JPS5826077Y2 - Aeration device - Google Patents

Aeration device

Info

Publication number
JPS5826077Y2
JPS5826077Y2 JP1982003748U JP374882U JPS5826077Y2 JP S5826077 Y2 JPS5826077 Y2 JP S5826077Y2 JP 1982003748 U JP1982003748 U JP 1982003748U JP 374882 U JP374882 U JP 374882U JP S5826077 Y2 JPS5826077 Y2 JP S5826077Y2
Authority
JP
Japan
Prior art keywords
impeller
gas
flow
pump
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982003748U
Other languages
Japanese (ja)
Other versions
JPS57145597U (en
Inventor
泰典 遠矢
省吾 角田
光彦 小笠原
修 二村
Original Assignee
荏原インフイルコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原インフイルコ株式会社 filed Critical 荏原インフイルコ株式会社
Priority to JP1982003748U priority Critical patent/JPS5826077Y2/en
Publication of JPS57145597U publication Critical patent/JPS57145597U/ja
Application granted granted Critical
Publication of JPS5826077Y2 publication Critical patent/JPS5826077Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【考案の詳細な説明】 本考案は、汚水等の浄化処理に必要なガスを液体中に混
入して曝気する装置に関するものである。
[Detailed Description of the Invention] The present invention relates to an apparatus for aerating a liquid by mixing a gas necessary for purification treatment of sewage or the like.

従来この種の曝気装置にはポンプが用いられ、ポンプ吸
込側に設けた気体供給ノズルからガスを吸込みガスを液
体の流れに同伴させて、ポンプ内で微細化する方法であ
った。
Conventionally, a pump has been used in this type of aeration device, and the method has been to suck in gas from a gas supply nozzle provided on the suction side of the pump, cause the gas to accompany the flow of liquid, and atomize the liquid inside the pump.

一般にポンプ吸込側の管内平均流速は1.5〜2.5m
/sであり、吸込の管路摩擦抵抗をできるだけ少なくす
るためにも流速を小さくするように配慮されている。
Generally, the average flow velocity in the pipe on the pump suction side is 1.5 to 2.5 m.
/s, and care has been taken to reduce the flow velocity in order to minimize the frictional resistance of the suction pipe.

即ち、この程度の流速中に気体を供給しても、供給され
た時点で微細気泡になることはなく、大気泡のままで水
流に同伴されながら羽根車に到達し、羽根車を通過する
時に始めて羽根車の回転によって気泡は微細化される。
In other words, even if gas is supplied at such a flow rate, it will not turn into fine bubbles at the time of supply, but will reach the impeller as air bubbles while being carried along with the water flow, and as they pass through the impeller. For the first time, the air bubbles become finer due to the rotation of the impeller.

しかしながらポンプ吸込側に気体を供給して微細化する
装置には、次の様な重大な欠点がある。
However, devices that supply gas to the pump suction side for atomization have the following serious drawbacks.

大気泡を同伴する水流が、ポンプに近ずくにつれ、羽根
車の回転作用を受けるために、気体より遥かに密度の大
きい液体は管路内面側に、従って気泡は管路中心側に集
まり、ポンプケーシング内の回転羽根車を気泡が通過す
る以前に気泡は管中心で合一し気泡塊になりやすく、回
転羽根車の翼中心側を気泡が通過する傾向により微細化
が十分に行なわれないとともにしばしば羽根車吸込口を
気泡塊が閉塞し、羽根車による流体吸込を不可能にする
欠点があった。
As the water flow with air bubbles approaches the pump, it is subjected to the rotating action of the impeller, so the liquid, which is much denser than the gas, gathers on the inner surface of the pipe, and the air bubbles gather on the center side of the pipe, causing the pump to Before the bubbles pass through the rotary impeller inside the casing, the bubbles tend to coalesce at the center of the tube and form a bubble mass, and due to the tendency of the bubbles to pass through the center of the blade of the rotary impeller, they are not sufficiently refined. The disadvantage is that the air bubbles often block the impeller suction port, making it impossible for the impeller to suck in fluid.

本考案はポンプ吸込側に気体を供給して曝気する従来装
置の前記欠点を防止し、従来よりも多量のガス供給を可
能にするとともに、気泡の微細化を更に効果的に行う曝
気装置を提供しようとするにある。
The present invention prevents the above-mentioned drawbacks of conventional devices that aerate by supplying gas to the pump suction side, and provides an aeration device that can supply a larger amount of gas than before and more effectively miniaturizes bubbles. I'm trying.

また本考案では汚水処理などで汚水中に酸素を溶解させ
るため、気体供給用導管をケーシング内面に突出させ、
気体供給用導管の吹込先端部を回転羽根車吸込端近傍に
配置し、気体供給用導管の管面乱流作用と回転羽根車に
よる乱流作用の2段作用で微細化することにより気液接
触面積を増大させ、気液接触時間の延長を図るとともに
、激しい攪拌により、気体の溶解速度を著しく高める曝
気装置とすることをも目的としている。
In addition, in this invention, in order to dissolve oxygen in wastewater during wastewater treatment, the gas supply conduit is protruded from the inner surface of the casing.
The blowing tip of the gas supply conduit is placed near the suction end of the rotary impeller, and the gas-liquid contact is made fine by the two-stage turbulence action of the tube surface of the gas supply conduit and the turbulence action of the rotary impeller. The aim is to increase the area and extend the gas-liquid contact time, and also to provide an aeration device that significantly increases the gas dissolution rate through vigorous stirring.

本考案は、槽内に空気、酸素、オゾンなどの曝気体を供
給して気液混相流を生ぜしめる曝気槽において、槽内液
に旋回流若しくは循環流などの水流を生ずるポンプを備
え、該ポンプケーシング内に回転羽根車を駆動可能に配
備すると共に、該回転羽根車の翼外周端をケーシング内
面に近接して配設し、気体供給用導管の吹込先端部を前
記回転羽根車吸込端即ち具入口端近傍で、かつ羽根車径
内の翼外周端に前記回転羽根車に対向して配設し、該気
体供給用導管を空気、酸素、オゾン等の曝気体供給装置
と連結したことを特徴とする曝気装置である。
The present invention is an aeration tank that produces a gas-liquid multiphase flow by supplying aeration agents such as air, oxygen, and ozone into the tank, and is equipped with a pump that produces a water flow such as a swirling flow or a circulation flow in the liquid in the tank. A rotary impeller is drivably disposed within the pump casing, and the outer circumferential end of the blade of the rotary impeller is disposed close to the inner surface of the casing, and the blowing tip of the gas supply conduit is connected to the suction end of the rotary impeller, that is, the suction end of the gas supply conduit. The gas supply conduit is arranged near the inlet end of the blade and at the outer peripheral end of the blade within the diameter of the impeller, facing the rotary impeller, and the gas supply conduit is connected to an aeration agent supply device for air, oxygen, ozone, etc. This is a unique aeration device.

本考案を実施例につき図面を参照して説明すれば、第1
図において、原水用配管1と処理水用配管2を設けた汚
水処理槽3に開口端が槽底部に延びた吐出管5と、この
吐出管5の開口端より上方で液面4より下方に開口端を
設けた吸込管6とを弁7.8を介して循環ポンプ9に連
結して備え、該ポンプ吸込側には弁11を介して気体供
給用導管10を接続してあり、微細気泡を槽底部附近か
ら水流とともに放出することにより、汚水処理槽3内の
汚水に縦方向、横方向、斜め方向の流れを形成し、槽内
液に循環流もしくは旋回流などの水流を生起させ、気液
接触時間の延長を図るとともに、懸濁浮遊物の槽底部へ
の堆積を防止するようにしである。
The present invention will be described with reference to the drawings in terms of embodiments.
In the figure, a sewage treatment tank 3 is provided with a raw water pipe 1 and a treated water pipe 2, and a discharge pipe 5 whose open end extends to the bottom of the tank, and a discharge pipe 5 which extends above the open end of the discharge pipe 5 and below the liquid level 4. A suction pipe 6 with an open end is connected to a circulation pump 9 via a valve 7.8, and a gas supply conduit 10 is connected to the pump suction side via a valve 11 to prevent fine bubbles. By discharging the liquid from near the bottom of the tank along with the water flow, vertical, horizontal, and diagonal flows are formed in the wastewater in the sewage treatment tank 3, and a water flow such as a circulation flow or a swirling flow is generated in the liquid in the tank. This is intended to extend the gas-liquid contact time and to prevent suspended substances from accumulating at the bottom of the tank.

前記循環ポンプ9としては、第2図のようにケーシング
12内に回転する羽根車13を駆動可能に配備すると共
に該回転羽根車13の翼外周端をケーシング12内面に
近接(好ましくは5mm以下)して配設し、気体供給用
導管10の吹込口を、前記回転羽根車吸込端(即ち具入
口端)近傍で、かつ羽根車13径内の翼外周端に回転羽
根車13と対向して配設しである。
The circulation pump 9 has a rotating impeller 13 drivably arranged inside a casing 12 as shown in FIG. The air inlet of the gas supply conduit 10 is located near the suction end of the rotary impeller (i.e., the inlet end of the rotary impeller) and at the outer peripheral end of the blade within the diameter of the impeller 13, facing the rotary impeller 13. It is arranged.

このように構成することによって、液流が加圧側(羽根
車吐出側)から負圧側(羽根車吸込側)へ逆流するのを
防止でき、乱流作用と背面乱流作用が生起し気泡を微細
化する。
With this configuration, it is possible to prevent the liquid flow from flowing backwards from the pressure side (impeller discharge side) to the negative pressure side (impeller suction side), and turbulent flow action and back turbulent flow action occur to reduce air bubbles. become

吹込口としては、該導管10′のようにガス吹込口の多
孔を管側面に設は接近させることも可能であり、又、吸
込管6に導管10′を接続し、ガス吹込口である導管の
先端部を羽根車吸込端近傍でかつケーシング内面付近に
接近させることも可能である。
As for the gas inlet, it is also possible to have the gas inlet hole close to the side surface of the pipe as in the case of the conduit 10', or to connect the conduit 10' to the suction pipe 6 to open the conduit which is the gas inlet. It is also possible to have the tip of the impeller near the suction end of the impeller and close to the inner surface of the casing.

第3図の具体例では汚水処理槽3内に縦方向に延びた軸
16の先端で液面4の下方に羽根車13を設け、羽根車
13のケーシング12の上端にはラッパ管14を、また
ケーシング12の下端には、先端が槽底部に延びたドラ
フトチューブ15を接続し、羽根車13の吸込端近傍で
かつケーシング内面付近に吸込口を設けた気体供給用導
管10を設けた曝気装置としである。
In the specific example shown in FIG. 3, an impeller 13 is provided below the liquid level 4 at the tip of a shaft 16 extending vertically inside the sewage treatment tank 3, and a trumpet pipe 14 is provided at the upper end of the casing 12 of the impeller 13. Further, a draft tube 15 whose tip extends to the bottom of the tank is connected to the lower end of the casing 12, and an aeration system is provided with a gas supply conduit 10 having a suction port near the suction end of the impeller 13 and near the inner surface of the casing. It's Toshide.

気体供給部の詳細を第4図に示すが気体供給用導管には
多孔管を用いても良く、また導管10′の先端から吹込
む方式でも良く、導管の本数は適宜選んで用いられる。
The details of the gas supply section are shown in FIG. 4, and the gas supply conduit may be a porous tube or may be blown in from the tip of the conduit 10', and the number of conduits may be selected as appropriate.

そして気体供給用導管10はいずれの場合も第2図と同
様にその吹込口が、前記回転羽根車吸込端(即ち具入口
端)近傍で、かつ羽根車13径内の翼外周端に回転羽根
車13と対向して配設しである。
In either case, the gas supply conduit 10 has its inlet in the vicinity of the suction end of the rotary impeller (i.e., the inlet end) and at the outer peripheral end of the blade within the diameter of the impeller 13, as shown in FIG. It is arranged facing the car 13.

このため、液流が加圧側から負圧側へ逆流するのを防止
でき、乱流作用と背面乱流作用が生起し、供給される気
体はすみやかに微細化されると同時に強く攪拌され、気
液混相流となってドラフトチューブ15内を充分な滞留
時間をかけて降下し、槽底部に達し、ドラフトチューブ
15下端から放出し汚水処理槽3内の汚水に縦方向、横
方向、斜め方向の流れを形成し、槽内液に循環流もしく
は旋回流などの水流を生起させる。
Therefore, the liquid flow can be prevented from flowing backward from the pressure side to the negative pressure side, turbulence action and back turbulence action occur, and the supplied gas is quickly atomized and at the same time is strongly stirred. The multiphase flow descends within the draft tube 15 over a sufficient residence time, reaches the bottom of the tank, and is discharged from the lower end of the draft tube 15, causing sewage in the sewage treatment tank 3 to flow vertically, horizontally, and diagonally. This creates a water flow such as a circulating flow or a swirling flow in the liquid in the tank.

この場合、一般のポンプ羽根車より低い回転数をとり、
例えば羽根車周速をlQm/s以下に操作しても、気体
吸込口が羽根車吸込端近傍でかつ羽根車径内のケーシン
グ内面付近に設けられるために、気体の微細化効果は優
れ、ポンプの定格動力より少い動力でも気体の溶解速度
を大きくすることが可能であり、溶解効率を高めること
も十分可能である。
In this case, the rotation speed is lower than that of a general pump impeller,
For example, even if the impeller circumferential speed is operated below lQm/s, the gas inlet is provided near the impeller suction end and near the inner surface of the casing within the impeller diameter, so the gas atomization effect is excellent and the pump It is possible to increase the gas dissolution rate even with less power than the rated power, and it is also possible to increase the dissolution efficiency.

なお、前記導管10.10’、10”は、送気源例えば
送風機又は酸素又はオゾン発生器(図示せず)などに連
結し、給気が行なわれるようにする。
The conduits 10, 10', 10'' are connected to an air supply source, such as a blower or an oxygen or ozone generator (not shown), for air supply.

また第5図の具体例では、羽根車13のケーシング12
の下端にはラッパ管14を、またケーシング12の上端
には先端が液面4下に延びたドラフトチューブを接続し
、羽根車13の吸込端近傍に吹込口を設けた気体供給用
導管10を設けた曝気装置としてあり(第3図示例を逆
にした構成)、第3図示例とは逆の方向に槽内液に循環
流もしくは旋回流などの水流を生起させる。
In the specific example shown in FIG. 5, the casing 12 of the impeller 13
A gas supply conduit 10 is connected to the lower end of the trumpet pipe 14 and the upper end of the casing 12 to a draft tube whose tip extends below the liquid level 4, and has an inlet near the suction end of the impeller 13. The aeration device is provided as an aeration device (a configuration in which the third illustrated example is reversed), and a water flow such as a circulation flow or a swirling flow is generated in the tank liquid in the opposite direction to that of the third illustrated example.

なお、軸16は短くする方が機械的に安全性が高いのは
当然であり、駆動装置17は液面4下に設置してもよい
Note that it is natural that the shorter the shaft 16 is, the higher the mechanical safety is, and the drive device 17 may be installed below the liquid level 4.

本考案によれば、気泡の微細化効果は大きいとともに、
従来より多量のガスを供給する場合でも、安定した運転
が可能であるとともに、溶解効率を高めることも可能な
曝気操作ができ、殊に気体供給用導管の吹込先端部を該
回転羽根車吸込端(即ち具入口端)近傍でかつ羽根車径
内の翼外周端に前記回転羽根車に対向して配置し、気体
供給用導管の背面乱流作用と羽根車による乱流作用の2
段作用を与えて、該吹込先端部から、空気、酸素、オゾ
ン等の曝気体を供給することにより、気体は供給されつ
つ羽根車の強い剪断作用を受けて、気泡が細化される効
果は極めて大きく、とくに気体供給の吹込位置が羽根車
回転速度が最も大きくなるケーシング内面付近の流水の
強い剪断場に位雫するために、導管と水流との衝突面背
部が負圧となり、供給された気体の一部が背部に吸引さ
れて激しい乱流作用で気体は微細化されるとともに、気
体の溶解速度も著しく向上すると共に、羽根車の形状が
旋回流型、斜流型、軸流型のいずれの場合においても作
用効果は同一であり、優れた曝気効果を発揮することが
可能である。
According to the present invention, the bubble miniaturization effect is large, and
Even when a larger amount of gas is supplied than conventionally, stable operation is possible, and aeration operations can be performed that can increase dissolution efficiency. (i.e., near the inlet end of the blade) and facing the rotary impeller at the outer circumferential end of the blade within the diameter of the impeller.
By applying a step action and supplying aeration agents such as air, oxygen, ozone, etc. from the blowing tip, the gas is supplied and receives the strong shearing action of the impeller, which reduces the effect of narrowing the bubbles. This is extremely large, especially since the position of the gas supply blows into the strong shear field of the flowing water near the inner surface of the casing where the impeller rotational speed is the highest, so the back of the collision surface between the conduit and the water flow becomes negative pressure, and the gas is supplied. A part of the gas is sucked into the back and the gas becomes finer due to the intense turbulent flow, and the dissolution rate of the gas is also significantly improved. In either case, the effects are the same, and it is possible to exhibit excellent aeration effects.

また、前記の如く、気体供給用導管から供給されると同
時にガスは微細化され、さらに羽根車での微細化作用の
2段作用を受けるために、微細化の効果は従来よりも大
きいことになるし、且つ、気体は供給されると同時に微
細化され更に強い攪拌作用を受けるために、気泡は局部
的に集合することなく均一に分散させ得て、従来法のよ
うにポンプ吸込側の気体塊による閉塞のおそれはなく、
従来より安定した曝気操作が可能となるほか、曝気機能
を有効に発揮でき汚水浄化処理を能率よく行ない得て処
理槽の設置面積をも節減できるなどの効果がある。
In addition, as mentioned above, the gas is atomized at the same time as it is supplied from the gas supply conduit, and is further subjected to a two-stage atomization action by the impeller, so the effect of atomization is greater than before. Moreover, as the gas is supplied, it is finely divided and subjected to a stronger stirring action, so the bubbles can be uniformly dispersed without locally aggregating, and the gas on the suction side of the pump can be There is no risk of blockage due to a lump.
In addition to being able to perform more stable aeration operations than conventional methods, it also has the effect of effectively demonstrating the aeration function, efficiently performing sewage purification treatment, and reducing the installation area of the treatment tank.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の実施例を示し、第1図は系統説明図、第
2図は一部の切断側面図、第3図は他の実施例の系統説
明図、第4図はその一部の切断側面図、第5図は他の実
施例の系統説明図、第6図は第5図の一部の切断側面図
である。 1・・・・・・原水用配管、2・・・・・・配管、3・
・・・・・汚水処理槽、4・・・・・・液面、5・・・
・・・吐出管、6・・・・・・吸込管、7,8・・・・
・・弁、9・・・・・・循環ポンプ、10・・・・・・
気体供給用導管、10′。 10″・・・・・・導管、11・・・・・・弁、12・
・・・・・ケーシング、13・・・・・・羽根車、14
・・・・・・ラッパ管、15・・・・・・ドラフトチュ
ーブ、16・・・・・・軸、17・・・・・・駆動装置
The drawings show an embodiment of the present invention; FIG. 1 is an explanatory diagram of the system, FIG. 2 is a partially cutaway side view, FIG. 3 is an explanatory diagram of the system of another embodiment, and FIG. FIG. 5 is a diagram illustrating a system of another embodiment, and FIG. 6 is a partially cut side view of FIG. 5. 1... Raw water piping, 2... Piping, 3.
... Sewage treatment tank, 4 ... Liquid level, 5 ...
...Discharge pipe, 6...Suction pipe, 7,8...
...Valve, 9...Circulation pump, 10...
Gas supply conduit, 10'. 10″... Conduit, 11... Valve, 12.
...Casing, 13 ... Impeller, 14
...Trumpet tube, 15...Draft tube, 16...Shaft, 17...Driving device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 槽内に空気、酸素、オゾンなどの曝気体を供給して気液
混相流を生ぜしめる曝気槽において、槽内液に旋回流若
しくは循環流などの水流を生ずるポンプを備え、該ポン
プケーシング内に回転羽根車を駆動可能に配備すると共
に、該回転羽根車の翼外周端をケーシング内面に近接し
て配設し、気体供給用導管の吹込先端部を前記回転羽根
車吸込端即ち具入口端近傍で、かつ羽根車径内の翼外周
端に前記回転羽根車に対向して配設し、該気体供給用導
管を空気、酸素、オゾン等の曝気体供給装置と連結した
ことを特徴とする曝気装置。
An aeration tank that produces a gas-liquid multiphase flow by supplying an aeration agent such as air, oxygen, or ozone into the tank is equipped with a pump that generates a water flow such as a swirling flow or a circulating flow in the liquid in the tank, and a pump is installed inside the pump casing. A rotary impeller is provided so as to be drivable, and the outer circumferential end of the blade of the rotary impeller is disposed close to the inner surface of the casing, and the blowing tip of the gas supply conduit is placed near the suction end of the rotary impeller, that is, near the inlet end of the rotary impeller. and is arranged opposite to the rotary impeller at the outer peripheral end of the blade within the diameter of the impeller, and the gas supply conduit is connected to an aeration agent supply device for air, oxygen, ozone, etc. Device.
JP1982003748U 1982-01-14 1982-01-14 Aeration device Expired JPS5826077Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982003748U JPS5826077Y2 (en) 1982-01-14 1982-01-14 Aeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982003748U JPS5826077Y2 (en) 1982-01-14 1982-01-14 Aeration device

Publications (2)

Publication Number Publication Date
JPS57145597U JPS57145597U (en) 1982-09-13
JPS5826077Y2 true JPS5826077Y2 (en) 1983-06-04

Family

ID=29802186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982003748U Expired JPS5826077Y2 (en) 1982-01-14 1982-01-14 Aeration device

Country Status (1)

Country Link
JP (1) JPS5826077Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825766A (en) * 1971-08-07 1973-04-04
JPS4863553A (en) * 1971-11-22 1973-09-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825766A (en) * 1971-08-07 1973-04-04
JPS4863553A (en) * 1971-11-22 1973-09-04

Also Published As

Publication number Publication date
JPS57145597U (en) 1982-09-13

Similar Documents

Publication Publication Date Title
US4290885A (en) Aeration device
US4844843A (en) Waste water aerator having rotating compression blades
JPS6253213B2 (en)
CN108503020A (en) A kind of aerator for sanitary sewage disposal
EP0027912A1 (en) Apparatus for contacting liquid with a gas
JP2002052330A (en) Gas and liquid supply device
JP3160057B2 (en) Stirring aeration device
JP2010167329A (en) Aeration agitator
JPS5826077Y2 (en) Aeration device
JPS63209791A (en) Aerator
KR200172329Y1 (en) Apparatus for the aeration of waste water
CN208292731U (en) A kind of aerator for sanitary sewage disposal
JPH0318953B2 (en)
JP2000189774A (en) Gas dissolving device
JPS5826078Y2 (en) Aeration device
JP3828061B2 (en) Underwater aerator
JPH03229696A (en) Air bubble generator
JPH0352633A (en) Liquid-gas contact equipment
JPS588588A (en) Aerator
JP3239172B2 (en) Axial impeller in stirring aerator and method of operating stirring aerator
JPH0642796Y2 (en) Submersible mechanical aerator
JPH06285488A (en) Underwater agitation and aeration device
JPH04197496A (en) Fluid mixing method
CN108675491A (en) A kind of dosing aerating system for water body purification
JPS588394Y2 (en) Aeration device