products 1 to 7, respectively.

なお、別途、澱粉部分分解物H1乃至H7を用いて調製した米菓生地H1乃至H7、及び、実験1と同様の方法で調製した米菓生地A6を4℃で4日間保存した後、50×30×4mmの大きさに切断し、常法により、200℃のサラダ油で80秒間油調しておかきを調製し、12人のパネルを用いた官能検査に供してその食感と風味を評価したところ、米菓生地H1乃至H7を用いて調製したおかきは、硬化促進剤が添加されていない対照の米菓生地A6を用いて調製したおかきと同等の食感と風味を有すると判定され、さらに、米菓生地B1乃至B7を用いて調製したおかきよりも、それぞれメイラード反応による着色が抑制されていた。   In addition, after separately storing rice cake doughs H1 to H7 prepared using partially degraded starch products H1 to H7 and rice cake dough A6 prepared by the same method as in Experiment 1, after storing at 4 ° C. for 4 days, 50 × It was cut into a size of 30 × 4 mm, and it was oil-conditioned for 80 seconds with a salad oil at 200 ° C. according to a conventional method, and it was subjected to a sensory test using a panel of 12 persons to evaluate its texture and taste. By the way, it was determined that the oysters prepared using the rice confectionery materials H1 to H7 had the same texture and taste as the oysters prepared using the control rice confectionery dough A6 to which the curing accelerator was not added, The color by the Maillard reaction was suppressed more than the oysters prepared using the rice confectionery materials B1 to B7.

これらの結果は、加水分解率が8%以下、望ましくは0.1%以上8%以下、より望ましくは0.1%以上3%以下、さらに望ましくは0.4%以上1.4%以下の澱粉部分分解物の還元末端の還元末端のグルコースを還元した澱粉部分分解物であっても、澱粉糊化生地の硬化促進剤として好適に使用することができることを物語っており、トレハロース構造を導入した澱粉部分分解物を用いて調製した澱粉糊化食品は、その風味や食感、さらには色調が損なわれることがないことを物語っている。   These results show that the hydrolysis rate is 8% or less, preferably 0.1% to 8%, more preferably 0.1% to 3%, and still more preferably 0.4% to 1.4%. It is told that even if it is a starch partial decomposition product in which glucose at the reducing end of the reduction end of the starch partial decomposition product is reduced, it can be suitably used as a hardening accelerator for starch gelatinized dough, and a trehalose structure is introduced The starch gelatinized food prepared using the partially degraded starch product demonstrates that its flavor, texture and color tone are not impaired.

<澱粉糊化生地用硬化促進剤>
タピオカ澱粉を固形物濃度20質量%となるよう純水に懸濁した後、pH5.0に調整し、澱粉懸濁液を調製した。得られた澱粉懸濁液に、イソアミラーゼ(株式会社林原製)を、固形物1g当たり1000単位添加し、攪拌しながら50℃で24時間反応させた後、室温で16時間静置し、澱粉部分分解物を沈殿させた。その後、澱粉部分分解物の沈殿をろ過により回収し、純水で洗浄した後、減圧乾燥を行い、澱粉部分分解物の粉末を得た。なお、得られた澱粉部分分解物の加水分解率は3.8%であり、そのβ−アミラーゼ消化物の固形物当たりのマルトースの割合は91%であった。本品は、澱粉糊化食品に軽い食感が要求される場合における澱粉糊化生地の硬化促進剤として、好適に使用できる。
<Hardening accelerator for starch gelatinized dough>
Tapioca starch was suspended in pure water so as to have a solid concentration of 20% by mass, and then adjusted to pH 5.0 to prepare a starch suspension. After adding 1000 units of isoamylase (made by Hayashibara Co., Ltd.) per 1 g of a solid substance to the obtained starch suspension and reacting it at 50 ° C. for 24 hours while stirring, it is allowed to stand at room temperature for 16 hours. Partial decomposition product was precipitated. Thereafter, the precipitate of the partially degraded starch was collected by filtration, washed with pure water, and then dried under reduced pressure to obtain a powder of partially degraded starch. In addition, the hydrolysis rate of the obtained starch partial decomposition product was 3.8%, and the ratio of maltose per solid of the β-amylase digest was 91%. The product can be suitably used as a hardening accelerator for starch gelatinized dough in the case where a light texture is required for a starch gelatinized food.

<澱粉糊化生地用硬化促進剤>
ワキシーコーンスターチを固形物濃度20質量%となるよう純水に懸濁した後、pH5.0に調整し、澱粉懸濁液を調製した。得られた澱粉懸濁液に、イソアミラーゼ(株式会社林原製)を、固形物1g当たり1000単位添加し、攪拌しながら50℃で24時間反応させた後、室温で16時間静置し、澱粉部分分解物を沈殿させた。その後、ろ過により澱粉部分分解物の沈殿を回収し、純水で洗浄した後、減圧乾燥を行い、澱粉部分分解物の粉末を得た。なお、得られた澱粉部分分解物の加水分解率は6.0%であり、そのβ−アミラーゼ消化物の固形物当たりのマルトースの割合は89%であった。本品は、澱粉糊化食品に軽い食感が要求される場合における澱粉糊化生地の硬化促進剤として、好適に使用できる。
<Hardening accelerator for starch gelatinized dough>
The waxy corn starch was suspended in pure water so as to have a solid concentration of 20% by mass, and then adjusted to pH 5.0 to prepare a starch suspension. After adding 1000 units of isoamylase (made by Hayashibara Co., Ltd.) per 1 g of a solid substance to the obtained starch suspension and reacting it at 50 ° C. for 24 hours while stirring, it is allowed to stand at room temperature for 16 hours. Partial decomposition product was precipitated. Thereafter, the precipitate of the partially degraded starch was recovered by filtration, washed with pure water, and then dried under reduced pressure to obtain a powder of partially degraded starch. In addition, the hydrolysis rate of the obtained starch partial decomposition product was 6.0%, and the ratio of maltose per solid of the (beta) -amylase digest was 89%. The product can be suitably used as a hardening accelerator for starch gelatinized dough in the case where a light texture is required for a starch gelatinized food.

<おかきの製造>
配合 (質量部)
(1)糯粉 100
(2)実施例3で得られた澱粉糊化生地用硬化促進剤 5
(3)水 100
<Okaki Production>
Formulation (parts by mass)
(1) Flour flour 100
(2) Hardening accelerator for starch gelatinized dough obtained in Example 3 5
(3) Water 100

上記(1)乃至(3)の混合物を蒸した後に混練し、米菓生地を調製した。この米菓生地を、気泡が入らないように成型した後、食品用ラップフィルムで密封し、4℃で保存したところ、通常は目的とする米菓生地の硬度になるまで約96時間を要するのに対し48時間経過した時点で所期の硬度に達していた。硬化させた米菓生地を、所定の大きさに切断し、さらに常温で乾燥させた。その後、乾燥生地を200℃のサラダ油で油調し、おかきを調製した。本品は、食感が軽く、米菓特有の風味が感じられるおかきである。   After steaming the mixture of the above (1) to (3), the mixture was kneaded to prepare a rice confectionery material. This rice cake is molded so as not to contain air bubbles, sealed with a food wrap film, and stored at 4 ° C. It usually takes about 96 hours for the desired hardness of the rice cake to be achieved. On the other hand, the desired hardness was reached after 48 hours. The cured rice dough was cut to a predetermined size and further dried at room temperature. Thereafter, the dried dough was oiled with a salad oil at 200 ° C. to prepare a mackerel. The product has a light texture and a flavor that is unique to rice cakes.

<おかきの製造>
配合 (質量部)
(1)糯粉 100
(2)実施例4で得られた澱粉糊化生地用硬化促進剤 10
(3)水 100
<Okaki Production>
Formulation (parts by mass)
(1) Flour flour 100
(2) Hardening accelerator for starch gelatinized dough obtained in Example 4 10
(3) Water 100

上記(1)乃至(3)の混合物を蒸した後に混練し、米菓生地を調製した。この米菓生地を、気泡が入らないように成型した後、食品用ラップフィルムで密封し、4℃で保存したところ、通常は目的とする米菓生地の硬度になるまで約96時間を要するのに対し48時間経過した時点で所期の硬度に達していた。硬化させた米菓生地を、所定の大きさに切断し、さらに常温で乾燥させた。その後、乾燥生地を200℃のサラダ油で油調し、おかきを調製した。本品は、食感が軽く、米菓特有の風味が感じられるおかきである。   After steaming the mixture of the above (1) to (3), the mixture was kneaded to prepare a rice confectionery material. This rice cake is molded so as not to contain air bubbles, sealed with a food wrap film, and stored at 4 ° C. It usually takes about 96 hours for the desired hardness of the rice cake to be achieved. On the other hand, the desired hardness was reached after 48 hours. The cured rice dough was cut to a predetermined size and further dried at room temperature. Thereafter, the dried dough was oiled with a salad oil at 200 ° C. to prepare a mackerel. The product has a light texture and a flavor that is unique to rice cakes.

<おかきの製造>
配合 (質量部)
(1)糯粉 100
(2)澱粉糊化生地用硬化促進剤(実験2で得た澱粉部分分解物2) 1
(3)水 100
<Okaki Production>
Formulation (parts by mass)
(1) Flour flour 100
(2) Hardening accelerator for starch gelatinization dough (starch partial decomposition product 2 obtained in Experiment 2) 1
(3) Water 100

上記(1)乃至(3)の混合物を蒸した後に混練し、米菓生地を調製した。この米菓生地を、気泡が入らないように成型した後、食品用ラップフィルムで密封し、4℃で保存したところ、通常は目的とする米菓生地の硬度になるまで約96時間を要するのに対し48時間経過した時点で所期の硬度に達していた。硬化させた米菓生地を、所定の大きさに切断し、さらに常温で乾燥させた。その後、乾燥生地を200℃のサラダ油で油調し、おかきを調製した。本品は、硬化促進剤としての澱粉部分分解物を添加していない米菓と同等の食感を有し、米菓特有の風味が感じられるおかきである。   After steaming the mixture of the above (1) to (3), the mixture was kneaded to prepare a rice confectionery material. This rice cake is molded so as not to contain air bubbles, sealed with a food wrap film, and stored at 4 ° C. It usually takes about 96 hours for the desired hardness of the rice cake to be achieved. On the other hand, the desired hardness was reached after 48 hours. The cured rice dough was cut to a predetermined size and further dried at room temperature. Thereafter, the dried dough was oiled with a salad oil at 200 ° C. to prepare a mackerel. The product has a texture similar to that of rice confectionery to which a partially degraded starch as a curing accelerator has not been added, and is a oyster with a characteristic flavor characteristic of rice confectionery.

<おかきの製造>
配合 (質量部)
(1)糯粉 100
(2)澱粉糊化生地用硬化促進剤(実験2で得た澱粉部分分解物2)10
(3)水 100
<Okaki Production>
Formulation (parts by mass)
(1) Flour flour 100
(2) Hardening accelerator for starch gelatinized dough (partially degraded starch 2 obtained in Experiment 2) 10
(3) Water 100

上記(1)乃至(3)の混合物を蒸した後に混練し、米菓生地を調製した。この米菓生地を、気泡が入らないように成型した後、食品用ラップフィルムで密封し、4℃で保存したところ、通常は目的とする米菓生地の硬度になるまで約96時間を要するのに対し24時間経過した時点で所期の硬度に達していた。硬化させた米菓生地を、所定の大きさに切断し、さらに常温で乾燥させた。その後、乾燥生地を200℃のサラダ油で油調し、おかきを調製した。本品は、硬化促進剤としての澱粉部分分解物を添加していない米菓と同等の食感を有し、米菓特有の風味が感じられるおかきである。   After steaming the mixture of the above (1) to (3), the mixture was kneaded to prepare a rice confectionery material. This rice cake is molded so as not to contain air bubbles, sealed with a food wrap film, and stored at 4 ° C. It usually takes about 96 hours for the desired hardness of the rice cake to be achieved. On the other hand, the desired hardness was reached after 24 hours. The cured rice dough was cut to a predetermined size and further dried at room temperature. Thereafter, the dried dough was oiled with a salad oil at 200 ° C. to prepare a mackerel. The product has a texture similar to that of rice confectionery to which a partially degraded starch as a curing accelerator has not been added, and is a oyster with a characteristic flavor characteristic of rice confectionery.

<おかきの製造>
配合 (質量部)
(1)糯粉 100
(2)澱粉糊化生地用硬化促進剤(実験2で得た澱粉部分分解物3)20
(3)水 100
<Okaki Production>
Formulation (parts by mass)
(1) Flour flour 100
(2) Hardening accelerator for starch gelatinized dough (partially degraded starch 3 obtained in Experiment 2) 20
(3) Water 100

上記(1)乃至(3)の混合物を蒸した後に混練し、米菓生地を調製した。この米菓生地を、気泡が入らないように成型した後、食品用ラップフィルムで密封し、4℃で保存したところ、通常は目的とする米菓生地の硬度になるまで約96時間を要するのに対し24時間経過した時点で所期の硬度に達していた。硬化させた米菓生地を、所定の大きさに切断し、さらに常温で乾燥させた。その後、乾燥生地を200℃のサラダ油で油調し、おかきを調製した。本品は、硬化促進剤としての澱粉部分分解物を添加していない米菓と同等の食感を有し、米菓特有の風味が感じられるおかきである。   After steaming the mixture of the above (1) to (3), the mixture was kneaded to prepare a rice confectionery material. This rice cake is molded so as not to contain air bubbles, sealed with a food wrap film, and stored at 4 ° C. It usually takes about 96 hours for the desired hardness of the rice cake to be achieved. On the other hand, the desired hardness was reached after 24 hours. The cured rice dough was cut to a predetermined size and further dried at room temperature. Thereafter, the dried dough was oiled with a salad oil at 200 ° C. to prepare a mackerel. The product has a texture similar to that of rice confectionery to which a partially degraded starch as a curing accelerator has not been added, and is a oyster with a characteristic flavor characteristic of rice confectionery.

<おかきの製造>
配合 (質量部)
(1)糯粉 100
(2)澱粉糊化生地用硬化促進剤(実験2で得た澱粉部分分解物3)10
(3)水 100
<Okaki Production>
Formulation (parts by mass)
(1) Flour flour 100
(2) Hardening accelerator for starch gelatinized dough (partially degraded starch 3 obtained in Experiment 2) 10
(3) Water 100

上記(1)乃至(3)の混合物を蒸した後に混練し、米菓生地を調製した。この米菓生地を、気泡が入らないように成型した後、食品用ラップフィルムで密封し、4℃で保存したところ、通常は目的とする米菓生地の硬度になるまで約96時間を要するのに対し48時間経過した時点で所期の硬度に達していた。硬化させた米菓生地を、所定の大きさに切断し、さらに常温で乾燥させた。その後、乾燥生地を200℃のサラダ油で油調し、おかきを調製した。本品は、硬化促進剤としての澱粉部分分解物を添加していない米菓と同等の食感を有し、米菓特有の風味が感じられるおかきである。   After steaming the mixture of the above (1) to (3), the mixture was kneaded to prepare a rice confectionery material. This rice cake is molded so as not to contain air bubbles, sealed with a food wrap film, and stored at 4 ° C. It usually takes about 96 hours for the desired hardness of the rice cake to be achieved. On the other hand, the desired hardness was reached after 48 hours. The cured rice dough was cut to a predetermined size and further dried at room temperature. Thereafter, the dried dough was oiled with a salad oil at 200 ° C. to prepare a mackerel. The product has a texture similar to that of rice confectionery to which a partially degraded starch as a curing accelerator has not been added, and is a oyster with a characteristic flavor characteristic of rice confectionery.

<切り餅の製造>
糯米500gを洗米し、水道水に15℃で12時間浸漬後、水切りを行った。得られた吸水米を自動餅つき機で25分間蒸煮し、実験2で得られた澱粉部分分解物2を固形物全体に対して1質量%添加し、15分間搗いて餅生地を調製した。次に、餅生地をステンレス製のバットに充填し、食品用ラップフィルムで密封した。これを4℃の冷蔵庫内で保存し、餅生地を硬化させた。この餅生地は、澱粉部分分解物を添加して調製しているため、短期間で硬化させることができ、餅生地の切断が容易になるまで硬化させるために必要な冷蔵時間が著しく短縮されたばかりでなく、硬化した餅生地の切断性を向上させ、餅生地を調製した直後でも餅生地の付着性を低下させるので取扱性が改善されていた。その後、餅生地を所定の大きさに切断し、切り餅を調製した。本品は、米特有の風味が感じられる切り餅である。
<Manufacture of chopsticks>
After washing 500 g of milled rice and soaking in tap water at 15 ° C. for 12 hours, draining was performed. The obtained water-absorbent rice was cooked for 25 minutes with an automatic sticker, 1% by mass of the partially degraded starch product 2 obtained in Experiment 2 was added to the whole solid, and the mixture was ground for 15 minutes to prepare a batter. Next, the persimmon dough was filled in a stainless steel vat and sealed with a food wrap film. This was stored in a 4 ° C. refrigerator to harden the batter. Since the persimmon dough is prepared by adding a partially degraded starch, it can be cured in a short period of time, and the refrigerated time required for curing until the persimmon dough is easily cut has been significantly shortened. In addition, since the cuttability of the hardened chewing dough is improved and the adhesion of the chewing dough is reduced immediately after the chewing dough is prepared, the handling property is improved. Thereafter, the persimmon dough was cut into a predetermined size, and cut persimmons were prepared. This product is a chopsticks with a distinctive flavor of rice.

以上説明したとおり、本発明によれば、澱粉糊化食品を製造する際、原料の仕込み段階で、あるいは原料を加熱して澱粉糊化生地を調製した後に、澱粉部分分解物を有効成分とする澱粉糊化生地用硬化促進剤を含有せしめることにより、澱粉糊化生地の硬化を促進することができ、それによって冷蔵によるエネルギーコストの削減及び澱粉糊化食品の生産効率を向上させることができる。また、本発明の澱粉糊化生地用硬化促進剤を澱粉糊化生地に含有せしめることにより、風味も食感も遜色ない澱粉糊化食品を製造することができる。本発明は、斯界に多大の貢献をする誠に意義のある発明である。
As described above, according to the present invention, when producing a starch gelatinized food, the partially digested starch product is used as an active ingredient at the stage of preparation of the raw material or after preparing the starch gelatinized dough by heating the raw material. By containing the hardening accelerator for starch gelatinization dough, the hardening of the starch gelatinization dough can be promoted, thereby reducing the energy cost due to refrigeration and improving the production efficiency of the starch gelatinization food. In addition, by incorporating the hardening accelerator for starch gelatinized dough of the present invention into the starch gelatinized dough, it is possible to produce a starch gelatinized food which is not inferior in taste and texture. The present invention is a truly significant invention that makes a significant contribution to the field.

Claims (5)

加水分解率が8%以下である澱粉部分分解物、前記加水分解率が8%以下である澱粉部分分解物の還元末端にトレハロース構造を導入した澱粉部分分解物、及び、前記加水分解率が8%以下である澱粉部分分解物の還元末端のグルコースを還元した澱粉部分分解物から選ばれる1種又は2種以上を有効成分とする澱粉糊化生地用硬化促進剤。   Partially hydrolyzed starch having a hydrolysis rate of 8% or less, partially degraded starch having a trehalose structure introduced at the reducing end of the partially decomposed starch having a hydrolysis rate of 8% or less, and the hydrolysis rate of 8 The hardening accelerator for starch gelatinization textiles which uses as an active ingredient 1 type, or 2 or more types chosen from the starch partial decomposition product which reduce | restored the glucose of the reduction terminal of the starch partial decomposition product which is% or less. 前記澱粉部分分解物の重量平均分子量が10,000乃至500,000である請求項1記載の澱粉糊化生地用硬化促進剤。   The curing accelerator for starch gelatinized dough according to claim 1, wherein the weight-average molecular weight of the partially degraded starch is 10,000 to 500,000. 前記澱粉部分分解物が、β−アミラーゼ消化により、マルトースを消化物の固形物当たり40質量%以上生成することを特徴とする請求項1又は2記載の澱粉糊化生地用硬化促進剤。   The said starch partial decomposition product produces | generates maltose with 40 mass% or more per solid of a digest by (beta) -amylase digestion, The hardening accelerator for starch gelatinization textiles of Claim 1 or 2 characterized by the above-mentioned. 請求項1乃至3のいずれかに記載の澱粉糊化生地用硬化促進剤を、澱粉糊化生地又はその原料に、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で1乃至20質量%添加する工程を含んでなる澱粉糊化生地の製造方法。   A starch partially degraded product per solid of starch contained in a starch gelatinized dough or a starch gelatinized dough or a material thereof according to any one of claims 1 to 3 as a starch gelatinized dough or a material thereof. A process for producing a starch gelatinized dough comprising the step of adding 1 to 20% by mass in terms of anhydride as 澱粉糊化生地の原料を加熱して澱粉糊化生地を調製する工程、及び、澱粉糊化生地を所定形状に成型する工程を含み、さらに、請求項1乃至3のいずれかに記載の澱粉糊化生地用硬化促進剤を、澱粉糊化生地又はその原料に、澱粉糊化生地又はその原料に含まれる澱粉の固形物当たり、澱粉部分分解物として無水物換算で1乃至20質量%添加する工程を含んでなる澱粉糊化食品の製造方法。   The starch paste according to any one of claims 1 to 3, further comprising the steps of heating the raw material of the starch gelatinization dough to prepare the starch gelatinization dough, and molding the starch gelatinization dough into a predetermined shape. Adding 1 to 20% by mass, in terms of anhydride, as a partially degraded starch substance to starch gelatinized dough or its raw material, based on the solid matter of starch contained in starch gelatinized dough or its raw material, A method of producing a starch gelatinized food comprising:
JP2014258278A 2014-12-22 2014-12-22 Hardening accelerator for starch gelatinized dough Active JP6505434B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014258278A JP6505434B2 (en) 2014-12-22 2014-12-22 Hardening accelerator for starch gelatinized dough
TW104137915A TW201622578A (en) 2014-12-22 2015-11-17 Hardening accelerator for gelatinized starch dough
CN201510961753.3A CN105707662A (en) 2014-12-22 2015-12-21 Hardening accelerator used for starch pasting dough
KR1020150182755A KR20160076470A (en) 2014-12-22 2015-12-21 Hardening accelerator for gelatinized starch dough

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258278A JP6505434B2 (en) 2014-12-22 2014-12-22 Hardening accelerator for starch gelatinized dough

Publications (2)

Publication Number Publication Date
JP2016116483A JP2016116483A (en) 2016-06-30
JP6505434B2 true JP6505434B2 (en) 2019-04-24

Family

ID=56146988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258278A Active JP6505434B2 (en) 2014-12-22 2014-12-22 Hardening accelerator for starch gelatinized dough

Country Status (4)

Country Link
JP (1) JP6505434B2 (en)
KR (1) KR20160076470A (en)
CN (1) CN105707662A (en)
TW (1) TW201622578A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6220092B1 (en) * 2017-04-05 2017-10-25 日本食品化工株式会社 Koji dough improving agent and method for producing koji dough using koji dough improving agent
JP7270624B2 (en) * 2018-06-27 2023-05-10 グリコ栄養食品株式会社 Waxy seed starch and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102465A (en) * 1976-02-19 1977-08-27 Niigata Prefecture Method of producing glutinous rice confection
DE3437789A1 (en) * 1984-10-16 1986-04-17 Lieken-Batscheider Mühlen- und Backbetriebe GmbH, 6500 Mainz Process for producing a bread dough by enzymatic scalded dough treatment
JPS62195256A (en) * 1986-02-20 1987-08-28 Imuraya Seika Kk Preparation of packed rice cake
JPH01132348A (en) * 1987-11-16 1989-05-24 Shimada Kagaku Kogyo Kk Starch for hardening food
JP2990895B2 (en) 1991-10-17 1999-12-13 三菱化学株式会社 Mochi dough improving agent and method for producing mochi dough
EP0691344B1 (en) * 1992-12-28 2003-03-19 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Purification of trehalose
JPH0928297A (en) * 1995-07-19 1997-02-04 Nippon Shokuhin Kako Co Ltd Hardening accelerator for rice cake confectionery and production of rice cake confectionery
TW200307507A (en) * 2002-02-01 2003-12-16 Hayashibara Biochem Lab Co Ltd Process for producing fermented bread comprising rice flour as the main component
JP2004135608A (en) * 2002-10-18 2004-05-13 Shinka Shokuhin Kk Method for producing breads
JP5936880B2 (en) 2012-02-29 2016-06-22 日本食品化工株式会社 Rice cracker quality improver and rice cracker

Also Published As

Publication number Publication date
TW201622578A (en) 2016-07-01
KR20160076470A (en) 2016-06-30
JP2016116483A (en) 2016-06-30
CN105707662A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
Liu et al. Structure, functionality and applications of debranched starch: A review
Bangar et al. Enzymatic modification of starch: A green approach for starch applications
Singh et al. Mannans: An overview of properties and application in food products
Yazid et al. Application of starch and starch-based products in food industry
Demirkesen-Bicak et al. Pullulanase treatments to increase resistant starch content of black chickpea (Cicer arietinum L.) starch and the effects on starch properties
Raigond et al. Resistant starch in food: a review
Liu et al. In structure and in-vitro digestibility of waxy corn starch debranched by pullulanase
Lehmann et al. Characterization of resistant starch type III from banana (Musa acuminata)
Wandee et al. Quality assessment of noodles made from blends of rice flour and canna starch
US20030054501A1 (en) Process for preparing resistant starch
JP2018507856A (en) Maltooligosaccharides containing a large amount of fiber with low bioavailability of glucose, method for producing the same, use thereof in food and animal feed
Bello-Perez et al. Starches of some food crops, changes during processing and their nutraceutical potential
WO2019163965A1 (en) Starch with high dietary fiber content suitably usable in foods and beverages
CN102396672A (en) Method for controlling retrogradation of instant rice-noodles
Öztürk et al. Physicochemical properties, modifications, and applications of resistant starches
EP1662898A2 (en) Resistant starch with cooking properties similar to untreated starch
JP6505434B2 (en) Hardening accelerator for starch gelatinized dough
Kheto et al. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review
JP2009011313A (en) Unfolding agent for gelatinized noodle
WO2007114091A1 (en) Aging inhibitor for starch to be used in noodle, noodle using the same and process for producing the same
JP6998297B2 (en) Food composition containing starch
JP2016026477A (en) Hardening accelerator for starch gelatinized dough
JP2019024368A (en) Rice improver and method for producing rice or rice processed food
Tabibloghmany et al. Investigation of nutritional and functional properties of resistant starch in food industry: A review
Aprianita Assessment of underutilized starchy roots and tubers for their applications in the food industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6505434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250