JPS5826430B2 - Manufacturing method of mild carburizing drill - Google Patents

Manufacturing method of mild carburizing drill

Info

Publication number
JPS5826430B2
JPS5826430B2 JP1574178A JP1574178A JPS5826430B2 JP S5826430 B2 JPS5826430 B2 JP S5826430B2 JP 1574178 A JP1574178 A JP 1574178A JP 1574178 A JP1574178 A JP 1574178A JP S5826430 B2 JPS5826430 B2 JP S5826430B2
Authority
JP
Japan
Prior art keywords
carburizing
drill
mild
cutting
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1574178A
Other languages
Japanese (ja)
Other versions
JPS54108993A (en
Inventor
欣平 飯田
邦男 日下
茂史 丹
信明 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Seiko Co Ltd
Original Assignee
Riken Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Seiko Co Ltd filed Critical Riken Seiko Co Ltd
Priority to JP1574178A priority Critical patent/JPS5826430B2/en
Publication of JPS54108993A publication Critical patent/JPS54108993A/en
Publication of JPS5826430B2 publication Critical patent/JPS5826430B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 高速度鋼製ドリルの表面硬化法としては、主として窒化
法が用いられているが、窒化による表面硬化層は硬さが
非常に高く、Hv (0,2)1000以上になるため
刃先の脆化を1ねく危険があり、最適処理時間の把握が
むつかしい。
Detailed Description of the Invention Nitriding is mainly used as a surface hardening method for high-speed steel drills, but the surface hardening layer created by nitriding has a very high hardness, Hv (0,2) 1000 or more. Because of this, there is a risk of the cutting edge becoming brittle, and it is difficult to determine the optimum processing time.

また窒化処理コストが比較的高く、量産用には適さない
という欠点がある。
Another disadvantage is that the cost of nitriding is relatively high, making it unsuitable for mass production.

高速度鋼のCを高めると焼もどし硬さが上昇し耐摩耗性
が向上するが、一方靭性が低下するので、浸炭によって
表面層のみCを高めれば、耐摩耗性と適度の靭性をかね
そなえることができる。
Increasing the C content of high-speed steel increases the tempering hardness and improves the wear resistance, but on the other hand, the toughness decreases, so increasing the C content of only the surface layer through carburizing can provide both wear resistance and appropriate toughness. be able to.

浸炭とは普通、変態点以上の高温に加熱してCを浸入さ
せることとされているが、高速度鋼を変態点以上で浸炭
すると表面Cが2優以上になり、浸炭深さも1M以上と
なり、いわゆる過剰浸炭となるので、ドリルには適用で
きない。
Carburizing is usually thought to involve heating to a high temperature above the transformation point to infiltrate carbon, but when high speed steel is carburized above the transformation point, the surface C becomes 2 or more, and the carburization depth becomes over 1M. , which results in so-called excessive carburization, so it cannot be applied to drills.

よって本発明者らは、しゆじゆ研究の結果、高速度鋼の
ように、Cr 、W、Mo 、Vなどの合金元素を多量
に含有する鋼においては変態点以下の低温にち・いても
浸炭が可能であり、加熱温度、加熱時間およびガス浸炭
雰囲気組成の制御によって表面C量ならびに浸炭深さを
適当に調節できることを発見した。
Therefore, as a result of extensive research, the present inventors found that steel containing large amounts of alloying elements such as Cr, W, Mo, and V, such as high-speed steel, It was discovered that the amount of surface C and the depth of carburization can be appropriately adjusted by controlling the heating temperature, heating time, and gas carburizing atmosphere composition.

すなわち、変態点以下の浸炭の場合は、変態点以上の場
合にくらべて浸炭速度が小さいので、表面Cを1.1%
前後にコントロールし、また浸炭深さも0.5藺前後と
浅くする緩和浸炭が容易にできることが明らかとなった
In other words, when carburizing below the transformation point, the carburizing rate is lower than when above the transformation point, so the surface C is reduced by 1.1%.
It has become clear that relaxation carburizing can be easily performed by controlling the back and forth and reducing the carburizing depth to around 0.5 mm.

このようにして、本発明者らは、研削lたは切削によっ
て溝加工を行なったドリル半製品を、高速度鋼の変態点
以下の温度すなわち750〜700℃で、表面Cが0.
95〜1.2%、浸炭深さが0.2〜0.6藺になるよ
うな緩和浸炭を行ない、その後、焼入、焼もどしの熱処
理をほどこすことを特徴とする緩和浸炭ドリルの製造法
を確立し、ドリルの切削性能をいちじるしく向上させる
ことに成功した。
In this way, the present inventors produced a drill semi-finished product with a groove formed by grinding or cutting at a temperature below the transformation point of high-speed steel, that is, 750 to 700°C, with a surface C of 0.
Manufacture of a mild carburizing drill characterized by performing mild carburizing such that the carburization depth is 95 to 1.2% and carburizing depth to 0.2 to 0.6 mm, followed by heat treatment of quenching and tempering. They established a new method and succeeded in significantly improving the cutting performance of drills.

ドリルのごとき高速度鋼製切削工具の表面硬化法として
浸炭を行なう場合には、表面Cが1.2優をこえて高く
なると焼入状態で多量の残留オーステナイトが生ずるの
で、これを分解させるため焼もどし回数をいちじるしく
増加させなければならないので好昔しくなく、昔た刃先
の靭性が低下する。
When carburizing is used as a surface hardening method for high-speed steel cutting tools such as drills, if the surface C becomes higher than 1.2, a large amount of retained austenite will be produced in the quenched state. The number of times of tempering must be significantly increased, which is not a good thing, and the toughness of the old cutting edge deteriorates.

また表面Cが0.95 %未満では表面硬化の効果が小
さいので、緩和浸炭ドリルの表面Cは0.95〜1.2
係に限定する必要がある。
Furthermore, if the surface C is less than 0.95%, the effect of surface hardening is small, so the surface C of the mild carburizing drill should be 0.95 to 1.2%.
It is necessary to limit it to those in charge.

また浸炭深さが0.6 msをこえて深くなると刃部の
靭性が低下し、また0、 2 助未満では表面硬化の効
果が小さ〕壷いので、浸炭深さは0.2〜0.6 yn
、mに限定する必要がある。
Furthermore, if the carburizing depth exceeds 0.6 ms, the toughness of the blade part will decrease, and if the carburizing depth is less than 0.2 ms, the effect of surface hardening will be small. 6 yn
, m.

以下、試験結果によって本発明の緩和浸炭ドリルの性能
を説明する。
Hereinafter, the performance of the mild carburizing drill of the present invention will be explained based on test results.

第1表は供試材としたドリルを構成する鋼の化学成分を
示す。
Table 1 shows the chemical composition of the steel that makes up the drill sample.

ガス浸炭は5UJ2線材焼鈍用の連続式雰囲気焼鈍炉(
RX+NXガス、750〜7oo℃)を利用し、緩和浸
炭法としては側面に3φおよび5φ孔をあけた鉄パイプ
中に試料を入れ、両端をふさイテ、これを雰囲気炉に装
入して行なった。
Gas carburizing is performed using a continuous atmosphere annealing furnace for 5UJ2 wire annealing (
Using RX+NX gas (750~7oooC), the relaxed carburizing method was carried out by placing the sample in an iron pipe with 3φ and 5φ holes in the side, closing both ends, and charging this into an atmospheric furnace. .

緩和浸炭のカーボン、ポテンシャルは、鉄パイプ側面に
あけた孔の大きさおよび数を変化させ、パイプ内のCO
ガス濃度をかえることによって調節した。
The carbon, potential of relaxation carburization changes the size and number of holes drilled on the side of the iron pipe, and the CO in the pipe is reduced.
It was adjusted by changing the gas concentration.

なお、連続式雰囲気焼鈍炉の雰囲気ガスはC012〜1
4%、CO20,95〜1.02%でありまた加熱は7
50℃X2hr保持後700’Ctf/※2hrで徐冷
するという温度曲線で行なった。
In addition, the atmosphere gas of the continuous atmosphere annealing furnace is C012~1
4%, CO20.95-1.02% and heating is 7.
The temperature curve was maintained at 50° C. for 2 hours and then slowly cooled at 700'Ctf/*2 hours.

第2表は、試験に用いた緩和浸炭の方法と、SKH9の
浸炭層C%を示したものである。
Table 2 shows the mild carburizing method used in the test and the carburized layer C% of SKH9.

すなわち、底を溶接した内径50、長さ300vt、v
tの鉄パイプ側面に3φ孔を3個、5個および8個あけ
たパイプならびに5φ孔を5個あけたパイプの中にSK
H9丸棒試料を入れ、他端をふさいだのち連続式雰囲気
焼鈍炉中に装入して加熱したのち、表面より0.1mず
つ旋削し、その切粉のCを分析した結果である。
That is, the bottom welded inner diameter 50, length 300vt, v
SK in the pipe with 3, 5, and 8 3φ holes drilled on the side of the iron pipe of t, and the pipe with 5 5φ holes drilled in the side.
This is the result of inserting an H9 round bar sample, closing the other end, inserting it into a continuous atmosphere annealing furnace, heating it, turning it in steps of 0.1 m from the surface, and analyzing the C of the chips.

A法によるときは表面C1,02%、浸炭深さは0.4
0藺、B法の場合は表面C1,09俤、浸炭深さ0.4
5m、C法の場合は表面C1,171:ib、浸炭深さ
0.45藺、またB法の場合は表面C1,26%。
When using method A, the surface C is 1.02% and the carburization depth is 0.4.
For method B, surface C1.09, carburizing depth 0.4
5m, in case of C method, surface C1,171:ib, carburization depth 0.45m, and in case of B method, surface C1,26%.

浸炭深さ0245闘を示した。The carburization depth was 0245 mm.

つぎに、これらのパイプの中に研削により溝加工を行な
った11.65mmφのドリル半製品を入れ、封をした
のち、雰囲気炉内に装入して緩和浸炭を行ない、その後
、焼入、焼もどしの熱処理をほどこし、電解研摩、セン
タレス研削(研削代、径で0.1571.、)、2番取
り、刃付は釦よびホモ処理を行なって試験ドリルを製造
した。
Next, semi-finished drills with a diameter of 11.65 mm that have been grooved by grinding are placed in these pipes, sealed, and then placed in an atmospheric furnace for mild carburization, followed by quenching and quenching. A test drill was manufactured by performing a restoring heat treatment, electrolytic polishing, centerless grinding (grinding allowance, diameter: 0.1571.), second recess, and button and homo treatment for the blade.

第3表は、この試験ドリルを用いて 5K7(HB223)を被削材としたときの切削試験結
果を示したものである。
Table 3 shows the cutting test results when using this test drill and using 5K7 (HB223) as the work material.

切削条件としては、回転数780r、plrrk 切
削速度28.2m/min、送り0.3 rn、yty
’rev1、穴深さは40m、yn盲穴とし、ジョンソ
ンワックスJR570水溶性の切削油を使用した。
The cutting conditions are: rotation speed 780r, plrrk cutting speed 28.2m/min, feed 0.3rn, yty
'rev1, hole depth was 40 m, yn blind hole, and Johnson Wax JR570 water-soluble cutting oil was used.

使用機械は岩田自動ボール盤YUD 680である。The machine used is Iwata automatic drilling machine YUD 680.

緩和浸炭を行わない通常処理ドリルは穴あけ数50とい
う切削性能を示した。
The normally processed drill without mild carburizing showed cutting performance of 50 holes.

これに対し、緩和浸炭方法Aの場合は、ドリルの表面C
は1.02%。
On the other hand, in the case of mild carburizing method A, the drill surface C
is 1.02%.

浸炭深さ0.35 m、、であるが、穴あけ数は63に
向上した。
The carburizing depth was 0.35 m, but the number of holes drilled increased to 63.

また緩和浸炭方法Bの場合は、ドリルの表面Cは1.0
7%、浸炭深さ0.40m、mとなり、穴あけ数は73
と著るしく切削性能の向上を示した。
In addition, in the case of mild carburizing method B, the surface C of the drill is 1.0
7%, the carburizing depth is 0.40m, and the number of holes drilled is 73.
This showed a marked improvement in cutting performance.

つぎに緩和浸炭方法Cの場合は、ドリル表面Cは*※1
.12%X浸炭深さ0.40T1712となり、穴あけ
数は70を示した。
Next, in the case of mild carburizing method C, the drill surface C is **1
.. The carburizing depth was 12% x 0.40T1712, and the number of holes drilled was 70.

以上より明らかなごとく、被削材が5K7(HB223
)の場合、緩和浸炭ドリルは通常処理ドリル(ホモ処理
ドリル)の1.26〜1.46倍の穴あけ数を示し、切
削性能が論ちじるしく向上する。
As is clear from the above, the work material is 5K7 (HB223
), the mild carburizing drill drills 1.26 to 1.46 times as many holes as the normal process drill (homo process drill), and the cutting performance is significantly improved.

次に第4表はHRC41に調質されたSKD 61を被
削材としたとき緩和浸炭ドリルの切削試験結果を示した
ものである。
Next, Table 4 shows the cutting test results of a mild carburizing drill when SKD 61 tempered to HRC41 was used as the work material.

切削条件としては回転数42 Or、pom、切削速度
15.2m/min、 送り0、123pun/re
v、、30ma盲穴とし、切削油としてはジョンソンワ
ックスJR570水溶性を用いた。
The cutting conditions are rotation speed 42 Or, pom, cutting speed 15.2m/min, feed 0, 123pun/re.
A 30 ma blind hole was used, and Johnson Wax JR570 water-soluble was used as the cutting oil.

通常処理ドリルが穴あけ数20の切削性能を示したのに
たいし、方法Aの緩和浸炭ドリルは、表面C1,02%
、浸炭深さ0.35.であるが、穴あけ数は27に向上
した。
While the normal treatment drill showed cutting performance with 20 holes drilled, the mild carburizing drill of method A had a surface C of 1.02%.
, carburizing depth 0.35. However, the number of holes drilled increased to 27.

また方法Bの緩和浸炭ドリルは表面C1,07%、浸炭
深さ0.40772Jとなり、穴あけ数は32と、いち
じるしく切削性能の向上を示した。
In addition, the mild carburizing drill of Method B had a surface C of 1.07%, a carburizing depth of 0.40772 J, and the number of holes drilled was 32, showing a marked improvement in cutting performance.

つぎに方法Cの緩和浸炭ドリルは表面C1,12%、浸
炭深さ0.40vanとなり、穴あけ数は30に向上し
た。
Next, the mild carburizing drill of method C had a surface C of 1.12%, a carburizing depth of 0.40 van, and the number of holes drilled increased to 30.

以上より明らかなごとく、被削材がHRC41と硬い場
合には、被削材が軟らかいSK7の場合よりも、緩和浸
炭ドリルの切削性能の向上は大である。
As is clear from the above, when the work material is hard as HRC41, the improvement in cutting performance of the relaxation carburizing drill is greater than when the work material is soft SK7.

以上説明したごとく、本発明の緩和浸炭ドリルの製造法
は、研削または切削によってドリルの溝加工を行なった
のち、高速度鋼の変態点以下の温度、たとえば750〜
700℃において、表面Cを1.1係前後、浸炭深さを
0.40m5前後になるような緩和浸炭を行ない、その
後、焼入、焼もどしの熱処理をほどこし、電解研摩、セ
ンタレス研摩、2番取り、刃付、およびホモ処理を行な
うことを特徴とし、この方法によって製造された緩和浸
炭ドリルは、軟質材ならびに高硬度調質材に対する穴あ
け切削性能をいちじるしく向上させることが可能である
As explained above, the manufacturing method of the mild carburizing drill of the present invention involves forming grooves on the drill by grinding or cutting, and then cutting the drill at a temperature below the transformation point of high-speed steel, e.g.
Mild carburization is performed at 700°C so that the surface C is around 1.1 mm and the carburizing depth is around 0.40 m5, followed by heat treatment of quenching and tempering, followed by electrolytic polishing, centerless polishing, and No. 2 polishing. The mild carburizing drill manufactured by this method, which is characterized by performing drilling, cutting, and homo-processing, can significantly improve the drilling and cutting performance of soft materials and high-hardness tempered materials.

Claims (1)

【特許請求の範囲】[Claims] 1 研削または切削によってドリルの溝加工を行なった
のち、高速度鋼の変態点以下の温度に督いて、表面Cが
0.95〜1.2宏浸炭深さが0.2〜0.6關になる
ような緩和浸炭を行ない、その後焼入、焼もどしの熱処
理をほどこすことを特徴とする高速度鋼製緩和浸炭ドリ
ルの製造方法。
1. After machining the drill groove by grinding or cutting, maintain the temperature below the transformation point of high-speed steel so that the surface C is 0.95 to 1.2 mm and the carburization depth is 0.2 to 0.6 mm. 1. A method for producing a high-speed steel relaxed carburizing drill, which is characterized by performing relaxing carburizing so that the drill becomes quenched, followed by heat treatment of quenching and tempering.
JP1574178A 1978-02-14 1978-02-14 Manufacturing method of mild carburizing drill Expired JPS5826430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1574178A JPS5826430B2 (en) 1978-02-14 1978-02-14 Manufacturing method of mild carburizing drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1574178A JPS5826430B2 (en) 1978-02-14 1978-02-14 Manufacturing method of mild carburizing drill

Publications (2)

Publication Number Publication Date
JPS54108993A JPS54108993A (en) 1979-08-27
JPS5826430B2 true JPS5826430B2 (en) 1983-06-02

Family

ID=11897177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1574178A Expired JPS5826430B2 (en) 1978-02-14 1978-02-14 Manufacturing method of mild carburizing drill

Country Status (1)

Country Link
JP (1) JPS5826430B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200038999A1 (en) * 2018-08-03 2020-02-06 Fanuc Corporation Control device for laser machining apparatus, and laser machining apparatus
US10712669B2 (en) 2015-12-30 2020-07-14 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
US10928736B2 (en) 2015-12-30 2021-02-23 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
DE102019211487B4 (en) 2018-08-03 2023-06-01 Fanuc Corporation CONTROL DEVICE FOR A LASER PROCESSING DEVICE AND LASER PROCESSING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858271A (en) * 1981-10-02 1983-04-06 Seiko Instr & Electronics Ltd Manufacture of parts for timepiece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712669B2 (en) 2015-12-30 2020-07-14 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
US10928736B2 (en) 2015-12-30 2021-02-23 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
US20200038999A1 (en) * 2018-08-03 2020-02-06 Fanuc Corporation Control device for laser machining apparatus, and laser machining apparatus
DE102019211487B4 (en) 2018-08-03 2023-06-01 Fanuc Corporation CONTROL DEVICE FOR A LASER PROCESSING DEVICE AND LASER PROCESSING DEVICE
DE102019211417B4 (en) 2018-08-03 2023-06-01 Fanuc Corporation Control device for a laser processing device, and laser processing device

Also Published As

Publication number Publication date
JPS54108993A (en) 1979-08-27

Similar Documents

Publication Publication Date Title
JP4390576B2 (en) Rolling member
EP1669469B1 (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
TW200925286A (en) Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same
WO1999034023A1 (en) Continuous annealing furnace, rolling bearing, annealing method, and method of manufacturing inner and outer races of deeply groove ball bearing
JP2005090680A (en) Rolling bearing part and method of manufacturing the same
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
US7169238B2 (en) Carbide method and article for hard finishing resulting in improved wear resistance
JP3787663B2 (en) Heat treatment method for rolling bearings
BR112013012641B1 (en) HIGH CARBON CHROME BEARING STEEL AND SAME PRODUCTION METHOD
US4202710A (en) Carburization of ferrous alloys
CN101215670A (en) Ship lock mushroom head, mushroom head cap and processing method thereof
JPS5826430B2 (en) Manufacturing method of mild carburizing drill
CN110592331B (en) Heat treatment production method for cast steel wear-resistant part
CN104481410A (en) High-hardness wear-resistant rock drill manufacturing method
JP2009102733A (en) Method for producing rolling member
JP4193145B2 (en) Manufacturing method of gear excellent in tooth surface strength and gear excellent in tooth surface strength
EP3797894B1 (en) Method for manufacturing forged article
JPH01503790A (en) Method of low-temperature carbonitriding of steel slabs
JPS62994B2 (en)
JPH01201459A (en) Parts combining high toughness with wear resistance
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP4963918B2 (en) Method for annealing low carbon steel containing Cr
JPS60177167A (en) High-speed steel drill
JPS6040504B2 (en) Resistance alloy soft chamber steel with excellent machinability
CN112981306B (en) High-wind-pressure down-the-hole drill bit and preparation method thereof