JP7270624B2 - Waxy seed starch and method for producing the same - Google Patents
Waxy seed starch and method for producing the same Download PDFInfo
- Publication number
- JP7270624B2 JP7270624B2 JP2020527604A JP2020527604A JP7270624B2 JP 7270624 B2 JP7270624 B2 JP 7270624B2 JP 2020527604 A JP2020527604 A JP 2020527604A JP 2020527604 A JP2020527604 A JP 2020527604A JP 7270624 B2 JP7270624 B2 JP 7270624B2
- Authority
- JP
- Japan
- Prior art keywords
- starch
- viscosity
- waxy
- temperature
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002472 Starch Polymers 0.000 title claims description 269
- 235000019698 starch Nutrition 0.000 title claims description 269
- 239000008107 starch Substances 0.000 title claims description 267
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 102000004190 Enzymes Human genes 0.000 claims description 71
- 108090000790 Enzymes Proteins 0.000 claims description 71
- 229940088598 enzyme Drugs 0.000 claims description 71
- 238000005259 measurement Methods 0.000 claims description 50
- 240000003183 Manihot esculenta Species 0.000 claims description 49
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 49
- 229920002261 Corn starch Polymers 0.000 claims description 32
- 239000008120 corn starch Substances 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 102000004157 Hydrolases Human genes 0.000 claims description 30
- 108090000604 Hydrolases Proteins 0.000 claims description 30
- 108090000637 alpha-Amylases Proteins 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 15
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 108010028688 Isoamylase Proteins 0.000 claims description 11
- 102000004139 alpha-Amylases Human genes 0.000 claims description 11
- 229940024171 alpha-amylase Drugs 0.000 claims description 11
- 108010019077 beta-Amylase Proteins 0.000 claims description 11
- 230000015556 catabolic process Effects 0.000 claims description 11
- 238000006731 degradation reaction Methods 0.000 claims description 10
- 230000000630 rising effect Effects 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 8
- 102100024295 Maltase-glucoamylase Human genes 0.000 claims description 5
- 108010028144 alpha-Glucosidases Proteins 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000011282 treatment Methods 0.000 description 45
- 235000013305 food Nutrition 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 28
- 230000002255 enzymatic effect Effects 0.000 description 26
- 239000000725 suspension Substances 0.000 description 26
- 230000032683 aging Effects 0.000 description 19
- 238000000354 decomposition reaction Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 241000228245 Aspergillus niger Species 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 230000018044 dehydration Effects 0.000 description 12
- 238000006297 dehydration reaction Methods 0.000 description 12
- 238000005406 washing Methods 0.000 description 12
- 230000035484 reaction time Effects 0.000 description 11
- 238000007605 air drying Methods 0.000 description 10
- 229920001592 potato starch Polymers 0.000 description 10
- 238000010298 pulverizing process Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000007385 chemical modification Methods 0.000 description 6
- 238000006911 enzymatic reaction Methods 0.000 description 6
- 235000015067 sauces Nutrition 0.000 description 6
- 102100022624 Glucoamylase Human genes 0.000 description 5
- 229920000881 Modified starch Polymers 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 235000019426 modified starch Nutrition 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 241000589588 Myroides odoratus Species 0.000 description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 4
- 235000009508 confectionery Nutrition 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 239000004368 Modified starch Substances 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 235000013804 distarch phosphate Nutrition 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229920000945 Amylopectin Polymers 0.000 description 2
- 240000006439 Aspergillus oryzae Species 0.000 description 2
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- MKRNVBXERAPZOP-UHFFFAOYSA-N Starch acetate Chemical compound O1C(CO)C(OC)C(O)C(O)C1OCC1C(OC2C(C(O)C(OC)C(CO)O2)OC(C)=O)C(O)C(O)C(OC2C(OC(C)C(O)C2O)CO)O1 MKRNVBXERAPZOP-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 235000013527 bean curd Nutrition 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- KCYQMQGPYWZZNJ-BQYQJAHWSA-N hydron;2-[(e)-oct-1-enyl]butanedioate Chemical compound CCCCCC\C=C\C(C(O)=O)CC(O)=O KCYQMQGPYWZZNJ-BQYQJAHWSA-N 0.000 description 2
- -1 hydroxypropyl groups Chemical group 0.000 description 2
- 235000015243 ice cream Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001254 oxidized starch Substances 0.000 description 2
- 235000013808 oxidized starch Nutrition 0.000 description 2
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 244000208874 Althaea officinalis Species 0.000 description 1
- 235000006576 Althaea officinalis Nutrition 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 239000004370 Bleached starch Substances 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000519695 Ilex integra Species 0.000 description 1
- 240000005856 Lyophyllum decastes Species 0.000 description 1
- 235000013194 Lyophyllum decastes Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241001659863 Panna Species 0.000 description 1
- 108010064382 Phaseolus vulgaris alpha-amylase inhibitor Proteins 0.000 description 1
- 241001453300 Pseudomonas amyloderamosa Species 0.000 description 1
- 241000235545 Rhizopus niveus Species 0.000 description 1
- 240000005384 Rhizopus oryzae Species 0.000 description 1
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 239000001073 acetylated oxidized starch Substances 0.000 description 1
- 235000013770 acetylated oxidized starch Nutrition 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- FYGDTMLNYKFZSV-DZOUCCHMSA-N alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)O[C@H](O[C@@H]2[C@H](OC(O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-DZOUCCHMSA-N 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 235000015173 baked goods and baking mixes Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 235000019428 bleached starch Nutrition 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 235000021567 cream sauce Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 235000011950 custard Nutrition 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 235000001035 marshmallow Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000011929 mousse Nutrition 0.000 description 1
- 239000002773 nucleotide Chemical group 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 235000013550 pizza Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 238000013094 purity test Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 235000013826 starch sodium octenyl succinate Nutrition 0.000 description 1
- 239000001334 starch sodium octenyl succinate Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000008256 whipped cream Substances 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
- A23L29/219—Chemically modified starch; Reaction or complexation products of starch with other chemicals
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
- A23L7/104—Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Grain Derivatives (AREA)
- Cereal-Derived Products (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
本発明は、糊化の過程で到達する最高粘度及び耐老化性が向上しているワキシー種澱粉、及びその製造方法に関する。また、本発明は、当該ワキシー種澱粉を利用した食品に関する。 The present invention relates to a waxy seed starch with improved maximum viscosity and aging resistance reached during gelatinization, and a process for its production. The present invention also relates to foods using the waxy seed starch.
食品分野では、澱粉は、食品に粘稠性を付与したり、所望の食感を付与したりするために広く使用されている。澱粉を含む食品の製造では、澱粉を水に分散させて加熱し、澱粉を糊化させ、その後冷却する工程が行われている。 In the food sector, starches are widely used to impart consistency and desired texture to foods. In the manufacture of starch-containing foods, the steps of dispersing starch in water, heating to gelatinize the starch, and then cooling are performed.
一方、従来の澱粉を水に分散させて加熱すると、次のような粘度変化が生じることが分かっている。先ず、澱粉を水に分散させて加熱すると、澱粉のグルコース残基間の水素結合が切断され、三次元構造が変化することで、澱粉が膨潤し、これに伴って粘度が発現する。この状態で更に加熱を続けて最高粘度に到達すると、やがて澱粉は崩壊して粘度は減少する。次に加熱を止めて冷却すると水素結合が働くことにより再び結晶化(凝集)を起こし、老化に伴う粘度の上昇が生じる。 On the other hand, it has been found that when conventional starch is dispersed in water and heated, the following viscosity changes occur. First, when starch is dispersed in water and heated, the hydrogen bonds between glucose residues in starch are cut, and the three-dimensional structure changes, swelling the starch, which in turn develops viscosity. When the heating is further continued in this state to reach the maximum viscosity, the starch eventually collapses and the viscosity decreases. Next, when the heating is stopped and the material is cooled, the hydrogen bonding works to cause crystallization (aggregation) again, resulting in an increase in viscosity due to aging.
澱粉の糊化の過程において、到達する最高粘度が高くなければ少量で十分な粘稠性を付与することができないが、従来の澱粉では、当該最高粘度に限界があり、低添加量で高い粘稠性を付与することが困難で利便性やコストの点で欠点があった。更に、従来の澱粉を糊化させると、前記のように老化に伴う粘度の再上昇が認められるため、従来の澱粉を添加した食品では保存安定性の点でも問題があった。 In the process of gelatinization of starch, sufficient viscosity cannot be imparted with a small amount unless the maximum viscosity reached is high. It is difficult to impart consistency, and there are drawbacks in terms of convenience and cost. Furthermore, when conventional starch is gelatinized, the viscosity increases again with aging as described above, so that conventional starch-added foods have problems in terms of storage stability.
そこで、糊化の過程で到達する最高粘度が高く、しかも耐老化性を有する澱粉の開発が切望されている。 Therefore, there is a strong demand for the development of a starch that has a high maximum viscosity during the gelatinization process and is resistant to aging.
従来、澱粉の特性を改変した加工澱粉として、ヒドロキシプロピル化澱粉や酢酸澱粉等が開発されている。しかしながら、これらの加工澱粉では、糊化の過程において到達する最高粘度を向上させることが可能になっているが、依然として、老化に伴う粘度の上昇を十分に抑制できるものではない。また、日本国では2008年10月より、このような化学的処理を施した澱粉が食品添加物として指定され、法規制を受けることになったため、化学的処理を施すことなく、澱粉の特性を改変することが望まれている。 Conventionally, hydroxypropylated starch, starch acetate, etc. have been developed as modified starches with modified starch properties. However, with these modified starches, although it is possible to improve the maximum viscosity reached in the process of gelatinization, it is still not possible to sufficiently suppress the increase in viscosity due to aging. In Japan, since October 2008, starch that has undergone such chemical treatment has been designated as a food additive and is subject to legal regulations. Modification is desired.
一方、化学的処理を伴わずに澱粉の特性を改変する技術としては、澱粉を加水分解酵素で処理する酵素処理が知られている。酵素は一般的に、水に溶解している基質に作用するため、通常の澱粉の酵素処理では、澱粉を水に完全に溶解させた状態で酵素反応が行われている。しかしながら、このような手法で得られる酵素処理物は、デキストリン、水あめ、マルトオリゴ糖、マルトース、グルコース等の低分子物質であり、その増粘機能は低下又は消失している。 On the other hand, as a technique for modifying the properties of starch without chemical treatment, enzymatic treatment is known, in which starch is treated with a hydrolytic enzyme. Since enzymes generally act on substrates dissolved in water, in normal enzymatic treatment of starch, the enzymatic reaction is carried out with the starch completely dissolved in water. However, enzyme-treated products obtained by such methods are low-molecular-weight substances such as dextrin, starch syrup, maltooligosaccharide, maltose, and glucose, and their thickening function is reduced or lost.
また、澱粉の特性を酵素処理によって改変する技術として、澱粉を水に溶解させずに、水中で澱粉の状態で酵素を作用させる手法が知られている。例えば、特許文献1には、澱粉を約10℃以上約70℃以下の温度(即ち、澱粉を溶解させない温度)において酵素で処理することにより、増粘機能及びゲル形成能に優れた酵素処理澱粉が得られることが開示されている。しかしながら、特許文献1に開示されている酵素処理澱粉では、未処理の澱粉に比べて、糊化の過程で到達する最高粘度を高めつつ老化に伴う粘度の上昇を抑制できるものではない。 Moreover, as a technique for modifying the properties of starch by enzymatic treatment, there is known a technique in which the starch is not dissolved in water, but the enzyme acts on it in the form of starch in water. For example, Patent Document 1 discloses an enzyme-treated starch excellent in thickening function and gel-forming ability by treating starch with an enzyme at a temperature of about 10° C. or higher and about 70° C. or lower (that is, a temperature at which starch is not dissolved). is obtained. However, the enzyme-treated starch disclosed in Patent Literature 1 cannot increase the maximum viscosity reached in the gelatinization process and suppress the increase in viscosity due to aging as compared with untreated starch.
また、ワキシー種澱粉は、約100%アミロペクチンで構成されており、他の澱粉とは特性が大きく異なるところ、ワキシー種澱粉を使用して、糊化の過程で到達する最高粘度及び耐老化性を向上させる技術については知られていない。 In addition, waxy seed starch is composed of about 100% amylopectin, and has very different characteristics from other starches. No technology is known to improve it.
本発明の目的は、糊化の過程で到達する最高粘度及び耐老化性が向上している澱粉、及び当該澱粉を使用した食品を提供することである。 It is an object of the present invention to provide a starch with improved maximum viscosity and aging resistance reached in the course of gelatinization, and foods using said starch.
本発明者は、前記課題を解決すべく鋭意検討を行ったところ、下記のアミログラフ測定における降温開始時の粘度Aと降温終了時の粘度Bとの関係が、粘度A≧粘度Bを満たすワキシー種澱粉は、糊化の過程で到達する最高粘度が高く、しかも、老化に伴う粘度の上昇が抑制されていることを見出した。
<アミログラフ測定条件>
・固形分濃度:溶媒は水で、乾物換算で6重量%に設定する。
・温度条件:下記(1)~(3)の条件で温度制御する。
(1)昇温:50℃から95℃まで30分間で昇温(昇温速度1.5℃/分)。
(2)保持:95℃を15分間保持。
(3)降温:72.5℃まで15分間で降温(降温速度1.5℃/分)。The present inventors have made intensive studies to solve the above problems, and found that the relationship between the viscosity A at the start of cooling and the viscosity B at the end of cooling in the following amylograph measurement is a waxy type that satisfies viscosity A ≧ viscosity B. It was found that starch has a high maximum viscosity during the gelatinization process, and that the increase in viscosity due to aging is suppressed.
<Amylog measurement conditions>
・Solid concentration: Water is used as the solvent, and the concentration is set to 6% by weight in terms of dry matter.
・Temperature conditions: Temperature is controlled under the following conditions (1) to (3).
(1) Temperature rising: Temperature rising from 50°C to 95°C in 30 minutes (heating rate 1.5°C/min).
(2) Hold: Hold at 95°C for 15 minutes.
(3) Temperature drop: Temperature drop to 72.5°C in 15 minutes (temperature drop rate 1.5°C/min).
更に、本発明者は、前記特性を有するワキシー種澱粉は、未処理のワキシー種澱粉を、当該澱粉が溶解しない温度で水中に分散させた状態で、澱粉加水分解酵素を作用させ、澱粉の分解率が5%以下となる条件で酵素処理することによって得られることを見出した。 Furthermore, the inventors of the present invention have found that the waxy seed starch having the properties described above can be obtained by dispersing untreated waxy seed starch in water at a temperature at which the starch does not dissolve, and allowing a starch hydrolase to act to decompose the starch. It was found that it can be obtained by enzymatic treatment under conditions where the ratio is 5% or less.
本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 下記のアミログラフ測定における降温開始時の粘度Aと降温終了時の粘度Bとの関係が、粘度A≧粘度Bを満たす、ワキシー種澱粉。
<アミログラフ測定条件>
・固形分濃度:溶媒は水で、乾物換算で6重量%に設定する。
・温度条件:下記(1)~(3)の条件で温度制御する。
(1)昇温:50℃から95℃まで30分間で昇温(昇温速度1.5℃/分)。
(2)保持:95℃を15分間保持。
(3)降温:72.5℃まで15分間で降温(降温速度1.5℃/分)。
項2. 酵素で処理した澱粉である、項1に記載のワキシー種澱粉。
項3. ワキシー種澱粉が、ワキシーコーン又はワキシータピオカ由来である、項1又は2に記載のワキシー種澱粉。
項4. 未処理のワキシー種澱粉を、当該澱粉が溶解しない温度で水中に分散させた状態で、澱粉加水分解酵素を作用させ、澱粉の分解率が5%以下となる条件で酵素処理する工程を含む、酵素処理ワキシー種澱粉の製造方法。
項5. ワキシー種澱粉が、ワキシーコーン澱粉又はワキシータピオカ澱粉である、項4に記載の製造方法。
項6. 前記澱粉加水分解酵素が、α-アミラーゼ、β-アミラーゼ、アミログルコシダーゼ、イソアミラーゼ、プルラナーゼ、及びα-グルコシダーゼよりなる群から選択される少なくとも1種である、項4又は5に記載の製造方法。The present invention has been completed through further studies based on these findings. That is, the present invention provides inventions in the following aspects.
Item 1. Waxy seed starch, wherein the relationship between the viscosity A at the start of cooling and the viscosity B at the end of cooling in the following amylograph measurement satisfies viscosity A≧viscosity B.
<Amylog measurement conditions>
・Solid concentration: Water is used as the solvent, and the concentration is set to 6% by weight in terms of dry matter.
・Temperature conditions: Temperature is controlled under the following conditions (1) to (3).
(1) Temperature rising: Temperature rising from 50°C to 95°C in 30 minutes (heating rate 1.5°C/min).
(2) Hold: Hold at 95°C for 15 minutes.
(3) Temperature drop: Temperature drop to 72.5°C in 15 minutes (temperature drop rate 1.5°C/min).
Section 2. The waxy seed starch of claim 1, which is an enzymatically treated starch.
Item 3. Item 3. The waxy seed starch according to Item 1 or 2, wherein the waxy seed starch is derived from waxy corn or waxy tapioca.
Section 4. A step of enzymatically treating untreated waxy seed starch in a state where it is dispersed in water at a temperature at which the starch does not dissolve, and then acting with a starch hydrolase under conditions where the starch degradation rate is 5% or less. A method for producing enzyme-treated waxy seed starch.
Item 5. Item 5. The production method according to Item 4, wherein the waxy seed starch is waxy corn starch or waxy tapioca starch.
Item 6. Item 6. The production method according to Item 4 or 5, wherein the starch hydrolase is at least one selected from the group consisting of α-amylase, β-amylase, amyloglucosidase, isoamylase, pullulanase, and α-glucosidase.
本発明のワキシー種澱粉によれば、糊化の過程で到達する最高粘度が、従来技術では化学修飾を施した加工澱粉でしか実現できなかったレベルにまで向上できるので、低コストになる低添加量で、高い粘稠性を食品に付与することが可能になる。また、従来のワキシー種澱粉を食品に多量に添加すると、特有のべたつきが問題となっていたが、本発明のワキシー種澱粉では、少量の添加で高い粘稠性を付与できるので、多量の添加に起因するべたつきを抑制し、利便性を向上させることもできる。 According to the waxy seed starch of the present invention, the maximum viscosity reached in the gelatinization process can be improved to a level that could only be achieved with chemically modified modified starch in the prior art, so low cost and low addition Amounts make it possible to impart a high consistency to the food product. In addition, when a large amount of conventional waxy seed starch is added to food, there is a problem of inherent stickiness. It is also possible to suppress the stickiness caused by , and improve the convenience.
また、本発明のワキシー種澱粉は、老化に伴う粘度の上昇が抑制されており、耐老化性が向上しているので、添加された食品の保存安定性を高めることもできる。 In addition, since the waxy seed starch of the present invention suppresses an increase in viscosity due to aging and has improved aging resistance, it can also improve the storage stability of the food to which it is added.
また、本発明のワキシー種澱粉の一態様では、化学修飾を施さなくても、特定条件下での酵素処理のみによって、糊化の過程で到達する最高粘度及び耐老化性の向上が実現できるので、食品としての原料表示が可能な澱粉、若しくはクリーンラベルの食品に対応できる澱粉として使用できる。 In addition, in one aspect of the waxy seed starch of the present invention, the maximum viscosity reached in the gelatinization process and the aging resistance can be improved only by enzymatic treatment under specific conditions without chemical modification. , as a starch that can be labeled as a food ingredient, or as a starch that can be used for clean-labeled food.
更に、本発明の製造方法によれば、未処理のワキシー種澱粉を分解率が僅か5%以下となる条件で酵素処理することにより、糊化の過程で到達する最高粘度及び耐老化性が向上した酵素処理ワキシー種澱粉が得られるので、酵素処理時間の短縮、使用する酵素量の低減等が図られ、非常に大きなコストダウンを実現することもできる。また、本発明の製造方法によれば、未処理のワキシー種澱粉の分解率が5%以下であり、排出される糖が少ないことから、環境負荷を少なく抑えることもできる。 Furthermore, according to the production method of the present invention, by enzymatically treating untreated waxy seed starch under conditions where the decomposition rate is only 5% or less, the maximum viscosity and aging resistance achieved in the gelatinization process are improved. Since the enzymatically treated waxy seed starch can be obtained, the enzymatic treatment time can be shortened, the amount of enzyme used can be reduced, and the cost can be greatly reduced. In addition, according to the production method of the present invention, the decomposition rate of untreated waxy seed starch is 5% or less, and less sugar is discharged, so that the environmental load can be reduced.
1.定義
本明細書において使用する用語の定義は、以下の通りである。なお、明細書中で特段定義していない用語については、当業者が通常認識している意味を持つものとして解釈される。 1. Definitions Definitions of terms used in this specification are as follows. Terms not specifically defined in the specification are to be interpreted as meanings commonly recognized by those skilled in the art.
用語「澱粉」とは、グルコースからなるホモグルカン分子からなり、鎖状分子のアミロースと多岐に分岐した3次元構造のアミロペクチンの2種類の多糖からなるものを指す。 The term "starch" refers to a homoglucan molecule composed of glucose and composed of two types of polysaccharides: amylose, which is a chain molecule, and amylopectin, which has a three-dimensional structure with many branches.
用語「未処理のワキシー種澱粉」とは、酵素処理、化学処理、及び物理処理が施されていない天然のワキシー種澱粉を指す。 The term "untreated waxy seed starch" refers to native waxy seed starch that has not undergone enzymatic, chemical and physical treatments.
アミログラフ測定に関する記載において、用語「粘度A」は、アミログラフ測定における降温開始時(即ち、95℃で15分間保持した後)の粘度を指す。 In the description of amylographic measurements, the term "viscosity A" refers to the viscosity at the start of cooling (ie, after holding at 95°C for 15 minutes) in amylographic measurements.
アミログラフ測定に関する記載において、用語「粘度B」は、アミログラフ測定における降温終了時の粘度(即ち、測定終了時の最終の粘度)を指す。 In the description of amylographic measurements, the term "viscosity B" refers to the viscosity at the end of cooling in the amylographic measurement (ie, the final viscosity at the end of the measurement).
アミログラフ測定に関する記載において、用語「最高粘度」は、アミログラフ測定における測定中の粘度の最大値を指す。 In the description of amylographic measurements, the term "maximum viscosity" refers to the maximum value of viscosity during the measurement in amylographic measurements.
2.ワキシー種澱粉
本発明のワキシー種澱粉は、後述するアミログラフ測定における降温開始時の粘度Aと降温終了時の粘度Bとの関係が、粘度A≧粘度Bを満たすことを特徴とする。以下、本発明のワキシー種澱粉について詳述する。 2. Waxy Seed Starch The waxy seed starch of the present invention is characterized in that the relationship between the viscosity A at the start of cooling and the viscosity B at the end of cooling in amylograph measurement to be described later satisfies viscosity A≧viscosity B. The waxy seed starch of the present invention is described in detail below.
[澱粉の由来]
本発明のワキシー種澱粉の由来については、ワキシー種であることを限度として特に制限されないが、具体的には、ワキシータピオカ及びワキシーコーンが挙げられる。これらの中でも、好ましくはワキシータピオカが挙げられる。本発明のワキシー種澱粉がワキシー種ワキシータピオカである場合は、糊化の過程で到達する最高粘度の向上効果、及び最高粘度到達後に澱粉の崩壊に起因する粘度低下の抑制効果が、格段顕著に奏され得る。[Origin of starch]
The origin of the waxy seed starch of the present invention is not particularly limited as long as it is waxy seed, but specific examples include waxy tapioca and waxy corn. Among these, waxy tapioca is preferred. When the waxy seed starch of the present invention is waxy seed waxy tapioca, the effect of improving the maximum viscosity reached in the process of gelatinization and the effect of suppressing the decrease in viscosity due to starch disintegration after reaching the maximum viscosity are remarkably improved. can be played.
[アミログラフ特性]
従来の未処理の澱粉は、後述するアミログラフ測定に供すると、図1に示すようなアミログラムが得られ、粘度A<粘度Bになる。これに対して、本発明のワキシー種澱粉は、粘度A≧粘度Bを満たすことが特徴になっており、図2に示すようなアミログラムが得られる。このような特性を有することにより、糊化の過程で到達する最高粘度及び耐老化性を向上させることが可能になる。限定的な解釈を望むものではないが、澱粉において粘度A≧粘度Bであることは、澱粉が分子間で水素結合力が働きにくく凝集が起こりにくい構造になっている指標であるため、水素結合力が働き難い構造をとっていることが、溶解時に膨潤が進み易く最高粘度が高くなることに繋がっていると考えられる。[Amylogra properties]
When the conventional untreated starch is subjected to the amylog measurement described later, an amylogram as shown in FIG. 1 is obtained, and the viscosity A<viscosity B is obtained. In contrast, the waxy seed starch of the present invention is characterized by satisfying the viscosity A≧viscosity B, and an amylogogram as shown in FIG. 2 is obtained. By having such properties, it becomes possible to improve the maximum viscosity reached during the gelatinization process and the aging resistance. Although it is not intended to be a limited interpretation, the fact that the viscosity A ≥ viscosity B in starch is an indicator that the starch has a structure in which the hydrogen bonding force is less likely to work between molecules and aggregation is less likely to occur. It is thought that the structure in which force is less likely to act leads to an increase in maximum viscosity due to a tendency to swell during dissolution.
本発明のワキシー種澱粉は、粘度A及び粘度Bが前記関係を充足することを限度として特に制限されないが、糊化の過程で到達する最高粘度及び耐老化性をより一層向上させるという観点から、粘度Bから粘度Aを差し引いた値(粘度B-粘度A)が、-1BU(Brabender Unit)以下、好ましくは-1~-100BU、より好ましくは-1~-80BU、更に好ましくは-1~-50BUが挙げられる。より具体的には、本発明のワキシー種澱粉がワキシー種タピオカ澱粉である場合には、粘度Bから粘度Aを差し引いた値(粘度B-粘度A)として、好ましくは-5~-50BU、より好ましくは-10~-50BU、更に好ましくは-10~-45BUが挙げられる。本発明のワキシー種澱粉がワキシー種コーン澱粉である場合には、粘度Bから粘度Aを差し引いた値(粘度B-粘度A)として、好ましくは-1~-40BU、より好ましくは-1~-35BU、更に好ましくは-1~-30BUが挙げられる。 The waxy seed starch of the present invention is not particularly limited as long as the viscosity A and the viscosity B satisfy the above relationship. The value obtained by subtracting the viscosity A from the viscosity B (viscosity B - viscosity A) is -1 BU (Brabender Unit) or less, preferably -1 to -100 BU, more preferably -1 to -80 BU, more preferably -1 to - 50 BU. More specifically, when the waxy seed starch of the present invention is a waxy seed tapioca starch, the value obtained by subtracting the viscosity A from the viscosity B (viscosity B - viscosity A) is preferably -5 to -50 BU, more -10 to -50 BU is preferred, and -10 to -45 BU is more preferred. When the waxy seed starch of the present invention is waxy seed corn starch, the value obtained by subtracting the viscosity A from the viscosity B (viscosity B - viscosity A) is preferably -1 to -40 BU, more preferably -1 to - 35BU, more preferably -1 to -30BU.
また、本発明のワキシー種澱粉は、糊化の過程で到達する最高粘度が高いという特徴がある。具体的には、本発明のワキシー種澱粉の一態様として、後述するアミログラフ測定における最高粘度が、原料として使用されている未処理のワキシー種澱粉の最高粘度に対して、10%以上、好ましくは10~150%、より好ましくは15~100%向上しているものが挙げられる。より具体的には、本発明のワキシー種澱粉がワキシー種タピオカ澱粉である場合には、後述するアミログラフ測定における最高粘度が、原料として使用されている未処理のワキシー種タピオカ澱粉の最高粘度に対して、好ましくは30~150%、より好ましくは40~130%、更に好ましくは50~100%向上しているものが挙げられる。また、本発明のワキシー種澱粉がワキシー種コーン澱粉である場合には、後述するアミログラフ測定における最高粘度が、原料として使用されている未処理のワキシー種コーン澱粉の最高粘度に対して、好ましくは5~50%、より好ましくは10~40%、更に好ましくは15~40%向上しているものが挙げられる。 In addition, the waxy seed starch of the present invention is characterized by a high maximum viscosity reached during the gelatinization process. Specifically, as one aspect of the waxy seed starch of the present invention, the maximum viscosity in the amylograph measurement described later is 10% or more, preferably 10% or more, relative to the maximum viscosity of the untreated waxy seed starch used as a raw material. 10 to 150%, more preferably 15 to 100% improvement. More specifically, when the waxy seed starch of the present invention is waxy seed tapioca starch, the maximum viscosity in the amylograph measurement described later is the maximum viscosity of the untreated waxy seed tapioca starch used as a raw material. preferably 30 to 150%, more preferably 40 to 130%, still more preferably 50 to 100%. Further, when the waxy seed starch of the present invention is waxy seed corn starch, the maximum viscosity in the amylograph measurement to be described later is preferably 5 to 50%, more preferably 10 to 40%, still more preferably 15 to 40% improvement.
例えば、未処理のワキシー種タピオカ澱粉では、後述するアミログラフ測定における最高粘度が約500~900BUである。これに対して、本発明のワキシー種澱粉がワキシー種タピオカ澱粉である場合には、後述するアミログラフ測定における最高粘度が、例えば900BU以上、好ましくは900~2000BU、より好ましくは900~1700BU、更に好ましくは900~1500BU、特に好ましくは900~1400BUであり得る。 For example, untreated waxy seed tapioca starch has a maximum viscosity of about 500-900 BU as determined by the amylogrography described below. In contrast, when the waxy seed starch of the present invention is waxy seed tapioca starch, the maximum viscosity in the amylograph measurement to be described later is, for example, 900 BU or more, preferably 900 to 2000 BU, more preferably 900 to 1700 BU, more preferably 900 to 1700 BU. can be between 900 and 1500 BU, particularly preferably between 900 and 1400 BU.
また、例えば、未処理のワキシー種ワキシーコーン澱粉では、後述するアミログラフ測定における最高粘度が約600~900BUである。これに対して、本発明のワキシー種澱粉がワキシー種ワキシーコーン澱粉である場合には、後述するアミログラフ測定における最高粘度が、例えば、800BU以上、好ましくは800~2000BU、より好ましくは800~1700BU、更に好ましくは800~1500BU、特に好ましくは900~1300BUであり得る。 Also, for example, untreated waxy seed waxy corn starch has a maximum viscosity of about 600 to 900 BU as measured by an amylograph, which will be described later. On the other hand, when the waxy seed starch of the present invention is a waxy seed waxy corn starch, the maximum viscosity in the amylograph measurement described later is, for example, 800 BU or more, preferably 800 to 2000 BU, more preferably 800 to 1700 BU, More preferably 800-1500 BU, particularly preferably 900-1300 BU.
また、本発明のワキシー種澱粉の好適な一態様では、糊化の過程で到達する最高粘度が向上していながらも、最高粘度到達後に澱粉の崩壊によって生じる粘度低下率が比較的低く抑えられているという特徴があり、当該特徴の指標の一つとして、後述するアミログラフ測定における粘度Aが比較的高い値になることが挙げられる。 In addition, in a preferred embodiment of the waxy seed starch of the present invention, although the maximum viscosity reached in the process of gelatinization is improved, the viscosity reduction rate caused by starch disintegration after reaching the maximum viscosity is kept relatively low. One of the indicators of this feature is that the viscosity A in the amylograph measurement described later becomes a relatively high value.
例えば、本発明のワキシー種澱粉がワキシー種タピオカ澱粉である場合には、後述するアミログラフ測定における粘度Aが、300BU以上、好ましくは300~600、より好ましくは350~550BU、更に好ましくは380~550BUが挙げられる。 For example, when the waxy seed starch of the present invention is waxy seed tapioca starch, the viscosity A in the amylograph measurement described below is 300 BU or more, preferably 300 to 600, more preferably 350 to 550 BU, and still more preferably 380 to 550 BU. are mentioned.
また、例えば、本発明のワキシー種澱粉がワキシー種コーン澱粉である場合には、後述するアミログラフ測定における粘度Aが、300BU以上、好ましくは300~900、より好ましくは350~850BU、更に好ましくは380~830BUが挙げられる。 Further, for example, when the waxy seed starch of the present invention is waxy seed corn starch, the viscosity A in the amylograph measurement to be described later is 300 BU or more, preferably 300 to 900, more preferably 350 to 850 BU, more preferably 380 BU. ~830 BU.
本発明において、アミログラフ測定は下記測定条件で行われる。
<アミログラフ測定条件>
・固形分濃度:溶媒は水で、乾物換算で6重量%に設定する。
・温度条件:下記(1)~(3)の条件で温度制御する。
(1)昇温:50℃から95℃まで30分間で昇温(昇温速度1.5℃/分)。
(2)保持:95℃を15分間保持。
(3)降温:72.5℃まで15分間で降温(降温速度1.5℃/分)。In the present invention, amylograph measurement is performed under the following measurement conditions.
<Amylog measurement conditions>
・Solid concentration: Water is used as the solvent, and the concentration is set to 6% by weight in terms of dry matter.
・Temperature conditions: Temperature is controlled under the following conditions (1) to (3).
(1) Temperature rising: Temperature rising from 50°C to 95°C in 30 minutes (heating rate 1.5°C/min).
(2) Hold: Hold at 95°C for 15 minutes.
(3) Temperature drop: Temperature drop to 72.5°C in 15 minutes (temperature drop rate 1.5°C/min).
より具体的には、アミログラフ測定は、ブラベンダー社製のVISCOGRAPH-Eを用いて、下記手順で実施できる。先ず、450mlの水で澱粉懸濁液を調製し、試料容器に投入後、それらを回転させながら50℃まで加温する。その後1.5℃/分で95℃になるまで30分間昇温し、95℃で15分間保持する。続いて1.5℃/分で72.5℃になるまで15分間冷却する。測定時の試料容器の回転数は75rpmに設定し、測定カートリッジは700cm-gを使用する。なお、ブラベンダー社製のVISCOGRAPH-Eでは、粘度Bから粘度Aを差し引いた値(粘度B-粘度A)は、セットバック値として表示するように設定されている。 More specifically, the amylograph measurement can be carried out according to the following procedure using VISCOGRAPH-E manufactured by Brabender. First, a starch suspension is prepared with 450 ml of water, put into a sample container, and heated to 50° C. while rotating them. After that, the temperature is raised at 1.5° C./min for 30 minutes to 95° C., and the temperature is maintained at 95° C. for 15 minutes. It is then cooled at 1.5°C/min to 72.5°C for 15 minutes. The rotational speed of the sample container during measurement is set to 75 rpm, and the measurement cartridge used is 700 cm-g. In VISCOGRAPH-E manufactured by Brabender, the value obtained by subtracting the viscosity A from the viscosity B (viscosity B - viscosity A) is set to be displayed as a setback value.
[加工タイプ]
本発明のワキシー種澱粉は、前述する特性を備え得る限り、その加工タイプについては、特に制限されないが、後述する特定条件下での酵素処理によって好適に得られるので、好ましい一態様として、酵素処理澱粉であることが挙げられる。[Processing type]
The processing type of the waxy seed starch of the present invention is not particularly limited as long as it can have the properties described above. It is mentioned that it is starch.
また、本発明のワキシー種澱粉が酵素処理澱粉である場合、化学処理を行うことなく、糊化の過程で到達する最高粘度及び耐老化性を向上させることができており、化学処理が施されていないことは安全性の点で大きな利点といえるが、本発明の効果を妨げない限り、必要に応じて、化学処理又は物理処理が施されているものであってもよい。 In addition, when the waxy seed starch of the present invention is enzyme-treated starch, the maximum viscosity and aging resistance reached in the gelatinization process can be improved without chemical treatment. Although it can be said to be a great advantage in terms of safety that it is not treated, it may be chemically or physically treated, if necessary, as long as it does not interfere with the effects of the present invention.
化学修飾としては、例えば、アセチル化、アジピン酸架橋、酸化、漂白、リン酸架橋、オクテニルコハク酸処理、ヒドロキシプロピル化、リン酸化及びリン酸モノエステル化が挙げられる。これらの化学修飾は、1種単独で施されていてもよく、また2種以上を組み合わせて施されていてもよい。また、これらの化学修飾の方法は当該分野で周知である。これらの化学修飾は、日本国の食品衛生法で許容される範囲内であれば任意の程度まで行われ得る。日本では、化学修飾された加工澱粉が食品添加物として認められるためには、厚生労働省告示485号記載の純度試験法に準じて試料澱粉中の各種化学物質の分析を行って、下記の基準を満たすことが必須である:
(a)アセチル化アジピン酸架橋デンプン:アジピン酸基が0.135%以下であってかつアセチル基が2.5%以下であること;
(b)アセチル化酸化デンプン:アセチル基が2.5%以下であってかつカルボキシ基が1.3%以下であること;
(c)アセチル化リン酸架橋デンプン:アセチル基が2.5%以下であってかつリンがPとして0.14%以下であること;
(d)オクテニルコハク酸デンプンナトリウム:オクテニルコハク酸基が3.0%以下であること;
(e)酢酸デンプン:アセチル基が2.5%以下であること;
(f)酸化デンプン:カルボキシ基が1.1%以下であること;
(g)ヒドロキシプロピル化リン酸架橋澱粉:ヒドロキシプロピル基が7.0%以下であってかつリンがPとして0.14%以下であること;
(h)ヒドロキシプロピルデンプン:ヒドロキシプロピル基が7.0%以下であること;(i)リン酸架橋澱粉:リンがPとして0.5%以下であること;
(j)リン酸化デンプン:リンがPとして0.5%以下であること;
(k)リン酸モノエステル化リン酸架橋デンプン:リンがPとして0.5%以下であること;
(l)漂白デンプン;カルボキシ基が0.1%以下であり、厚生労働省告示485号記載の酸化澱粉の「確認試験(3)」による試験結果が陰性で、かつ、粘度等の澱粉の性質に生じた変化が酸化によるものでないことを合理的に説明できること。Chemical modifications include, for example, acetylation, adipic acid cross-linking, oxidation, bleaching, phosphoric acid cross-linking, octenyl succinic acid treatment, hydroxypropylation, phosphorylation and phosphoric monoesterification. These chemical modifications may be applied singly or in combination of two or more. Also, methods for these chemical modifications are well known in the art. These chemical modifications can be made to any degree within the scope permitted by the Food Sanitation Law of Japan. In Japan, in order for chemically modified processed starch to be recognized as a food additive, various chemical substances in the sample starch are analyzed according to the purity test method described in Ministry of Health, Labor and Welfare Notification No. 485, and the following standards are met. It is mandatory to meet:
(a) Acetylated adipic acid cross-linked starch: no more than 0.135% adipic acid groups and no more than 2.5% acetyl groups;
(b) acetylated oxidized starch: not more than 2.5% acetyl groups and not more than 1.3% carboxy groups;
(c) acetylated phosphate cross-linked starch: 2.5% or less acetyl groups and 0.14% or less phosphorus as P;
(d) starch sodium octenyl succinate: octenyl succinic acid group is 3.0% or less;
(e) starch acetate: not more than 2.5% acetyl groups;
(f) oxidized starch: 1.1% or less of carboxy groups;
(g) hydroxypropylated phosphate cross-linked starch: 7.0% or less of hydroxypropyl groups and 0.14% or less of phosphorus as P;
(h) hydroxypropyl starch: 7.0% or less of hydroxypropyl groups; (i) phosphate-crosslinked starch: 0.5% or less of phosphorus as P;
(j) phosphorylated starch: phosphorus is 0.5% or less as P;
(k) phosphoric acid monoesterified phosphoric acid cross-linked starch: phosphorus is 0.5% or less as P;
(l) Bleached starch; the carboxy group content is 0.1% or less, the test result of the oxidized starch "confirmation test (3)" described in Notification No. 485 of the Ministry of Health, Labor and Welfare is negative, and the starch properties such as viscosity are negative. Be able to reasonably explain that the changes that occur are not due to oxidation.
物理処理としては、例えば、湿熱処理、熱抑制処理等が挙げられる。「湿熱処理」とは、澱粉を糊化させない程度の低水分状態で、密閉容器内で相対湿度約100%の条件下で約95~約125℃に加熱する処理である。「熱抑制処理」とは、極めて低水分に乾燥した澱粉を、ドライ加熱処理することにより澱粉の結晶構造を強化する処理である。 Examples of the physical treatment include wet heat treatment, heat suppression treatment, and the like. “Moist heat treatment” is a treatment of heating to about 95 to about 125° C. in a sealed container under conditions of relative humidity of about 100% in a low moisture state that does not gelatinize starch. “Thermal inhibition treatment” is a treatment for strengthening the crystal structure of starch by subjecting starch that has been dried to an extremely low moisture content to a dry heat treatment.
3.ワキシー種澱粉の製造方法
本発明のワキシー種澱粉の製造方法については、ワキシー種澱粉に前記特性を具備させ得ることを限度として特に制限されないが、特定条件での酵素処理、即ち、ワキシー種澱粉を、当該澱粉が溶解しない温度で水中に分散させた状態で、澱粉加水分解酵素を作用させ、ワキシー種澱粉の分解率が5%以下となる条件で酵素処理する方法は、前記特性を有するワキシー種澱粉(酵素処理ワキシー種澱粉)を簡便に製造することができるので、好適である。 3. Method for Producing Waxy Seed Starch The method for producing the waxy seed starch of the present invention is not particularly limited as long as the waxy seed starch can be provided with the above properties. In the method of enzymatically treating waxy seed starch under conditions where the waxy seed starch is decomposed by 5% or less, the starch is dispersed in water at a temperature at which the starch is not dissolved. It is suitable because starch (enzyme-treated waxy seed starch) can be easily produced.
以下、本発明のワキシー種澱粉を酵素処理によって製造する方法について説明する。 A method for producing the waxy seed starch of the present invention by enzymatic treatment will be described below.
[原料澱粉]
本発明の製造方法において、原料として使用される澱粉は、未処理のワキシー種澱粉である。ワキシー種澱粉の由来については、前記「1.ワキシー種澱粉」の欄に記載の通りである。[Raw material starch]
In the production method of the present invention, the starch used as a raw material is untreated waxy seed starch. The origin of the waxy seed starch is as described in the section "1. Waxy seed starch" above.
[澱粉加水分解酵素]
本発明の製造方法において、酵素処理に使用される酵素は、澱粉加水分解酵素である。澱粉加水分解酵素としては、具体的には、α-アミラーゼ、β-アミラーゼ、アミログルコシダーゼ、イソアミラーゼ、プルラナーゼ、α-グルコシダーゼ等が挙げられる。[Starch hydrolase]
In the production method of the present invention, the enzyme used for enzymatic treatment is starch hydrolase. Examples of starch hydrolases include α-amylase, β-amylase, amyloglucosidase, isoamylase, pullulanase, α-glucosidase and the like.
本発明で使用される澱粉加水分解酵素の由来については、動物、微生物、植物等のいずれであってもよい。 The origin of the starch hydrolase used in the present invention may be any of animals, microorganisms, plants, and the like.
また、本発明で使用される澱粉加水分解酵素は、市販のものであっても、当該分野で公知の方法により微生物、動物及び植物等から調製されたものであってもよく、更に、これらの生物の当該酵素のアミノ酸配列若しくは塩基配列に基づいて遺伝子組み換え法により調製されたものであってもよい。 In addition, the starch hydrolase used in the present invention may be commercially available or may be prepared from microorganisms, animals, plants, etc. by methods known in the art. It may be prepared by genetic recombination based on the amino acid sequence or nucleotide sequence of the enzyme in question in organisms.
澱粉加水分解酵素の市販品としては、例えば、ノボザイムからAMG 300Lとして市販されるAspergillus niger由来のアミログルコシダーゼ、GenencorからOPTIDEX L-400として市販されるAspergillus niger由来のアミログルコシダーゼ、DANISCOからDIAZYME X4NPとして市販されるAspergillus niger由来のアミログルコシダーゼ、天野エンザイムからグルコアミラーゼ「アマノ」SDとして市販されるAspergillus niger由来のアミログルコシダーゼ、天野エンザイムからグルクザイムAF6として市販されるRhizopus niveus由来のアミログルコシダーゼ、新日本化学工業からスミチームとして市販されるRhizopus oryzae由来のアミログルコシダーゼ;天野エンザイムからトランスグルコシダーゼL「アマノ」として市販されるAspergillus niger由来のα-グルコシダーゼ、GenencorからTransglucosidase L-500として市販されるAspergillus niger由来のα-グルコシダーゼ;天野エンザイムからビオザイムAとして市販されるAspergillus oryzae由来のα-アミラーゼ、新日本化学工業からスミチームLとして市販されるAspergillus oryzae由来のα-アミラーゼ、ダニスコからAMYLEX A3として市販されるAspergillus niger由来のα-アミラーゼ、新日本化学工業からスミチームASとして市販されるAspergillus niger由来のα-アミラーゼ;ノボザイムからPromozyme D2として市販されるBacillus subtilis由来のプルラナーゼ;Sigmaからイソアミラーゼとして市販されるPseudomonas amyloderamosa由来のイソアミラーゼ、合同酒精社からGODO-FIAとして市販されるFlavobacterium odoratum由来のイソアミラーゼ;天野エンザイムからβ-アミラーゼF「アマノ」として市販されるBacillus由来のβ-アミラーゼ等が挙げられる。 Commercially available starch hydrolases include, for example, the amyloglucosidase from Aspergillus niger, commercially available as AMG 300L from Novozyme, the amyloglucosidase from Aspergillus niger, commercially available as OPTIDEX L-400 from Genencor, and the DIAZYME X4NP from DANISCO. Aspergillus niger-derived amyloglucosidase, commercially available from Amano Enzyme as glucoamylase "Amano" SD, Aspergillus niger-derived amyloglucosidase commercially available from Amano Enzyme as Gluczyme AF6, Rhizopus niveus-derived amyloglucosidase from Shinnihon Chemical Industry Co., Ltd. amyloglucosidase from Rhizopus oryzae marketed as Sumiteam; α-glucosidase from Aspergillus niger marketed as Transglucosidase L “Amano” from Amano Enzyme; α-glucosidase from Aspergillus niger marketed as Transglucosidase L-500 from Genencor α-amylase from Aspergillus oryzae commercially available as Biozyme A from Amano Enzyme, α-amylase from Aspergillus oryzae commercially available as Sumiteam L from Shin-Nihon Chemical Industry, α-amylase from Aspergillus niger commercially available from Danisco as AMYLEX A3 - Amylase, alpha-amylase from Aspergillus niger, commercially available as Sumiteam AS from Shin-Nippon Chemical; pullulanase from Bacillus subtilis, commercially available as Promozyme D2 from Novozyme; isoamylase from Pseudomonas amyloderamosa, commercially available as isoamylase from Sigma. , Flavobacterium odoratum-derived isoamylase commercially available from Godo Shuseisha as GODO-FIA; Bacillus-derived β-amylase commercially available from Amano Enzyme as β-amylase F “Amano”;
[酵素処理]
本発明の製造方法において、未処理のワキシー種澱粉を、当該澱粉が糊化しない温度で水中に分散させた状態で、澱粉加水分解酵素を作用させることにより、酵素処理が行われる。[Enzyme treatment]
In the production method of the present invention, enzymatic treatment is performed by allowing starch hydrolase to act on untreated waxy seed starch dispersed in water at a temperature at which the starch does not gelatinize.
酵素処理では、先ず、反応液を調製する。反応液は、未処理のワキシー種澱粉及び澱粉加水分解酵素を、適当な溶媒に添加することにより調製される。反応液の調製では、例えば、未処理のワキシー種澱粉を溶媒に懸濁させて澱粉懸濁液を作製した後に澱粉加水分解酵素を添加してもよく、また、未処理のワキシー種澱粉を含む懸濁液と澱粉加水分解酵素を含む溶液とを混合してもよい。なお、反応液中で、未処理のワキシー種澱粉を溶解させずに分散(懸濁)させた状態にするには、後述するように、反応液の温度を、未処理のワキシー種澱粉が溶解しない温度以下(即ち、糊化開始温度未満)に設定すればよい。 In enzymatic treatment, first, a reaction solution is prepared. A reaction solution is prepared by adding untreated waxy seed starch and starch hydrolase to a suitable solvent. In the preparation of the reaction solution, for example, starch hydrolase may be added after untreated waxy seed starch is suspended in a solvent to prepare a starch suspension. The suspension may be mixed with a solution containing the starch hydrolyzing enzyme. In order to disperse (suspend) the untreated waxy seed starch in the reaction solution without dissolving it, as described later, the temperature of the reaction solution is adjusted to a level where the untreated waxy seed starch dissolves. It may be set to a temperature below the temperature at which the gelatinization does not occur (that is, below the gelatinization start temperature).
反応液の調製に使用される溶媒としては、例えば、水、緩衝液が挙げられる。 Solvents used for preparing the reaction solution include, for example, water and buffers.
応溶液のpHは、使用する澱粉加水分解酵素が活性を発揮しうるpHであれば任意に設定されるが、使用する澱粉加水分解酵素の至適pH付近であることが好ましい。反応溶液のpHの代表例として、例えば、2~13、好ましくは3~11、より好ましくは4~10、更に好ましくは5~9、特に好ましくは5~8が挙げられるが、使用する澱粉加水分解酵素の至適pHの±3以内、好ましくは至適pHの±2以内であり、より好ましくは至適pHの±1以内、更に好ましくは至適pHの±0.5以内に設定することが望ましい。 The pH of the reaction solution can be arbitrarily set as long as the starch hydrolase to be used can exhibit its activity, but it is preferably around the optimum pH for the starch hydrolase to be used. Representative examples of the pH of the reaction solution include, for example, 2 to 13, preferably 3 to 11, more preferably 4 to 10, still more preferably 5 to 9, and particularly preferably 5 to 8. Set within ±3 of the optimum pH of the degrading enzyme, preferably within ±2 of the optimum pH, more preferably within ±1 of the optimum pH, still more preferably within ±0.5 of the optimum pH. is desirable.
反応溶液中の未処理のワキシー種澱粉の量(反応開始時の濃度)は、酵素反応が進行可能な範囲に適宜設定すればよいが、例えば、5~60重量%、好ましくは10~50重量%、より好ましくは20~50重量%、更に好ましくは30~40重量%が挙げられる。 The amount of untreated waxy seed starch in the reaction solution (concentration at the start of the reaction) may be appropriately set within a range in which the enzymatic reaction can proceed. %, more preferably 20 to 50% by weight, and even more preferably 30 to 40% by weight.
反応液中の澱粉加水分解酵素の量は、酵素反応が進行可能、且つ後述する分解率を達成できるように適宜設定すればよい。澱粉加水分解酵素の量は、合理的な時間内に反応を行うに充分な量であることが好ましい。澱粉加水分解酵素の量が多い程、後述する分解率の上限に達する時間は短くなり、澱粉加水分解酵素の量が少ない程、所望の分解率になるまでに要する時間は長くなる。反応液中の澱粉加水分解酵素の量として、具体的には、未処理のワキシー種澱粉(100重量%)に対して、0.0001~10重量%、好ましくは0.001~5重量%、更に好ましくは0.001~3重量%、特に好ましくは0.001~2重量%が挙げられる。なお、反応液中の澱粉加水分解酵素の量は、後述する分解率を達成できる量であればよいので、酵素の活性(ユニット数)について詳細に検討するまでもなく当業者であれば適宜設定可能である。 The amount of the starch hydrolase in the reaction solution may be appropriately set so that the enzymatic reaction can proceed and the decomposition rate described later can be achieved. The amount of starch hydrolase is preferably sufficient to carry out the reaction in a reasonable amount of time. The larger the amount of starch hydrolase, the shorter the time required to reach the upper limit of the decomposition rate described later, and the smaller the amount of starch hydrolase, the longer the time required to reach the desired decomposition rate. Specifically, the amount of starch hydrolase in the reaction solution is 0.0001 to 10% by weight, preferably 0.001 to 5% by weight, relative to untreated waxy seed starch (100% by weight). More preferably 0.001 to 3% by weight, particularly preferably 0.001 to 2% by weight. The amount of the starch hydrolase in the reaction solution may be any amount that can achieve the decomposition rate described later, so those skilled in the art can set it as appropriate without detailed examination of the activity (number of units) of the enzyme. It is possible.
酵素処理時の反応温度については、未処理のワキシー種澱粉が溶解しない温度(即ち、未処理のワキシー種澱粉の糊化開始温度未満)であり、且つ使用する澱粉加水分解酵素が進行可能である温度域内に設定すればよく、当該温度域内で使用する澱粉加水分解酵素の至適温度付近に設定することが好ましい。酵素処理時の反応温度の代表例として、例えば、0~65℃、好ましくは10~65℃、より好ましくは20~65℃、更に好ましくは30~65℃、特に好ましくは40~60℃が挙げられるが、使用する澱粉加水分解酵素の至適温度の±10℃、好ましくは至適温度±5、より好ましくは至適温度±1℃、更に好ましは至適pH±0.5℃に設定することが望ましい。 The reaction temperature during enzyme treatment is a temperature at which the untreated waxy seed starch does not dissolve (i.e., below the gelatinization initiation temperature of the untreated waxy seed starch), and the starch hydrolase used can proceed. The temperature may be set within the temperature range, and it is preferable to set the temperature near the optimum temperature for the starch hydrolase used within the temperature range. Representative examples of the reaction temperature during enzyme treatment include, for example, 0 to 65°C, preferably 10 to 65°C, more preferably 20 to 65°C, still more preferably 30 to 65°C, and particularly preferably 40 to 60°C. However, the optimum temperature of the starch hydrolase to be used ± 10 ° C., preferably the optimum temperature ± 5, more preferably the optimum temperature ± 1 ° C., more preferably the optimum pH ± 0.5 ° C. It is desirable to
酵素処理時の反応時間については、使用する澱粉加水分解酵素の種類や量、使用する未処理のワキシー種澱粉の種類や量、反応温度等を勘案した上で、後述する分解率の範囲内で酵素反応が停止するように設定される。酵素処理時の反応時間の一例として、1分間~50時間程度、好ましくは1分間~35時間程度が挙げられる。 Regarding the reaction time during enzyme treatment, the type and amount of starch hydrolase used, the type and amount of untreated waxy seed starch used, the reaction temperature, etc., should be taken into account, and should be within the range of the decomposition rate described later. It is set so that the enzymatic reaction stops. An example of the reaction time for enzyme treatment is about 1 minute to 50 hours, preferably about 1 minute to 35 hours.
酵素処理は、未処理のワキシー種澱粉の分解率が5%以下の範囲で停止させる。このような僅かな分解率の状態で酵素処理を終了させることにより、前述する特性を付与することができ、加熱時の糊液適性及び耐老化性が向上したワキシー種澱粉を得ることが可能になる。 Enzyme treatment is stopped when the degradation of untreated waxy seed starch is below 5%. By completing the enzymatic treatment in such a state of a slight decomposition rate, it is possible to impart the above-mentioned properties, and it is possible to obtain a waxy seed starch with improved paste suitability and aging resistance when heated. Become.
酵素処理における未処理のワキシー種澱粉の分解率は、5%以下であればよいが、得られる酵素処理ワキシー種澱粉について、糊化過程において到達する最高粘度の向上の程度、最高粘度到達後に澱粉の崩壊によって生じる粘度低下の抑制の程度、及び老化に伴う粘度の上昇の抑制の程度を、バランスよく総合的に高めるという観点から、好ましくは0.01~4.5%、より好ましくは0.01~4%、更に好ましくは0.03~3.5%が挙げられる。 The decomposition rate of the untreated waxy seed starch in the enzymatic treatment may be 5% or less. From the viewpoint of comprehensively improving the degree of suppression of the viscosity decrease caused by the collapse of the viscosity and the degree of suppression of the viscosity increase due to aging in a well-balanced manner, it is preferably 0.01 to 4.5%, more preferably 0.5%. 01 to 4%, more preferably 0.03 to 3.5%.
なお、本明細書において、酵素処理における未処理のワキシー種澱粉の分解率とは、酵素処理に供する未処理のワキシー種澱粉の重量に対して、酵素処理で遊離した糖の重量の割合(%)である。酵素処理で遊離した糖の重量は、酵素処理後のワキシー種澱粉の懸濁液の上清液をフィルターで回収し、含まれる遊離した糖の量をフェノール-硫酸法により測定することによって求めることができる。 As used herein, the decomposition rate of untreated waxy seed starch in enzymatic treatment refers to the weight ratio (% ). The weight of the sugar released by the enzymatic treatment can be obtained by collecting the supernatant liquid of the suspension of waxy seed starch after the enzymatic treatment with a filter and measuring the amount of the released sugar contained by the phenol-sulfuric acid method. can be done.
前記分解率を満たす酵素処理ワキシー種澱粉を得るには、使用する澱粉加水分解酵素の種類や量、未処理のワキシー種澱粉の種類や量、反応温度、及び反応時間等を勘案して、目的の分解率になった時点で酵素反応を停止させればよい。 In order to obtain an enzyme-treated waxy seed starch that satisfies the above decomposition rate, the type and amount of the starch hydrolase to be used, the type and amount of untreated waxy seed starch, the reaction temperature, the reaction time, etc., should be taken into consideration. The enzymatic reaction should be stopped when the decomposition rate reaches .
[後処理]
前記特定条件下での酵素処理によって、前述する特性を有する酵素処理ワキシー種澱粉が得られる。酵素処理によって得られた酵素処理ワキシー種澱粉は、そのまま使用してもよいが、酵素処理後に、洗浄、脱水等を行うことによって、使用した澱粉加水分解酵素及び遊離した糖質を除去しておくことが好ましい。酵素処理後の洗浄及び脱水は、当該分野で公知の方法によって行うことができる。[Post-processing]
Enzymatic treatment under the specified conditions results in an enzyme-treated waxy seed starch having the properties previously described. The enzymatically treated waxy seed starch obtained by the enzymatic treatment may be used as it is, but after the enzymatic treatment, it is washed and dehydrated to remove the used starch hydrolase and free sugars. is preferred. Washing and dehydration after enzymatic treatment can be performed by methods known in the art.
また、酵素処理後、又は洗浄及び脱水後の酵素処理ワキシー種澱粉は、含水状態のまま使用してもよいが、乾燥処理に供して乾燥物にしておくことが好ましい。 The enzyme-treated waxy seed starch after enzyme treatment or after washing and dehydration may be used as it is in a water-containing state, but it is preferable to subject it to a drying treatment to obtain a dried product.
また、得られた酵素処理ワキシー種澱粉は、必要に応じて、前述したような化学修飾又は物理処理に更に供してもよい。 Moreover, the obtained enzyme-treated waxy seed starch may be further subjected to chemical modification or physical treatment as described above, if necessary.
4.ワキシー種澱粉が添加された食品
本発明のワキシー種澱粉の用途については、特に制限されないが、食品への粘稠性付与の目的で好適に使用される。 4. Food to which Waxy Seed Starch is Added The use of the waxy seed starch of the present invention is not particularly limited, but it is preferably used for the purpose of imparting consistency to food.
本発明のワキシー種澱粉が添加される食品の種類については、特に制限されないが、ペースト状又はゾル状食品は、適度な粘稠性が必要とされており、発明のワキシー種澱粉の添加対象として食品の好適な態様である。本明細書において、「ペースト状又はゾル状食品」とは、ペースト状又はゾルで、その加工食品が液体状を呈し、流動性を持つ状態の食品を指す。ペースト状又はゾル状食品としては、具体的には、蒲焼のタレ、焼き肉のタレ、マヨネーズ風調味料、ドレッシング等のたれ類;クリームソース、ミートソース、カレー、ベシャメルソース等のソース類;ジャム、カスタードクリーム、フラワーペースト、フィリング、ホイップクリーム、アイスクリーム類(例えば、アイスミルク、ラクトアイス)等の和洋菓子等が挙げられる。 The type of food to which the waxy seed starch of the present invention is added is not particularly limited. It is a preferred aspect of the food. As used herein, the term "paste-like or sol-like food" refers to a paste-like or sol-like processed food that exhibits a liquid state and has fluidity. Paste-like or sol-like foods include sauces such as kabayaki sauces, grilled meat sauces, mayonnaise-like seasonings and dressings; sauces such as cream sauces, meat sauces, curry and bechamel sauces; jams and custards. Japanese and Western sweets such as cream, flour paste, filling, whipped cream, and ice creams (eg, ice milk and lacto ice) are included.
また、本発明のワキシー種澱粉は、ゲルを形成することもできるので、発明のワキシー種澱粉の添加対象となる食品の他の態様として、ゲル状食品が挙げられる。本明細書において、「ゲル状食品」とは、全体又は一部がゲルの形態をしている食品を指す。ゲル状食品としては、具体的には、ういろう、餅、羊羹、かるかん、きんつば、プリン、ゼリー、ムース、ババロア、くず饅頭、マシュマロ、パンナコッタ、杏仁豆腐、ヨーグルト、ゴマ豆腐等の和洋菓子;蒲鉾等の水産練り製品;ハム、ソーセージ等の畜産練り製品;うどん、そうめん、冷麦、中華麺、そば、マカロニ、パスタ等の麺類;卵焼き、茶碗蒸し、ゲル状調味料、ゼリータイプ飲料等が挙げられる。 In addition, since the waxy seed starch of the present invention can also form a gel, another aspect of food to which the waxy seed starch of the present invention can be added is gel-like food. As used herein, the term “gel-like food” refers to food that is wholly or partially in the form of a gel. Specific examples of gel-like foods include Japanese and Western sweets such as uiro, mochi, yokan, karukan, kintsuba, pudding, jelly, mousse, bavarois, kuzu-manju, marshmallows, panna cotta, almond tofu, yogurt, and sesame tofu; kamaboko, etc. fish paste products; livestock paste products such as ham and sausage; noodles such as udon, somen, cold barley, Chinese noodles, soba, macaroni, and pasta;
また、本発明のワキシー種澱粉は、前記食品の他に、従来、澱粉や加工澱粉が添加されている食品に添加することができる。このような食品として、例えば、パン、クッキー、ビスケット、ピザ生地、パイ生地、アイスクリームのコーンカップ、モナカの皮、シュークリームの皮等のベーカリー類;スポンジケーキ、シフォンケーキ、カステラ、マドレーヌ、フィナンシェ、パウンドケーキ、ロールケーキ等の焼成洋菓子類;天ぷらや唐揚げ等のフライ食品の衣等が挙げられる。 In addition to the above foods, the waxy seed starch of the present invention can be added to foods to which starch or modified starch has conventionally been added. Examples of such foods include bakeries such as bread, cookies, biscuits, pizza dough, pie dough, ice cream cone cups, monaca skins, cream puff skins; sponge cakes, chiffon cakes, castella, madeleines, financiers, Baked western confectionery such as pound cakes and roll cakes; batter for fried foods such as tempura and fried chicken.
本発明のワキシー種澱粉の食品への添加量については、食品の種類、食品に備えさせるべき特性(粘稠性やゲル特性等)等に応じて適宜設定すればよいが、例えば0.01~100重量%が挙げられる。より具体的には、食品がペースト状又はゾル状食品の場合であれば、本発明のワキシー種澱粉の添加量として、好ましくは0.1~50重量%、更に好ましく0.1~30重量%が挙げられる。また、食品がゲル状食品の場合であれば、本発明のワキシー種澱粉の添加量として、好ましくは0.1~50重量%、更に好ましく0.1~30重量%が挙げられる。また、食品が、ベーカリー類、焼成洋菓子類、又はフライ食品の衣の場合であれば、本発明のワキシー種澱粉の添加量として、好ましくは0.1~50重量%、更に好ましく0.1~30重量%が挙げられる。 The amount of the waxy seed starch of the present invention to be added to the food may be appropriately set according to the type of food, the properties to be provided in the food (viscosity, gel properties, etc.). 100% by weight. More specifically, when the food is a paste-like or sol-like food, the amount of waxy seed starch of the present invention added is preferably 0.1 to 50% by weight, more preferably 0.1 to 30% by weight. are mentioned. If the food is a gel food, the amount of the waxy seed starch of the present invention added is preferably 0.1 to 50% by weight, more preferably 0.1 to 30% by weight. If the food is bakery products, baked confectioneries, or fried food coatings, the amount of the waxy seed starch added is preferably 0.1 to 50% by weight, more preferably 0.1 to 50% by weight. 30% by weight can be mentioned.
なお、本明細書において、「本発明のワキシー種澱粉が添加された食品」とは、本発明のワキシー種澱粉が食品中で溶解した状態で含まれている場合のみならず、本発明のワキシー種澱粉がその形状を保持したまま食品中に含まれている場合も包含する。 In the present specification, the term "food to which the waxy seed starch of the present invention is added" refers not only to the case where the waxy seed starch of the present invention is contained in a dissolved state in the food, but also to the case where the waxy seed starch of the present invention is contained in the food. It also includes the case where the seed starch is contained in the food while maintaining its shape.
以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited by these Examples.
試験例1:ワキシータピオカ澱粉から製造した酵素処理澱粉
1.酵素処理澱粉の製造及び未処理澱粉の準備
[実施例1]
水163.2gに未処理の天然のワキシータピオカ澱粉87.9gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを5.5に調整した。その後、イソアミラーゼ(Flavobacterium odoratum由来、商品名「GODO-FIA」、合同酒精社製)を8.8×10-4g(ワキシータピオカ澱粉に対して0.001重量%)添加し、50℃で20分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシータピオカ澱粉、及び反応中のワキシータピオカ澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。 Test Example 1: Enzyme-treated starch produced from waxy tapioca starch
1. Production of enzyme-treated starch and preparation of untreated starch [Example 1]
A suspension was prepared by adding 87.9 g of untreated natural waxy tapioca starch to 163.2 g of water. The suspension was then warmed to 50° C. and the pH was adjusted to 5.5. After that, 8.8×10 −4 g (0.001% by weight based on waxy tapioca starch) of isoamylase (derived from Flavobacterium odoratum, trade name “GODO-FIA”, manufactured by Godo Shusei Co., Ltd.) was added and heated at 50° C. After reacting for 20 minutes, the reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy tapioca starch and the reacting waxy tapioca starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例2]
イソアミラーゼの添加量を1.758g(ワキシータピオカ澱粉に対して2重量%)に変更し、酵素の反応時間を1900分間に変更したこと以外は、前記実施例1と同条件で酵素処理澱粉を得た。[Example 2]
Enzyme-treated starch was prepared under the same conditions as in Example 1 except that the amount of isoamylase added was changed to 1.758 g (2% by weight with respect to waxy tapioca starch) and the reaction time of the enzyme was changed to 1900 minutes. Obtained.
[実施例3]
水241.4gに未処理の天然のワキシータピオカ澱粉130gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを5.5に調整した。その後、プルラナーゼ(Bacillus subtilis由来、商品名「Promozyme D2」、ノボザイム社製)を0.65g(ワキシータピオカ澱粉に対して0.5重量%)添加し、50℃で240分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシータピオカ澱粉、及び反応中のワキシータピオカ澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 3]
A suspension was prepared by adding 130 g of untreated natural waxy tapioca starch to 241.4 g of water. The suspension was then warmed to 50° C. and the pH was adjusted to 5.5. After that, 0.65 g (0.5% by weight of waxy tapioca starch) of pullulanase (derived from Bacillus subtilis, trade name "Promozyme D2", manufactured by Novozyme) was added and allowed to react at 50°C for 240 minutes, followed by reaction. stopped. Under the temperature condition of 50° C., the untreated natural waxy tapioca starch and the reacting waxy tapioca starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例4]
プルラナーゼの添加量を1.95g(ワキシータピオカ澱粉に対して1.5重量%)に変更したこと以外は、前記実施例3と同条件で酵素処理澱粉を得た。[Example 4]
An enzyme-treated starch was obtained under the same conditions as in Example 3, except that the amount of pullulanase added was changed to 1.95 g (1.5% by weight with respect to the waxy tapioca starch).
[実施例5]
水650gに未処理の天然のワキシータピオカ澱粉350gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを4.3に調整した。その後、グルコアミラーゼ(Aspergillus niger由来、商品名「AMG 300L」、ノボザイム社製)を0.175g(ワキシータピオカ澱粉に対して0.05重量%)添加し、50℃で2分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシータピオカ澱粉、及び反応中のワキシータピオカ澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 5]
A suspension was prepared by adding 350 g of untreated natural waxy tapioca starch to 650 g of water. The suspension was then warmed to 50° C. to adjust the pH to 4.3. After that, 0.175 g (0.05% by weight of waxy tapioca starch) of glucoamylase (derived from Aspergillus niger, trade name "AMG 300L", manufactured by Novozym) was added and allowed to react at 50°C for 2 minutes. The reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy tapioca starch and the reacting waxy tapioca starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例6]
グルコアミラーゼの反応時間を80分間に変更したこと以外は、前記実施例5と同条件で酵素処理澱粉を得た。[Example 6]
An enzyme-treated starch was obtained under the same conditions as in Example 5, except that the reaction time of glucoamylase was changed to 80 minutes.
[実施例7]
水650gに未処理の天然のワキシータピオカ澱粉350gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを4.5に調整した。その後、α-アミラーゼ(Aspergillus niger由来、商品名「スミチームAS」、新日本化学工業製)を0.035g(ワキシータピオカ澱粉に対して0.01重量%)添加し、50℃で2分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシータピオカ澱粉、及び反応中のワキシータピオカ澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 7]
A suspension was prepared by adding 350 g of untreated natural waxy tapioca starch to 650 g of water. The suspension was then warmed to 50° C. to adjust the pH to 4.5. After that, 0.035 g (0.01% by weight of waxy tapioca starch) of α-amylase (derived from Aspergillus niger, trade name "Sumizyme AS", manufactured by Shinnihon Kagaku Kogyo Co., Ltd.) was added and reacted at 50°C for 2 minutes. After that, the reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy tapioca starch and the reacting waxy tapioca starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例8]
α-アミラーゼの反応時間を330分間に変更したこと以外は、前記実施例7と同条件で酵素処理澱粉を得た。[Example 8]
An enzyme-treated starch was obtained under the same conditions as in Example 7, except that the α-amylase reaction time was changed to 330 minutes.
[実施例9]
水650gに未処理の天然のワキシータピオカ澱粉350gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを8.0に調整した。その後、β-アミラーゼ(Bacillus由来、商品名「β-アミラーゼF「アマノ」」、天野エンザイム製)を0.035g(ワキシータピオカ澱粉に対して0.01重量%)添加し、50℃で2分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシータピオカ澱粉、及び反応中のワキシータピオカ澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 9]
A suspension was prepared by adding 350 g of untreated natural waxy tapioca starch to 650 g of water. The suspension was then warmed to 50° C. and the pH was adjusted to 8.0. After that, 0.035 g (0.01% by weight of waxy tapioca starch) of β-amylase (derived from Bacillus, trade name “β-amylase F “Amano”” manufactured by Amano Enzyme) was added, and the mixture was heated at 50° C. for 2 minutes. After reacting, the reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy tapioca starch and the reacting waxy tapioca starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例10]
β-アミラーゼの反応時間を383分間に変更したこと以外は、前記実施例9と同条件で酵素処理澱粉を得た。[Example 10]
An enzyme-treated starch was obtained under the same conditions as in Example 9, except that the reaction time of β-amylase was changed to 383 minutes.
[比較例1]
前記実施例1~10において、原料として使用した未処理の天然のワキシータピオカ澱粉を準備した。[Comparative Example 1]
An untreated natural waxy tapioca starch used as a raw material in Examples 1 to 10 was prepared.
2.酵素処理におけるワキシータピオカ澱粉の分解率の測定
前記実施例1~10において酵素処理におけるワキシー種澱粉の分解率を以下の方法に従って求めた。 2. Degradation Rate of Waxy Tapioca Starch in Enzymatic Treatment In Examples 1 to 10, the degradation rate of waxy seed starch in enzyme treatment was determined according to the following method.
先ず、酵素反応を停止させた反応液をフィルターにかけて上清液を回収した。その後、上清液に含まれる全糖量をフェノール-硫酸法により測定した。次いで、下記式に従って、分解率を算出した。
3.アミログラフ測定
酵素処理ワキシータピオカ澱粉(実施例1~10)及び未処理のワキシータピオカ澱粉(比較例例1)について、ブラベンダー社製のVISCOGRAPH-Eを用いて、以下の条件でアミログラフ測定を行い、糊化開始温度、最高粘度、ブレイクダウン粘度、及び降温終了時の粘度Bから降温開始時の粘度Aを差し引いた値(粘度B-粘度A)を求めた。ブラベンダー社製のVISCOGRAPH-Eでは、粘度Bから粘度Aを差し引いた値(粘度B-粘度A)は、セットバック値として表示するように設定されている。 3. Amylograph measurement Enzyme-treated waxy tapioca starch (Examples 1 to 10) and untreated waxy tapioca starch (Comparative Example 1) were subjected to amylograph measurement using VISCOGRAPH-E manufactured by Brabender under the following conditions. The gelatinization start temperature, the maximum viscosity, the breakdown viscosity, and the value obtained by subtracting the viscosity A at the start of cooling from the viscosity B at the end of cooling (viscosity B - viscosity A) were obtained. VISCOGRAPH-E manufactured by Brabender is set so that the value obtained by subtracting the viscosity A from the viscosity B (viscosity B - viscosity A) is displayed as a setback value.
先ず、450mlの水に酵素処理ワキシータピオカ澱粉又は未処理のワキシータピオカ澱粉を添加して懸濁させ、澱粉懸濁液を調製した。澱粉懸濁液を試料容器に投入し、回転させながら50℃まで加温した。その後、1.5℃/分で95℃になるまで30分間昇温し、95℃で15分間保持した。続いて、1.5℃/分で72.5℃になるまで15分間冷却した。なお、測定時の試料容器の回転数は75rpmに設定し、測定カートリッジは700cm-gを使用した。 First, enzyme-treated waxy tapioca starch or untreated waxy tapioca starch was added to 450 ml of water and suspended to prepare a starch suspension. The starch suspension was poured into the sample container and heated to 50°C while rotating. After that, the temperature was raised to 95° C. at 1.5° C./min for 30 minutes and held at 95° C. for 15 minutes. It was then cooled at 1.5°C/min to 72.5°C for 15 minutes. The rotation speed of the sample container during measurement was set to 75 rpm, and the measurement cartridge used was 700 cm-g.
4.結果
得られた結果を表1に示す。未処理のワキシータピオカ澱粉(比較例1)では、粘度B-粘度Aの値が45BUであり、アミログラフ測定における最高粘度が655BUと低かった。これに対して、分解率が0.06~3%となるように僅かにだけ澱粉加水分解酵素で処理した酵素処理ワキシータピオカ澱粉(実施例1~10)では、粘度B-粘度Aの値がマイナスになっており、アミログラフ測定における最高粘度が1000BU以上という高い値を示していた。更に、酵素処理ワキシータピオカ澱粉(実施例1~10)では、粘度Aが、未処理のワキシータピオカ澱粉(比較例1)に比べて高くなっており、最高粘度到達後に澱粉の崩壊に起因する粘度低下の抑制効果も高いことが確認された。 4. Results The results obtained are shown in Table 1. The untreated waxy tapioca starch (Comparative Example 1) had a viscosity B-viscosity A value of 45 BU and a low maximum viscosity of 655 BU in amylograph measurements. On the other hand, the enzymatically treated waxy tapioca starch (Examples 1 to 10) slightly treated with starch hydrolase so that the decomposition rate was 0.06 to 3%, the value of viscosity B-viscosity A was It was negative, and the maximum viscosity in amylograph measurement showed a high value of 1000 BU or more. Furthermore, in the enzyme-treated waxy tapioca starch (Examples 1 to 10), the viscosity A was higher than that of the untreated waxy tapioca starch (Comparative Example 1). It was confirmed that the effect of suppressing the decrease is also high.
以上の結果から、粘度B-粘度Aの値がマイナスになるワキシータピオカ澱粉は、糊化の過程で到達する最高粘度が向上することが明らかとなった。また、粘度B-粘度Aの値がプラスになると、澱粉の結晶化(凝集)によって、老化に伴う粘度の増大現象が現れていることになるので、本結果から、粘度B-粘度Aの値がマイナスになるワキシータピオカ澱粉では、優れた耐老化性を有していることも明らかになった。 From the above results, it was clarified that waxy tapioca starch with a negative value of viscosity B-viscosity A improves the maximum viscosity reached in the process of gelatinization. Also, when the value of viscosity B-viscosity A becomes positive, it means that the phenomenon of viscosity increase accompanying aging appears due to crystallization (aggregation) of starch, so from this result, the value of viscosity B-viscosity A It was also revealed that waxy tapioca starch with a negative value has excellent aging resistance.
試験例2:ワキシーコーン澱粉から製造した酵素処理澱粉
1.酵素処理澱粉の製造及び未処理澱粉の準備
[実施例11]
水371.4gに未処理の天然のワキシーコーン澱粉200gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを5.5に調整した。その後、イソアミラーゼ(Flavobacterium odoratum由来、商品名「GODO-FIA」、合同酒精社製)を0.02g(ワキシーコーン澱粉に対して0.01重量%)添加し、50℃で6分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシーコーン澱粉、及び反応中のワキシーコーン澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。 Test Example 2: Enzyme-treated starch produced from waxy corn starch
1. Production of enzyme-treated starch and preparation of untreated starch [Example 11]
A suspension was prepared by adding 200 g of untreated native waxy corn starch to 371.4 g of water. The suspension was then warmed to 50° C. and the pH was adjusted to 5.5. After that, 0.02 g (0.01% by weight of waxy corn starch) of isoamylase (derived from Flavobacterium odoratum, trade name "GODO-FIA", manufactured by Godo Shusei Co., Ltd.) was added and reacted at 50° C. for 6 minutes. After that, the reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy corn starch and the reacting waxy corn starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例12]
イソアミラーゼの添加量を1.02g(ワキシーコーン澱粉に対して0.51重量%)に変更し、酵素の反応時間を350分間に変更したこと以外は、前記実施例11と同条件で酵素処理澱粉を得た。[Example 12]
Enzyme treatment under the same conditions as in Example 11 except that the amount of isoamylase added was changed to 1.02 g (0.51% by weight with respect to waxy corn starch) and the reaction time of the enzyme was changed to 350 minutes. starch was obtained.
[実施例13]
水650gに未処理の天然のワキシーコーン澱粉350gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを4.3に調整した。その後、グルコアミラーゼ(Aspergillus niger由来、商品名「AMG 300L」、ノボザイム社製)を0.035g(ワキシーコーン澱粉に対して0.01重量%)添加し、50℃で2分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシーコーン澱粉、及び反応中のワキシーコーン澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 13]
A suspension was prepared by adding 350 g of untreated native waxy corn starch to 650 g of water. The suspension was then warmed to 50° C. to adjust the pH to 4.3. After that, 0.035 g (0.01% by weight of waxy corn starch) of glucoamylase (derived from Aspergillus niger, trade name "AMG 300L", manufactured by Novozyme) was added and allowed to react at 50°C for 2 minutes. The reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy corn starch and the reacting waxy corn starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例14]
グルコアミラーゼの反応時間を395分間に変更したこと以外は、前記実施例13と同条件で酵素処理澱粉を得た。[Example 14]
An enzyme-treated starch was obtained under the same conditions as in Example 13, except that the glucoamylase reaction time was changed to 395 minutes.
[実施例15]
水650gに未処理の天然のワキシーコーン澱粉350gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを4.5に調整した。その後、α-アミラーゼ(Aspergillus niger由来、商品名「スミチームAS」、新日本化学工業製)を0.035g(ワキシーコーン澱粉に対して0.01重量%)添加し、50℃で2分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシーコーン澱粉、及び反応中のワキシーコーン澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 15]
A suspension was prepared by adding 350 g of untreated native waxy corn starch to 650 g of water. The suspension was then warmed to 50° C. to adjust the pH to 4.5. After that, 0.035 g (0.01% by weight of waxy corn starch) of α-amylase (derived from Aspergillus niger, trade name "Sumizyme AS", manufactured by Shinnihon Kagaku Kogyo Co., Ltd.) was added and reacted at 50°C for 2 minutes. After that, the reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy corn starch and the reacting waxy corn starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例16]
α-アミラーゼの反応時間を305分間に変更したこと以外は、前記実施例15と同条件で酵素処理澱粉を得た。[Example 16]
An enzyme-treated starch was obtained under the same conditions as in Example 15, except that the α-amylase reaction time was changed to 305 minutes.
[実施例17]
水650gに未処理の天然のワキシーコーン澱粉350gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを8.0に調整した。その後、β-アミラーゼ(Bacillus由来、商品名「β-アミラーゼF「アマノ」」、天野エンザイム製)を0.035g(ワキシーコーン澱粉に対して0.01重量%)添加し、50℃で2分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然のワキシーコーン澱粉、及び反応中のワキシーコーン澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。[Example 17]
A suspension was prepared by adding 350 g of untreated native waxy corn starch to 650 g of water. The suspension was then warmed to 50° C. and the pH was adjusted to 8.0. After that, 0.035 g (0.01% by weight of waxy corn starch) of β-amylase (derived from Bacillus, trade name “β-amylase F “Amano”” manufactured by Amano Enzyme) was added, and the mixture was heated at 50° C. for 2 minutes. After reacting, the reaction was stopped. Under the temperature condition of 50° C., the untreated natural waxy corn starch and the reacting waxy corn starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[実施例18]
β-アミラーゼの反応時間を380分間に変更したこと以外は、前記実施例17と同条件で酵素処理澱粉を得た。[Example 18]
An enzyme-treated starch was obtained under the same conditions as in Example 17, except that the reaction time of β-amylase was changed to 380 minutes.
[比較例2]
前記実施例11~18において、原料として使用した未処理の天然のワキシーコーン澱粉を準備した。[Comparative Example 2]
Untreated natural waxy corn starch used as a raw material in Examples 11 to 18 was prepared.
2.酵素処理におけるワキシーコーン澱粉の分解率の測定、及びアミログラフ測定
前記試験例1と同様の条件で、酵素処理におけるワキシーコーン澱粉の分解率の測定、及びアミログラフ測定を行った。 2. Degradation Rate of Waxy Corn Starch in Enzymatic Treatment and Amylographic Measurement Measurement of the degradation rate of waxy corn starch in enzymatic treatment and amylographic measurement were performed under the same conditions as in Test Example 1 above.
3.結果
得られた結果を表2に示す。未処理のワキシーコーン澱粉(比較例2)では、粘度B-粘度Aの値が18BUであり、アミログラフ測定における最高粘度が901BUと低かった。これに対して、分解率が0.19~3.16%となるように僅かにだけ澱粉加水分解酵素で処理した酵素処理ワキシーコーン澱粉(実施例11~18)では、前記酵素処理ワキシータピオカ澱粉(実施例1~10)の場合と同様に、粘度B-粘度Aの値がマイナスになっており、優れた耐老化性を有しつつ、アミログラフ測定における最高粘度が1000BU以上という高い値を示していた。更に、酵素処理ワキシーコーン澱粉(実施例11~18)では、粘度Aが、未処理のワキシーコーン澱粉(比較例2)に比べて高くなっており、最高粘度到達後に澱粉の崩壊に起因する粘度低下の抑制効果も高いことが確認された。 3. Results The results obtained are shown in Table 2. The untreated waxy corn starch (Comparative Example 2) had a viscosity B-viscosity A value of 18 BU and a low maximum viscosity of 901 BU in amylograph measurements. On the other hand, in the enzyme-treated waxy corn starch (Examples 11-18) that was slightly treated with starch hydrolase so that the degradation rate was 0.19-3.16%, the enzyme-treated waxy tapioca starch As in the case of (Examples 1 to 10), the value of viscosity B - viscosity A is negative, and while having excellent aging resistance, the maximum viscosity in amylograph measurement shows a high value of 1000 BU or more. was Furthermore, the enzyme-treated waxy corn starch (Examples 11 to 18) had a higher viscosity A than the untreated waxy corn starch (Comparative Example 2), indicating that the viscosity was due to starch disintegration after reaching the maximum viscosity. It was confirmed that the effect of suppressing the decrease is also high.
試験例3:馬鈴薯澱粉から製造した酵素処理澱粉
1.酵素処理澱粉の製造及び未処理澱粉の準備
[比較例3]
水278.6gに未処理の天然の馬鈴薯澱粉150gを加え、懸濁液を調製した。次いで、懸濁液を50℃に加温してpHを5.5に調整した。その後、イソアミラーゼ(Flavobacterium odoratum由来、商品名「GODO-FIA」、合同酒精社製)を3g(馬鈴薯澱粉に対して2重量%)添加し、50℃で240分間反応させた後、反応を停止させた。なお、50℃の温度条件では、未処理の天然の馬鈴薯澱粉、及び反応中の馬鈴薯澱粉は、糊化しておらず懸濁状態であった。次いで、pHを5.5に調整した後に、洗浄及び脱水を行い、更に送風乾燥して粉砕処理を行い、酵素処理澱粉を得た。 Test Example 3: Enzyme-treated starch produced from potato starch
1. Production of enzyme-treated starch and preparation of untreated starch [Comparative Example 3]
A suspension was prepared by adding 150 g of untreated native potato starch to 278.6 g of water. The suspension was then warmed to 50° C. and the pH was adjusted to 5.5. After that, 3 g of isoamylase (derived from Flavobacterium odoratum, trade name "GODO-FIA", manufactured by Godo Shusei Co., Ltd.) (2% by weight relative to potato starch) was added, and the reaction was stopped after reacting at 50 ° C. for 240 minutes. let me Under the temperature condition of 50° C., the untreated natural potato starch and the reacting potato starch were not gelatinized and were in a suspended state. Next, after adjusting the pH to 5.5, washing and dehydration were performed, followed by air drying and pulverization to obtain an enzyme-treated starch.
[比較例4]
前記比較例3において、原料として使用した未処理の天然の馬鈴薯澱粉を準備した。[Comparative Example 4]
An untreated natural potato starch used as a raw material in Comparative Example 3 was prepared.
2.酵素処理における馬鈴薯澱粉の分解率の測定、及びアミログラフ測定
前記試験例1と同様の条件で、酵素処理における馬鈴薯澱粉の分解率の測定、及びアミログラフ測定を行った。 2. Degradation Rate of Potato Starch in Enzymatic Treatment and Amylographic Measurement Measurement of the rate of potato starch degradation in enzymatic treatment and amylographic measurement were carried out under the same conditions as in Test Example 1 above.
3.結果
得られた結果を表3に示す。この結果、酵素処理した馬鈴薯澱粉(比較例3)では、粘度B-粘度Aの値がマイナスになっていたが、未処理の天然の馬鈴薯澱粉(比較例4)に比べて、アミログラフ測定における最高粘度が低くなっていた。 3. Results The results obtained are shown in Table 3. As a result, the enzyme-treated potato starch (Comparative Example 3) had a negative viscosity B-viscosity A value, but compared to the untreated native potato starch (Comparative Example 4), the maximum Viscosity was low.
本結果と前記試験例1及び2の結果から、僅かな分解率での酵素処理によって、粘度B-粘度Aの値がマイナスになってアミログラフ測定における最高粘度が向上する現象は、澱粉として、ワキシー種を選択することにより得られる特有の効果であることが明らかとなった。 From this result and the results of Test Examples 1 and 2, the phenomenon that the value of viscosity B-viscosity A becomes negative and the maximum viscosity in amylograph measurement is improved by enzymatic treatment at a slight decomposition rate is due to the fact that waxy It was clarified that it is a unique effect obtained by selecting the species.
Claims (4)
<アミログラフ測定条件>
・固形分濃度:溶媒は水で、乾物換算で6重量%に設定する。
・温度条件:下記(1)~(3)の条件で温度制御する。
(1)昇温:50℃から95℃まで30分間で昇温(昇温速度1.5℃/分)。
(2)保持:95℃を15分間保持。
(3)降温:72.5℃まで15分間で降温(降温速度1.5℃/分)。 The relationship between the viscosity A at the start of cooling and the viscosity B at the end of cooling in the amylograph measurement below satisfies viscosity A≧viscosity B, the maximum viscosity in the amylograph measurement below is 1063 BU or more, and the starch is enzyme-treated. , waxy seed tapioca starch.
<Amylog measurement conditions>
・Solid concentration: Water is used as the solvent, and the concentration is set to 6% by weight in terms of dry matter.
・Temperature conditions: Temperature is controlled under the following conditions (1) to (3).
(1) Temperature rising: Temperature rising from 50°C to 95°C in 30 minutes (heating rate 1.5°C/min).
(2) Hold: Hold at 95°C for 15 minutes.
(3) Temperature drop: Temperature drop to 72.5°C in 15 minutes (temperature drop rate 1.5°C/min).
未処理のワキシー種澱粉を、当該澱粉が溶解しない温度で水中に分散させた状態で、澱粉加水分解酵素を作用させ、澱粉の分解率が5%以下となる条件で酵素処理する工程を含む、酵素処理ワキシー種澱粉の製造方法。
<アミログラフ測定条件>
・固形分濃度:溶媒は水で、乾物換算で6重量%に設定する。
・温度条件:下記(1)~(3)の条件で温度制御する。
(1)昇温:50℃から95℃まで30分間で昇温(昇温速度1.5℃/分)。
(2)保持:95℃を15分間保持。
(3)降温:72.5℃まで15分間で降温(降温速度1.5℃/分)。 A method for producing waxy seed starch, which is enzymatically treated starch, wherein the relationship between viscosity A at the start of cooling and viscosity B at the end of cooling in the following amylograph measurement satisfies viscosity A≧viscosity B,
A step of enzymatically treating untreated waxy seed starch in a state where it is dispersed in water at a temperature at which the starch does not dissolve, and then acting with a starch hydrolase under conditions where the starch degradation rate is 5% or less. A method for producing enzyme-treated waxy seed starch.
<Amylog measurement conditions>
・Solid concentration: Water is used as the solvent, and the concentration is set to 6% by weight in terms of dry matter.
・Temperature conditions: Temperature is controlled under the following conditions (1) to (3).
(1) Temperature rising: Temperature rising from 50°C to 95°C in 30 minutes (heating rate 1.5°C/min).
(2) Hold: Hold at 95°C for 15 minutes.
(3) Temperature drop: Temperature drop to 72.5°C in 15 minutes (temperature drop rate 1.5°C/min) .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018122508 | 2018-06-27 | ||
JP2018122508 | 2018-06-27 | ||
PCT/JP2019/025481 WO2020004506A1 (en) | 2018-06-27 | 2019-06-26 | Waxy starch and production method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020004506A1 JPWO2020004506A1 (en) | 2021-07-08 |
JP7270624B2 true JP7270624B2 (en) | 2023-05-10 |
Family
ID=68984889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020527604A Active JP7270624B2 (en) | 2018-06-27 | 2019-06-26 | Waxy seed starch and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7270624B2 (en) |
WO (1) | WO2020004506A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023090396A1 (en) * | 2021-11-17 | 2023-05-25 | グリコ栄養食品株式会社 | Mouthfeel-improving agent for imparting soft mouthfeel |
JP7267512B1 (en) * | 2022-05-12 | 2023-05-01 | 株式会社日清製粉ウェルナ | Meat modifier for fried food |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008044588A1 (en) | 2006-10-06 | 2008-04-17 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Branched starch derivative, process for production thereof, and molded article comprising the branched starch derivative |
WO2011021372A1 (en) | 2009-08-18 | 2011-02-24 | グリコ栄養食品株式会社 | Food product containing starch gel |
JP2016103992A (en) | 2014-08-08 | 2016-06-09 | グリコ栄養食品株式会社 | Quality improver of processed food |
JP2016116483A (en) | 2014-12-22 | 2016-06-30 | 株式会社林原 | Hardening accelerator for starch gelatinized dough |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55120758A (en) * | 1979-03-09 | 1980-09-17 | Sugiyama Sangyo Kagaku Kenkyusho | Powdering of liquid food and drink |
JP2615398B2 (en) * | 1991-10-31 | 1997-05-28 | 農林水産省食品総合研究所長 | Method for producing starch granules with modified properties |
CH684149A5 (en) * | 1992-06-16 | 1994-07-29 | Nestle Sa | A process for preparing a starchy steady waxy product and product obtained. |
WO2012111326A1 (en) * | 2011-02-16 | 2012-08-23 | グリコ栄養食品株式会社 | Aging-resistant starch granules and method for producing same |
-
2019
- 2019-06-26 JP JP2020527604A patent/JP7270624B2/en active Active
- 2019-06-26 WO PCT/JP2019/025481 patent/WO2020004506A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008044588A1 (en) | 2006-10-06 | 2008-04-17 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Branched starch derivative, process for production thereof, and molded article comprising the branched starch derivative |
WO2011021372A1 (en) | 2009-08-18 | 2011-02-24 | グリコ栄養食品株式会社 | Food product containing starch gel |
JP2016103992A (en) | 2014-08-08 | 2016-06-09 | グリコ栄養食品株式会社 | Quality improver of processed food |
JP2016116483A (en) | 2014-12-22 | 2016-06-30 | 株式会社林原 | Hardening accelerator for starch gelatinized dough |
Non-Patent Citations (3)
Title |
---|
不破英次,他編,澱粉科学の事典(普及版),株式会社 朝倉書店,2010年10月25日,p.194-196 |
二國二郎 監修,澱粉科学ハンドブック,株式会社 朝倉書店,昭和52年7月20日,p.226-228 |
高橋禮治,でん粉製品の知識,株式会社 幸書房,1996年5月25日,p.57-59 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020004506A1 (en) | 2021-07-08 |
WO2020004506A1 (en) | 2020-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4792134B2 (en) | Starch gel-containing food | |
KR102653301B1 (en) | Inhibited waxy starch and method of using the same | |
JP5944839B2 (en) | Anti-aging starch granules and method for producing the same | |
JP7270624B2 (en) | Waxy seed starch and method for producing the same | |
JP7478868B2 (en) | Pregelatinized starch | |
JP2016103992A (en) | Quality improver of processed food | |
US9963581B2 (en) | Food product containing starch gel, starch granule, production method and use thereof | |
EP0799837B1 (en) | Aqueous compositions comprising amylopectin-potatostarch and process for their manufacture | |
JP6998297B2 (en) | Food composition containing starch | |
CN110604287A (en) | A food containing starch gel | |
US20220275110A1 (en) | Waxy Maize Starches and Methods of Making and Using Them | |
JP2016116483A (en) | Hardening accelerator for starch gelatinized dough | |
JP2019097561A (en) | Production method of starch containing food product using enzyme | |
RU2775714C2 (en) | Cross-linked wax starches and their application methods | |
JP2016158573A (en) | Production method of starch-containing food, and method for suppressing viscosity reduction of starch-containing food over time | |
CN110604288A (en) | A food composition containing starch | |
WO2023090396A1 (en) | Mouthfeel-improving agent for imparting soft mouthfeel | |
WO2012111327A1 (en) | Food product containing rice starch gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220413 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220819 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230116 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230116 |
|
C11 | Written invitation by the commissioner to file amendments |
Free format text: JAPANESE INTERMEDIATE CODE: C11 Effective date: 20230131 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230301 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7270624 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |