JPS5826422B2 - Manufacturing method of Ferronitskel - Google Patents

Manufacturing method of Ferronitskel

Info

Publication number
JPS5826422B2
JPS5826422B2 JP2205976A JP2205976A JPS5826422B2 JP S5826422 B2 JPS5826422 B2 JP S5826422B2 JP 2205976 A JP2205976 A JP 2205976A JP 2205976 A JP2205976 A JP 2205976A JP S5826422 B2 JPS5826422 B2 JP S5826422B2
Authority
JP
Japan
Prior art keywords
ore
furnace
heavy oil
reduction
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2205976A
Other languages
Japanese (ja)
Other versions
JPS52105517A (en
Inventor
幸保 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2205976A priority Critical patent/JPS5826422B2/en
Publication of JPS52105517A publication Critical patent/JPS52105517A/en
Publication of JPS5826422B2 publication Critical patent/JPS5826422B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、ロータリーキルン等の仮焼炉による仮焼工程
と電気炉等の還元溶解炉による溶解工程との組合せでフ
ェロニッケルを製造する方法の改善に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing ferronickel through a combination of a calcination process using a calcination furnace such as a rotary kiln and a melting process using a reduction melting furnace such as an electric furnace.

酸化ニッケル鉱を原料としてフェロニッケルを製造する
のに、電気炉法、溶鉱炉法、クルツプレン法等各種の方
式が採用されてきたが、最近は電気炉法が主力となりつ
つある。
Various methods have been used to produce ferronickel using nickel oxide ore as a raw material, such as the electric furnace method, the blast furnace method, and the Kurtzprene method, but recently the electric furnace method has become the main method.

電気炉法は酸化ニッケル鉱をロータリーキルン等の仮焼
炉で仮焼しそして後それらを電気炉に装入してフェロニ
ッケルを得る方法である。
The electric furnace method is a method in which nickel oxide ore is calcined in a calcining furnace such as a rotary kiln, and then charged into an electric furnace to obtain ferronickel.

この電気炉法において、電気炉の使用効率の増大即ちエ
ネルギー原単位の減少及びフェロニッケル製造工程のコ
スト低減を計る目的で、ロータリーキルン等で単に原料
鉱石を仮焼するだけでなくそこに含まれるニッケルおよ
び鉄の一部ないしは全部をあらかじめ還元した後電気炉
での処理を行うのが有利であるとされている。
In this electric furnace method, for the purpose of increasing the usage efficiency of the electric furnace, that is, reducing the energy consumption rate and reducing the cost of the ferronickel manufacturing process, the raw material ore is not only calcined in a rotary kiln etc., but also the nickel contained therein is It is said to be advantageous to reduce some or all of the iron beforehand and then process it in an electric furnace.

この目的に対して幾つかの方法が提唱されてきた。Several methods have been proposed for this purpose.

例えば、微粉鉱石を流動床に装入しそしてこれに高温の
還元ガスを吹込む方法や塊鉱あるいは団粒処理をした鉱
石を竪型炉の上部より装入して下部より高温の還元ガス
を吹込む方法があった。
For example, fine ore is charged into a fluidized bed and high-temperature reducing gas is blown into it, or lump ore treated with aggregates is charged from the top of a vertical furnace and high-temperature reducing gas is injected from the bottom. There was a way to inject it.

しかしこれら方法は還元ガス製造装置を設置することを
必要とし、その為電気炉装入前の予備還元処理によるコ
スト上のメリットが少なくなり、また還元ガスの利用率
が低く排ガス中に還元ガスが含まれるので排ガス処理を
することも必要であった。
However, these methods require the installation of reducing gas production equipment, which reduces the cost advantage of preliminary reduction treatment before charging the electric furnace, and the utilization rate of reducing gas is low, resulting in reducing gas being contained in the exhaust gas. It was also necessary to treat the exhaust gas.

更に別の方法として、鉱塊または団粒処理した鉱石と炭
素質還元剤とを混合して竪型炉上部より装入しそして下
部より加熱用燃料の高温燃焼ガスを吹込む方法が提案さ
れた。
Yet another method has been proposed, in which a mixture of ore treated with ore ore and a carbonaceous reducing agent is charged from the top of a vertical furnace, and high-temperature combustion gas as heating fuel is blown from the bottom. .

しかし、この方法は装入物の整粒を不可欠とし、このた
め前処理に多額の経費を必要とした。
However, this method requires sizing of the charge, which requires a large amount of expense for pretreatment.

排ガス中に少量含まれる還元ガスを処理する為、排ガス
処理設備を必要とすることも先と同様であった。
As before, exhaust gas treatment equipment was required to treat the reducing gas contained in the exhaust gas in small amounts.

更に別の方法として、鉱塊または団粒処理をした鉱石を
固体炭素質還元剤と混和してロータリーキルンに装入し
そして加熱用燃料の燃焼ガスと還元剤との反応により生
成したCO,H2により還元する方法が提唱された。
Still another method is to mix ore treated with ore with a solid carbonaceous reducing agent and charge it into a rotary kiln. A method of restitution was proposed.

この方法は設備面では有利な方法であるが、鉱石と還元
剤との均一なる混合が困難でありキルンから放出される
鉱石の還元度にばらつきが多く、また燃料の燃焼ガス中
に含まれる酸素により還元鉱石の再酸化が起るという由
々しき欠点を呈した。
Although this method is advantageous in terms of equipment, it is difficult to mix the ore and reducing agent uniformly, and the degree of reduction of the ore discharged from the kiln varies widely, and the oxygen contained in the combustion gas of the fuel This presented a serious drawback in that reoxidation of the reduced ore occurred.

最近、均一な混合を計る目的で重油のような液体状炭素
質還元剤を鉱石及び炭材に加えて造粒した後ロータリー
キルン、流動焙焼炉等に装入することが報告された(特
開昭49−64503)。
Recently, it has been reported that for the purpose of uniform mixing, a liquid carbonaceous reducing agent such as heavy oil is added to ore and carbonaceous material, granulated, and then charged into a rotary kiln, fluidized roasting furnace, etc. (Sho 49-64503).

しかし、この方法は、重油等の液体状炭素質還元剤を添
加して造粒するため、得られる団粒の強度が弱くなると
いう致命的な欠点を有した。
However, this method had a fatal drawback in that the strength of the resulting aggregates was weakened because the granulation was performed by adding a liquid carbonaceous reducing agent such as heavy oil.

団粒の強度が低い為焙焼中装入団鉱が粉化する傾向が強
く、従ってダストの発生率が著しく増大する。
Since the strength of the briquettes is low, there is a strong tendency for the charged briquettes to become powder during roasting, resulting in a significant increase in the rate of dust generation.

更に、ロータリーキルンを用いる場合、キルン内の還元
帯に達する前に添加した重油が揮発するため還元剤とし
ての利用効率が低く、余分の添加が必要である。
Furthermore, when a rotary kiln is used, the added heavy oil volatilizes before reaching the reduction zone in the kiln, so its utilization efficiency as a reducing agent is low, and extra addition is required.

別の重大な欠点として、融点の低い還元鉱がキルン内の
最高温度域を通過するに際して、粘稠性のきわめて高い
半融体となってキルン内面に沿って付着し、所謂リング
トラブルを不可避的に発生し、操業がきわめて不安定と
なる。
Another serious drawback is that when reduced ore with a low melting point passes through the highest temperature range in the kiln, it becomes an extremely viscous semi-molten material that adheres to the inner surface of the kiln, inevitably causing so-called ring trouble. Occurs during this period, making operations extremely unstable.

もう一つの欠点として、出鉱日付近づ燃焼ガス中に含ま
れる酸素による還元鉱の再酸化を回避しえないことが挙
げられる。
Another drawback is that it is not possible to avoid reoxidation of the reduced ore by oxygen contained in the combustion gas near the ore release date.

これらの問題点を解決する為に、不発明者は最初、ロー
タリーキルン内に直接重油等の還元剤を吹込むことを試
みた。
In order to solve these problems, the inventors first attempted to inject a reducing agent such as heavy oil directly into the rotary kiln.

しかし、このように重油をロータリーキルン内深部に鉱
石上に単に噴霧するだけでは、ダスト発生問題が軽減さ
れるとは云えJ斧上述したリングドラフル及び再酸化問
題は依然として解消されない。
However, simply spraying heavy oil deep inside the rotary kiln onto the ore does not solve the ring druffle and reoxidation problem described above, although the problem of dust generation can be alleviated.

鉱石上に単に重油を噴霧するだけでは、キルン内で鉱石
が転動しているとはいえ、重油と鉱石との接触は必ずし
も良好でなく、重油の浸透は予想した程にははかばかし
くなかった。
Simply spraying heavy oil onto the ore did not necessarily result in good contact between the heavy oil and the ore, even though the ore was rolling in the kiln, and penetration of the heavy oil was not as rapid as expected.

更に、重油吹込みランスが高温域にまで伸びている為損
傷しやすいという追加的欠点も見出された。
Furthermore, an additional drawback was found in that the heavy oil injection lance extends into a high temperature range and is easily damaged.

種々の検討を重ねた結果、本発明者は酸化ニッケル鉱は
約500℃以上に保持されているなら重油等により容易
に還元しうろことを知見した。
As a result of various studies, the present inventor found that nickel oxide ore can be easily reduced by heavy oil or the like if kept at a temperature of about 500° C. or higher.

この確認に当って、ニッケル鉱石をアルミナ製るつぼに
装入し、試験用電気炉で所定温度まで加熱し、その所定
温度に保持したまま鉱石層を貫通するアルミナ製パイプ
を通して還元剤としてC重油を添加することにより鉱石
中に含まれるニッケル及び鉄の還元率を調べた。
To confirm this, nickel ore was charged into an alumina crucible, heated to a predetermined temperature in an electric test furnace, and C heavy oil was added as a reducing agent through an alumina pipe that penetrated the ore layer while maintaining the predetermined temperature. The reduction rate of nickel and iron contained in the ore was investigated by adding nickel and iron.

この実験の重油と鉱石の接触時間は10分程度であった
が、下表に示す如く、原料鉱石が500℃以上にあるな
ら、ニッケルについては約10係鉄については9%の還
元率が得られることがわかった。
The contact time between heavy oil and ore in this experiment was about 10 minutes, but as shown in the table below, if the raw ore is at a temperature of 500°C or higher, a reduction rate of about 9% for nickel and 10% iron can be obtained. I found out that it can be done.

そして、通常型式のロータリーキルン等の仮焼炉におい
ては出鉱口近くに500℃以上の温度帯域が通常存在す
るから、その帯域で還元反応を行わせてやれば上述した
幾つかの問題が一挙に解決されることを確認した。
In calcining furnaces such as regular rotary kilns, there is usually a temperature zone of 500°C or higher near the ore outlet, so if the reduction reaction is carried out in that zone, several of the problems mentioned above will be solved at once. Confirmed that it is resolved.

本発明は、概略的に述べるなら、酸化ニッケル鉱を仮焼
炉内で仮焼し次いで還元溶解炉で還元溶解してフェロニ
ッケルを製造する方法において。
Briefly, the present invention relates to a method for producing ferronickel by calcining nickel oxide ore in a calcining furnace and then reducing and melting it in a reduction melting furnace.

仮焼炉の最高温度帯域を外れたその出鉱口付近の帯域に
おいて500℃以上に保持された仮焼ずみ鉱石に重油、
天然ガス等の炭素質還元流体を添加して、鉱石中の酸化
ニッケルおよび酸化鉄の一部または全部を還元し、斯か
る後還元溶解炉に装入することを特徴とするフェロニッ
ケルの製造方法を提供する。
Heavy oil,
A method for producing ferronickel, which comprises adding a carbonaceous reducing fluid such as natural gas to reduce some or all of the nickel oxide and iron oxide in the ore, and charging the resulting post-reduction melting furnace. I will provide a.

特に還元流体の鉱石への添加は鉱石中に埋入されている
ランスを通して行うのが好ましい。
In particular, it is preferable to add the reducing fluid to the ore through a lance embedded in the ore.

更に、後述するように、重油添加は仮焼炉出鉱口から還
元溶解炉に至る過程例えばサージホッパ内で行っても同
様の結果が得られることがわかった。
Furthermore, as will be described later, it has been found that similar results can be obtained even if heavy oil is added in the process from the calciner outlet to the reduction melting furnace, for example in the surge hopper.

以下、本発明方法について具体的に説明する。The method of the present invention will be specifically explained below.

本発明においては、先ず酸化ニッケル鉱は、従来からの
仮焼と同様の操作で、そこに3〜5%程度の固体炭素質
還元剤を混入してロータリーキルン等の仮焼炉内に装入
される。
In the present invention, nickel oxide ore is first mixed with about 3 to 5% of a solid carbonaceous reducing agent and charged into a calcining furnace such as a rotary kiln in the same manner as conventional calcining. Ru.

装入された鉱石は炉内の最高温度帯域へと進みその進行
の間に充分に仮焼される。
The charged ore advances to the highest temperature zone in the furnace and is sufficiently calcined during its progress.

この過程では還元流体の添加は一切為されておらず、従
って上述したリングドラフル等の問題を生ずることなく
鉱石は充分に仮焼される。
In this process, no reducing fluid is added, and therefore, the ore is sufficiently calcined without causing problems such as the ring druffle described above.

最高温度帯域を通過すると、仮焼ずみの鉱石は出鉱口に
向って進んでいく。
After passing through the highest temperature zone, the calcined ore advances toward the ore outlet.

例えば、75??Z長さのロータリーキルンの場合最高
温度帯域から出鉱口までの距離は一般に1〜10??Z
程度である。
For example, 75? ? In the case of a Z-length rotary kiln, the distance from the highest temperature zone to the ore outlet is generally 1 to 10 mm. ? Z
That's about it.

最高温度帯域から出鉱口に至る帯域において仮焼ずみの
鉱石が500℃以上に保持されている間に重油、天然ガ
ス等の還元用流体が添加される。
A reducing fluid such as heavy oil or natural gas is added while the calcined ore is maintained at 500° C. or higher in the zone from the highest temperature zone to the ore outlet.

還元用流体噴出用のランスは、それが鉱石中に埋入され
ているように炉底から僅かの間隔を置いて出鉱口から炉
内に伸延している。
A reducing fluid injection lance extends into the furnace from the ore tap at a short distance from the furnace bottom so that it is embedded in the ore.

ロータリーキルンにおいて、鉱石はキルン横断面積の1
0〜15係を占めているのが通例であるから、ランスが
鉱石中に埋もれているように適宜ランスを位置決めすれ
ばよい。
In a rotary kiln, the ore is
Since it is customary that the lance occupies sections 0 to 15, the lance may be appropriately positioned so that it is buried in the ore.

本発明においては重油等の添加が鉱石堆積層内部で為さ
れるので、鉱石堆積層表面上に噴霧する方法に較べて、
堆積層内部の鉱石にまで充分に還元作用がもたらされる
In the present invention, since the addition of heavy oil etc. is done inside the ore pile layer, compared to the method of spraying onto the surface of the ore pile layer,
A sufficient reduction effect is brought to the ore inside the sedimentary layer.

鉱石粒間隙を通して立ち昇る未反応の還元ガスは鉱石表
面で燃焼ガス中の酸素と反応して燃焼することにより還
元鉱の再酸化を防止すると共に、鉱石温度を上昇せしめ
る作用をなし、それにより更に還元を促進する。
The unreacted reducing gas that rises through the gaps between ore grains reacts with oxygen in the combustion gas on the surface of the ore and burns, thereby preventing re-oxidation of the reduced ore and increasing the ore temperature. Promote giving back.

還元流体として重油が用いられる場合、鉱石粒表面に分
解炭素が付着するが、この炭素はきわめて活性に富むた
め鉱石の還元により生成した二酸化炭素ならびに水と反
応して一酸化炭素、水素等を生威し、還元作用に追加的
な寄与をもたらす。
When heavy oil is used as a reducing fluid, decomposed carbon adheres to the surface of ore grains, but this carbon is extremely active and reacts with carbon dioxide and water produced by ore reduction to produce carbon monoxide, hydrogen, etc. and provide an additional contribution to the reduction action.

使用する炭素質還元流体としては重油、天然ガス等の還
元性のあるガス等が使用でき、そしてその噴入量および
必要とする接触時間等の条件は炉の特性、鉱石の温度お
よび種類、噴入圧力、目的とする還元度により適宜選択
することが必要である。
Reducing gases such as heavy oil and natural gas can be used as the carbonaceous reducing fluid, and conditions such as the amount of injection and the required contact time depend on the characteristics of the furnace, the temperature and type of ore, and the injection amount. It is necessary to select it appropriately depending on the input pressure and the desired degree of reduction.

例えば、重油を使用して、700℃での鉄の還元率は接
触時間が5分の場合16係であり、10分では21係、
15分では23係であるが、8000Cの場合には上記
時間でそれぞれ26係、29係及び31係となる。
For example, using heavy oil, the reduction rate of iron at 700°C is 16 times when the contact time is 5 minutes, 21 times when the contact time is 10 minutes,
In 15 minutes, there are 23 stations, but in the case of 8000C, there are 26 stations, 29 stations, and 31 stations, respectively, in the above time.

還元流体噴入用のランスは特に限定はなく一般に用いら
れている水冷式のランスパイプで十分である。
The lance for injecting the reducing fluid is not particularly limited, and a commonly used water-cooled lance pipe is sufficient.

炉内奥深くまでは伸延されないため、強度面でも従来の
ランスで充分である。
Since the lance is not extended deep into the furnace, a conventional lance is sufficient in terms of strength.

本発明に従えば、炭素質還元流体の添加が、炉内の最高
温度帯域を外れた所で為されるので、上述したリングト
ラブルは起らず、また再酸化問題も生じない。
According to the present invention, the carbonaceous reducing fluid is added outside the highest temperature zone in the furnace, so the ring trouble described above does not occur, and the reoxidation problem does not occur.

最高温度帯域までは還元流体が加えられないので、ダス
トの発生を伴うことなく安定した仮焼処理を行うことが
できる。
Since the reducing fluid is not added up to the maximum temperature range, stable calcining can be performed without generating dust.

噴入ランスを出鉱口から炉内に鉱石中に埋入された状態
で伸延せしめるので、還元流体と鉱石との接触効率は良
好であり、併せてランスの損傷にも問題は生じない。
Since the injection lance is extended from the ore outlet into the furnace while being embedded in the ore, the efficiency of contact between the reducing fluid and the ore is good, and there is no problem with damage to the lance.

特に、先行技術に見られたリングトラブル問題が生じな
いことは、それが発生すると炉の休止及び厄介な付着物
の除去作業を必要とすることを考える時、本発明の効果
として特筆すべきものである。
In particular, the fact that the ring trouble problem seen in the prior art does not occur is noteworthy as an effect of the present invention, considering that when such trouble occurs, it is necessary to shut down the furnace and remove troublesome deposits. be.

以上の説明において、炭素質還元流体は炉内の出鉱口か
ら最高温度帯域に至る帯域に鉱石が500°C以上に保
持されている間に添加されるものとして言及した。
In the above description, the carbonaceous reducing fluid is added to the zone from the ore outlet to the highest temperature zone in the furnace while the ore is maintained at 500° C. or higher.

しかし、本発明は、仮焼炉において最高温度帯域から出
鉱口までの鉱石滞留時間が短い時には、炉外に或いは炉
の延長上に付設して炭素質還元流体を添加する為の室を
設けて、その内部で還元処理を行うことをも包括するも
のである。
However, in the present invention, when the residence time of ore from the highest temperature zone to the ore outlet in the calcining furnace is short, a chamber for adding carbonaceous reducing fluid is provided outside the furnace or on an extension of the furnace. It also includes performing reduction processing within the system.

仮焼鉱の温度が500℃以上に保持されているなら、所
期の目的を十分に果すことができよう。
If the temperature of the calcined ore is maintained at 500°C or higher, the intended purpose can be satisfactorily achieved.

更に、この考えを拡大して、仮焼炉出鉱口から還元溶解
炉に至る仮焼鉱運搬乃至は貯蔵過程において、還元流体
と仮焼鉱との接触をもたらすようにすることもできる。
Furthermore, this idea can be extended to bring the reducing fluid into contact with the calcined ore during the transportation or storage process of the calcined ore from the calciner outlet to the reduction melting furnace.

一般に、仮焼炉の出鉱口から放出された仮焼ずみ鉱石は
、サージタンク等の収集容器に受取られた後、還元溶解
用電気炉の上方に位置づけられたホッパに送られる。
Generally, the calcined ore discharged from the outlet of the calciner is received in a collection container such as a surge tank and then sent to a hopper located above the electric furnace for reduction and melting.

出鉱口から収集容器の間に或いは収集容器からホッパに
至る間に還元用設備を介在せしめてもよいし、またサー
ジタンク等の収集容器或いはホッパ自体の内部で還元を
行ってもよい。
Reduction equipment may be interposed between the ore outlet and the collection vessel or between the collection vessel and the hopper, or the reduction may be carried out within the collection vessel such as a surge tank or the hopper itself.

サージタンク、ホッパ等の貯蔵タンクの底部に噴霧用ラ
ンスを挿設して重油等を仮焼鉱堆積層中に噴出すること
により、上述した仮焼炉内での重油等の添加と実質上回
等の接触効果が得られる。
By inserting a spray lance into the bottom of a storage tank such as a surge tank or hopper and spouting heavy oil, etc. into the calcined ore accumulation layer, it is possible to substantially exceed the addition of heavy oil, etc. in the calciner mentioned above. Such contact effects can be obtained.

こうすれば、炉外での還元流体の添加であるから、上述
の問題は一切起らない。
In this case, since the reducing fluid is added outside the furnace, the above-mentioned problems will not occur at all.

別様には、還元用流体と仮焼鉱との接触効率な高める為
に、重油等の直接的噴射以外に、落下中の仮焼鉱流れと
交差して還元流体を吹付けたり或いは従来からの気−固
及び液−固接触方法を適宜応用することもできる。
In another way, in order to increase the contact efficiency between the reducing fluid and the calcined ore, in addition to direct injection of heavy oil, etc., reducing fluid may be sprayed across the falling calcined ore flow, or conventional methods may be used. Gas-solid and liquid-solid contact methods can also be applied as appropriate.

重油等の噴射によって発生する還元性ガスを吸引回収し
うる場所が望ましいことは言うまでもない。
Needless to say, a location where reducing gas generated by injection of heavy oil or the like can be sucked and recovered is desirable.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1 74m長さX 3.5 m直径のロータリーキルン内に
セレベス産酸化ニッケル鉱石とその乾量に基いて単位ト
ン当り35Kgの石炭とを混合したものを国ホ装入した
Example 1 A mixture of nickel oxide ore from Celebes and 35 kg of coal per ton based on its dry weight was charged into a rotary kiln of 74 m length x 3.5 m diameter.

ロータリーキルン出鉱口にはそこから炉内奥2m範囲に
わたって重油を鉱石堆積層中に噴出しうる水冷ランシン
グパイプを装備した。
The rotary kiln's ore outlet is equipped with a water-cooled lancing pipe that can spout heavy oil into the ore deposits over a range of 2m deep inside the furnace.

この2m範囲は鉱石の滞留時間としては約1o分に相当
した。
This 2m range corresponded to about 10 minutes of ore residence time.

ランシングパイプからC重油を乾量基準で鉱石単位トン
当り61噴入した。
C heavy oil was injected from the Lansing pipe at a rate of 61 tons per ton of ore on a dry basis.

加熱用の重油の量は鉱石乾量トン当り707であった。The amount of heavy oil for heating was 707 per dry ton of ore.

キルンから回収された仮焼ずみの還元鉱をブロムメタノ
ール法で分析したところ次の値を得た。
When the calcined reduced ore recovered from the kiln was analyzed using the bromo-methanol method, the following values were obtained.

供試鉱石の組成及び従来法による仮焼ずみ鉱石の組成を
併せて示す。
The composition of the test ore and the composition of the calcined ore produced by the conventional method are also shown.

実施例 2 80m長さX 3.5 mTM、径のロータリーキルン
内にニューカレドニア島産の酸化ニッケル鉱石と石炭と
を実施例1と同じ割合で混合して装入し、仮嘴林焼を行
った。
Example 2 Nickel oxide ore from New Caledonia and coal were mixed in the same ratio as in Example 1 and charged into a rotary kiln with a length of 80 m and a diameter of 3.5 mTM, and kiln burning was performed. .

キルン出鉱口において実施例1と同様の条件の下でC重
油を噴入した。
Heavy oil C was injected at the kiln outlet under the same conditions as in Example 1.

得られた還元鉱の組成及び原料鉱石の組成を示す。The composition of the obtained reduced ore and the composition of the raw ore are shown.

比較目的の為従来方法による仮焼鉱の組成をも併せて示
す。
For comparison purposes, the composition of calcined ore produced by the conventional method is also shown.

実施例1及び2から本発明方法による予備還元率が従来
法に較べて格段に向上していることがわかるであろう。
It will be seen from Examples 1 and 2 that the preliminary reduction rate by the method of the present invention is significantly improved compared to the conventional method.

長期にわたって操業を継続したが、炉の停止を必要とす
るようなリングトラブル、スト等と関連する問題は全く
生じなかった。
Although the operation continued for a long period of time, there were no problems related to ring troubles or strikes that required the furnace to be shut down.

da

Claims (1)

【特許請求の範囲】[Claims] 1 酸化ニッケル鉱石を仮焼炉内で仮焼し、次いで還元
溶解炉で還元溶解してフェロニッケルを製造する方法に
おいて、該仮焼炉内の最高温度帯域から出鉱口に至る帯
域において或いは該出鉱口から前記還元溶解炉に至る過
程において、仮焼ずみ鉱石が500℃以上に保持されて
いる間に仮焼ずみ鉱石の堆積層中に炭素質還元用流体を
噴入して仮焼ずみ鉱石の予備還元処理を施した後前記還
元溶解炉に装入することを特徴とするフェロニッケルの
製造方法。
1. In a method of producing ferronickel by calcining nickel oxide ore in a calcining furnace and then reducing and melting it in a reduction melting furnace, in the zone from the highest temperature zone in the calcining furnace to the ore outlet or In the process from the ore outlet to the reduction melting furnace, a carbonaceous reducing fluid is injected into the accumulated layer of the calcined ore while the calcined ore is maintained at 500°C or higher. A method for producing ferronickel, characterized in that the ore is subjected to a preliminary reduction treatment and then charged into the reduction melting furnace.
JP2205976A 1976-03-03 1976-03-03 Manufacturing method of Ferronitskel Expired JPS5826422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2205976A JPS5826422B2 (en) 1976-03-03 1976-03-03 Manufacturing method of Ferronitskel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2205976A JPS5826422B2 (en) 1976-03-03 1976-03-03 Manufacturing method of Ferronitskel

Publications (2)

Publication Number Publication Date
JPS52105517A JPS52105517A (en) 1977-09-05
JPS5826422B2 true JPS5826422B2 (en) 1983-06-02

Family

ID=12072328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2205976A Expired JPS5826422B2 (en) 1976-03-03 1976-03-03 Manufacturing method of Ferronitskel

Country Status (1)

Country Link
JP (1) JPS5826422B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108176A (en) * 1992-09-25 1994-04-19 Nippon Yakin Kogyo Co Ltd Method for adding sulfur source in smelting of nickel oxide ore
AUPN639995A0 (en) 1995-11-03 1995-11-30 Technological Resources Pty Limited A method and an apparatus for producing metals and metal alloys
AUPO276496A0 (en) 1996-10-07 1996-10-31 Technological Resources Pty Limited A method and an apparatus for producing metals and metal alloys
JP4540044B2 (en) * 2004-06-08 2010-09-08 大平洋金属株式会社 Lifter for rotary heat exchanger, rotary heat exchanger equipped with the lifter, and heat treatment method for nickel oxide ore

Also Published As

Publication number Publication date
JPS52105517A (en) 1977-09-05

Similar Documents

Publication Publication Date Title
TW495552B (en) Method of producing reduced iron pellets
JP2000212651A (en) Production of reduced iron pellet
CN102758085A (en) Method for producing nickel-iron alloy by smelting red earth nickel mineral at low temperature
CN101555533A (en) Oxygen blast furnace iron-making process adopting water-coal-slurry as fuel
CN110106348B (en) Composite additive for strengthening sintering of laterite-nickel ore and use method thereof
US8287837B2 (en) Titanium-containing additive
US3311465A (en) Iron-containing flux material for steel making process
JPS5826422B2 (en) Manufacturing method of Ferronitskel
JPH079015B2 (en) Smelting reduction method for iron ore
CN100419100C (en) Treatment of iron-and-steel plant sludge in a multistage furnace
JP3863052B2 (en) Blast furnace raw material charging method
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
US3471283A (en) Reduction of iron ore
JPH06271919A (en) Method for pre-treating coal and ore for smelting reduction furnace
CN110592304B (en) Iron ore powder pretreatment process
US6447713B1 (en) Rotating-hearth furnace for reduction of metallic oxides
CN113005284A (en) Application method of titanium-containing sea sand in sinter production
CN207738786U (en) A kind of system of no coal method production ferrochrome
CN207130291U (en) A kind of system of fluid bed gas, gas-based reduction and electric furnace steel making coupling
JP2937659B2 (en) Coke production method
US4443250A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing materials
JP3379360B2 (en) Hot metal production method
CN86105494A (en) Brown coal pre-reduction of ore direct steelmaking stocking
JP2000119722A (en) Production of reduced iron pellet
CN109385526A (en) A method of utilizing coke-oven plant reduction furnace reducing metal oxide mineral