JPS588588A - Aerator - Google Patents

Aerator

Info

Publication number
JPS588588A
JPS588588A JP56105066A JP10506681A JPS588588A JP S588588 A JPS588588 A JP S588588A JP 56105066 A JP56105066 A JP 56105066A JP 10506681 A JP10506681 A JP 10506681A JP S588588 A JPS588588 A JP S588588A
Authority
JP
Japan
Prior art keywords
impeller
port
gas
aeration
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56105066A
Other languages
Japanese (ja)
Other versions
JPS6136476B2 (en
Inventor
Masao Ooshima
大嶋 政夫
Yutaka Kato
豊 加藤
Mitsuhiko Ogasawara
小笠原 光彦
Osamu Futamura
修 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP56105066A priority Critical patent/JPS588588A/en
Priority to US06/393,723 priority patent/US4512936A/en
Priority to KR8202973A priority patent/KR850001349B1/en
Publication of JPS588588A publication Critical patent/JPS588588A/en
Publication of JPS6136476B2 publication Critical patent/JPS6136476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To increase aeration amount, by a method wherein the passage from an impeller to a discharge port is constructed in the form of an umbrella-shaped nozzle, and a gas diffusing port is located at a position in the region wherein the angle included between the meridional streamline drawn from the impeller to the discharge port and a horizontal line is not larger than 60 deg.. CONSTITUTION:The passage from the impeller 3 to the discharge port 10 is constructed in the form of an umbrella-shaped nozzle, and the gas diffusing port 6 for supplying a gas into the liquid to be treated is located at a position in the region wherein the angle theta included between the meridional streamline A-A drawn from impeller 3 to the port 10 and the horizontal line B-B is not larger than 60 deg., and the ratio of L/H satisfies the condition of 0.5<=L/H<=2.5, where L is the distance from the port 6 to the port 10 measured along the meridional streamline and H is the height of the vane of the impeller 3. Accordingly, a gas- liquid mixed flow is passed at a bottom part of an aeration tank, so that the depth of the liquid being treated can be utilized effectively and the aeration performance can be enhanced.

Description

【発明の詳細な説明】 この発明は、汚水の浄化に用いられる曝気装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aeration device used for purifying wastewater.

従来、工場廃水処理場、都市下水処理場等の汚水処理場
KThいては、液表面攪拌式、散気管式、散気板大勢の
方法が一般に行われていたが、最近、曝気効率を高゛め
る九め、羽根車付エアレータ等のエアレータ式の曝気装
置!轡い、曝気槽内に強制的に気液循環流を生じさせる
方法が採られるようKlkつた。これら羽根車付エアレ
ータの多くは、純酸素中空気勢の供給方法の容易さから
軸芯が鉛直方向に1にるように設置された羽根車を用い
、羽根車内の流れ方向を下から上、また社下から斜め上
方向とし先止吐出し形式のものであった。すなわち、供
給された空気は上向きの浮上速度を有する丸め、気液混
和流の向きもこれと同じ上向きとし先方が気体の量を大
きくできる点で有利であった。
Conventionally, in sewage treatment plants such as factory wastewater treatment plants and urban sewage treatment plants, the liquid surface agitation type, aeration tube type, and a number of diffuser plate methods have been generally used, but recently, methods with improved aeration efficiency have been used. Aerator-type aeration equipment, such as aerator with an impeller! As a result, Klk decided to adopt a method of forcibly creating a gas-liquid circulation flow in the aeration tank. Most of these impeller-equipped aerators use an impeller installed so that the axis is aligned vertically, and the flow direction inside the impeller is from bottom to top, because it is easy to supply air force in pure oxygen. It was also of a first stop discharge type, with the discharge diagonally upward from the bottom. That is, the supplied air was rounded with an upward floating speed, and the direction of the gas-liquid mixing flow was also upward, which was advantageous in that the other party could increase the amount of gas.

第111に従来の上吐出し形式の例を示し、水中モータ
12で1転される羽根車13はケーシング11の中#I
C駅納されてお)、羽根車13の一転によ〕吸込口15
から曝気槽内の処理液が吸込まれ矢印で示すように下方
から斜め上方へ流れ吐出し口16よ)吐出する。そして
給気管14から純酸素あるいは空気が供給され、処理液
と混合攪拌して気液混和流として吐出し口16より吐出
する。
No. 111 shows an example of the conventional top discharge type, in which the impeller 13 rotated once by the submersible motor 12 is #I inside the casing 11.
C), due to one turn of the impeller 13] suction port 15
The processing liquid in the aeration tank is sucked in from the aeration tank, flows diagonally upward from below as shown by the arrow, and is discharged through the discharge port 16). Then, pure oxygen or air is supplied from the air supply pipe 14, mixed and stirred with the processing liquid, and discharged from the discharge port 16 as a gas-liquid mixed flow.

しかし、曝気性能は処理液の水深に密mK関係するえめ
、同じ水深の曝気槽においては、上吐出し形式では檜の
底部まで流れが到達せず、水深が十分有効に利用されず
不利である。ま九槽底部の流速4小さく活性汚泥が沈澱
し中すい点でも不利である。このため、軸芯が鉛直方向
になるように投雪された羽根車において、羽根車内の流
れの方向を上から下、または上から斜め下方向とし、気
液混和流が槽底部を通過するような下吐出し形式が提案
された。
However, aeration performance is closely related to the water depth of the treated solution (mK), and in aeration tanks with the same water depth, the top discharge type does not allow the flow to reach the bottom of the cypress, which is disadvantageous because the water depth is not used effectively. . Another disadvantage is that the flow rate at the bottom of the tank is low, causing activated sludge to settle and drying out. For this reason, in an impeller in which snow is thrown so that the shaft center is vertical, the flow direction inside the impeller is set from top to bottom or diagonally downward from top, so that the gas-liquid mixed flow passes through the bottom of the tank. A lower discharge type was proposed.

第2図にさきに提案の下吐出し形式の曝気装置を示し、
水中ギャードモータ20軸端KFi羽根車3が取付けら
れておプ、羽根車3は水中ギャードモータ2によシ回転
されて、吸込19から曝気槽内の処理液が吸込まれ、吐
出し口10よ)吐出する。羽根車3に近接して上流側散
気管51あるい7は下流側散気管5bが設けられ゛てお
ル、上流側散気管5aあるいは下流側散気管5bから純
酸素、空気等の気体を供給し処理液と混合攪拌して、気
液混相流とし、て吐出し口lOよ、#)吐出する。散気
管5a、5’bKは散気孔6が明けられている。散気管
5a、5bij第3r8に示すよう・K給気管7に接続
され、給気管7に接続された給気口8は外部の純酸素、
空気等の供給源に接続される。tた水中ギャードモータ
2とケーシング1はモータサポート4によ)接続され工
いる。
Figure 2 shows the proposed lower discharge type aeration device.
A KFi impeller 3 is attached to the shaft end of the submersible guard motor 20, and the impeller 3 is rotated by the submersible guard motor 2, and the treated liquid in the aeration tank is sucked in from the suction 19 and discharged from the discharge port 10. do. An upstream diffuser pipe 51 or 7 or a downstream diffuser pipe 5b is provided close to the impeller 3, and gas such as pure oxygen or air is supplied from the upstream diffuser pipe 5a or the downstream diffuser pipe 5b. The mixture is mixed with the treatment liquid and stirred to form a gas-liquid multiphase flow, which is then discharged from the discharge port IO. The air diffuser pipes 5a, 5'bK are provided with air diffuser holes 6. As shown in the air diffuser pipes 5a and 5bij No. 3r8, the air supply port 8 connected to the air supply pipe 7 is connected to the air supply pipe 7, and the air supply port 8 is connected to the air supply pipe 7.
Connected to a supply source such as air. The submersible geared motor 2 and the casing 1 are connected by a motor support 4).

しかし、上述の下吐出し形式の曝気装置は、第3図に示
すように気体の散気口6の位置が羽根車3の上流側また
は下流側の直後でToり、気体の量を大きくできないと
いう欠点があった。すなわち上流側から散気し九場合、
散気量が大き一時、羽根車吸込側か気体で閉塞され、羽
根車3は揚水不能になシ気体は吸込まれず、処理液が吸
込口9へと逆流する。また、羽根車下流側直後に散気し
え場合も散気量が大きい時は、散気口6の位置が羽根車
3の鉛直下にあるため、気体の一部が順次羽根車部に蓄
積し′ていき、やがて全面気体となって羽根車3は揚水
不能となシ、気体は吐出し口10から吐出されず、気泡
の浮力により処理液を吸込口9へと逆流させる。いずれ
の場合も気液混相の循環流が形成されないため、曝気性
能は著しく低下する。
However, in the above-mentioned bottom discharge type aeration device, as shown in Fig. 3, the position of the gas diffuser port 6 is immediately after the upstream side or downstream side of the impeller 3, and the amount of gas cannot be increased. There was a drawback. In other words, if air is diffused from the upstream side,
When the amount of air diffused is large, the impeller suction side is temporarily blocked by gas, and the impeller 3 becomes unable to pump water, and the gas is not sucked in, and the processing liquid flows back to the suction port 9. In addition, even if air can be diffused immediately after the downstream side of the impeller, when the amount of air diffused is large, the position of the air diffuser 6 is vertically below the impeller 3, so some of the gas will accumulate in the impeller. Eventually, the entire surface becomes gas, and the impeller 3 becomes unable to pump up the water, and the gas is not discharged from the discharge port 10, but the buoyancy of the bubbles causes the processing liquid to flow back to the suction port 9. In either case, a gas-liquid mixed phase circulating flow is not formed, so the aeration performance is significantly reduced.

この発明は、上述の曝気装置の欠点を解消し、気体の羽
根車への影響をなくシ、曝気量を大きくすることのでき
る曝気装置を提供することを目的としてなされたもので
ある。
The present invention has been made for the purpose of solving the above-mentioned drawbacks of the aeration device, eliminating the influence of gas on the impeller, and providing an aeration device that can increase the amount of aeration.

このため、この発明では、羽根車軸芯を鉛直方向とし、
羽根車内の流れ方向を上から下、または上から斜め下方
向とした曝気装置において、羽根車から吐出し口までの
流路をかさ形ノズル形状とし、気体を処理液中に供給す
る散気口位置を気体浮力が流れに大きな影響を与えない
位置に配置する。すなわち、羽根車から吐出し口までの
子午面流線と水平線のなす角度が60°以下となるよう
な範囲に設ける。また散気口位置から吐出し口までの密
閉された流路内では、酸素の溶解は、吐出し口を出たあ
との自由な流れにおけるよシ著しく進行するので散気口
から吐出し口までの距離はできるだけ庫保することが望
ましい。製造上の観点から同距離をあまシ大きくするこ
とはできないが、子午面流線上の同距離りと羽根車の翼
の高さHとの比を0・5≦h≦2・5とする。
Therefore, in this invention, the impeller axis is set in the vertical direction,
In an aeration device in which the flow direction inside the impeller is from top to bottom or diagonally downward from top, the flow path from the impeller to the discharge port is shaped like an umbrella nozzle, and the aeration port supplies gas into the processing liquid. The location is such that gas buoyancy does not have a significant effect on the flow. That is, it is provided in a range where the angle between the meridional streamline from the impeller to the discharge port and the horizontal line is 60° or less. In addition, in a sealed flow path from the air diffuser to the outlet, the dissolution of oxygen progresses more rapidly than in the free flow after leaving the outlet. It is desirable to keep the distance as much as possible. Although it is not possible to increase the same distance from a manufacturing standpoint, the ratio of the same distance on the meridional streamline to the height H of the impeller blade is set to 0.5≦h≦2.5.

これによシ、気体の羽根車への影響はなくな〉、曝気量
を大きくすることができるとともに1散気位置より下流
のかさ形ノズル部で処理液と気体の混合攪拌が十分行わ
れるようKなシ、曝気性能は著しく向上する。
This eliminates the effect of gas on the impeller, making it possible to increase the amount of aeration and ensuring sufficient mixing and agitation of the processing liquid and gas in the umbrella nozzle downstream of the first aeration position. However, the aeration performance is significantly improved.

第3図にこの発明の実施例を示し、第2図に示すものと
散気口位置以外の点は実質上差異がないので、第2図と
同一部分には同一符号を付す。
FIG. 3 shows an embodiment of the present invention, which is substantially the same as that shown in FIG. 2 except for the position of the air diffuser, so the same parts as in FIG. 2 are given the same reference numerals.

羽根車3から吐出し口10までの流路はかさ形ノズル形
状となっておシ、気体を処理液中に供給する散気口6の
位置は、羽根車3から吐出し口10までの子午面流11
A−A(A−Aは子午面流線のうちの一つを示す。)と
水平線B−Hのなす角度θが60°以下となるような範
囲に設けられ、力為つ散気口6の位置から吐出し口10
までの子午面流線上の距離りと羽根車3の翼の高さHと
の比d(、0.5≦駒■≦2.5とされている。
The flow path from the impeller 3 to the discharge port 10 has an umbrella-shaped nozzle shape, and the position of the diffuser port 6 for supplying gas into the processing liquid is in the meridian direction from the impeller 3 to the discharge port 10. Menryu 11
The air diffuser port 6 is provided in a range such that the angle θ between A-A (A-A indicates one of the meridional streamlines) and the horizontal line B-H is 60° or less. From the position of the discharge port 10
The ratio d between the distance on the meridional streamline up to the height H of the blade of the impeller 3 (0.5≦Koma■≦2.5).

このように1羽根車軸芯を鉛直方向とし、羽根車内の流
れ方向を上から下、または上から斜め下方向とした下吐
出し形式としたことKよシ、気液混相流が曝気槽の底部
を流れ、このため処理液の水深を有効に利用でき、曝気
性能が向上する。また下吐出し形式は、第5図に示すよ
うに槽内の流れが交差する部分があるが下吐出し形式で
は第4図に示すようにこれがなく、流れの衝突による流
速減少が少なく、槽内の流速を大きく保てる。
In this way, the single impeller axis is vertical and the flow direction inside the impeller is from top to bottom or diagonally downward from top to bottom discharge type. This allows effective use of the water depth of the treatment liquid, improving aeration performance. In addition, the bottom discharge type has a part where the flows in the tank intersect as shown in Figure 5, but the bottom discharge type does not have this as shown in Figure 4, so there is less flow velocity reduction due to flow collision, and the tank The internal flow velocity can be maintained high.

また、羽根車部から吐出し口までの流路をかさ形ノズル
形状とし、散気口から吐出し口までの距離を前記のよう
K O,5Q%≦2.5とするととKよシ、気体供給後
、外部静止水によシ流れが減速されることなく、処理液
と気体の混合攪拌が吐出し口までのノズル内で十分性わ
れる。また吐出されたあと槽底部の流速を大きくするこ
とができ、活性汚泥の沈澱がなくなシ、曝気性能が向上
する。
Also, if the flow path from the impeller part to the discharge port is shaped like an umbrella-shaped nozzle, and the distance from the aeration port to the discharge port is K O,5Q%≦2.5 as described above, then K. After the gas is supplied, the processing liquid and gas are sufficiently mixed and stirred within the nozzle up to the discharge port without slowing down the flow due to external still water. Furthermore, the flow velocity at the bottom of the tank after being discharged can be increased, eliminating sedimentation of activated sludge and improving aeration performance.

また、下吐出し形式にすることによ)、−1般的に気体
の供給可能量が/トさくなるが、散気管の散気孔の位置
を前記のようKF=60以下となるような範囲に設は不
ことKより、気体の羽根車への影響がなく々シ、この結
果、気体の供給可能量が増し、同一規模のエアシー1.
夕での処理液量が大きくなって、曝気性能が向上゛する
。。
In addition, by using the bottom discharge type, the amount of gas that can be supplied generally decreases, but the position of the diffuser hole of the diffuser pipe can be adjusted to a range where KF = 60 or less as described above. Because of the fact that it is installed in K, there is no influence of gas on the impeller, and as a result, the amount of gas that can be supplied increases, compared to air seas of the same size.
The amount of treated liquid increases in the evening, improving aeration performance. .

・なお、前記の実施例では軸流羽根車を用いているが、
斜流や渦巻羽根車を用いることができ、また水中ギャー
ドモータの代ルに水中モータを用いてもよい。また前記
の実施例では、気体の供給手段として、パイプに孔を明
けた散気管形状のものを用いているが、その他、例えば
ケーシング外周面(実施例の散気管取付面)あるいけ内
周面(外周面と流路をはさんで対向している面)に孔を
明りたり、孔の明いたパンチングプレートを堰付けたシ
、スリット状の孔を明けたシすることもできる。   
  、
・Although the above embodiment uses an axial flow impeller,
A diagonal flow impeller or a spiral impeller may be used, and a submersible motor may be used instead of a submersible geared motor. Furthermore, in the above embodiments, a diffuser pipe with holes in the pipe is used as the gas supply means, but other means, such as the outer circumferential surface of the casing (the diffuser tube mounting surface in the embodiment) or the inner circumferential surface of the casing, are used as the gas supply means. It is also possible to make holes on the surface (the surface facing the outer peripheral surface and the flow path), to have a punching plate with holes in it, or to have slit-like holes.
,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の下吐出し形式の曝気装置の一部を断面で
示す正面図、第2図は下吐出し形式の曝発明に係る下吐
出し形式の曝気装置の左半部を断面で示す正面図、第4
図および第5図は下吐出し形式と下吐出し形式の曝気装
置のn6の差異を示す説明図である。 1・■・ケーシング、2・・−・水中ギヤートモ−^3
・・・・羽根車、4・e・・モータサポート、5・・・
・散気管、6・―・・散気孔、7・・・・給気管、8・
・拳・給気口、9・・・−吸込口、10・・・・吐出し
日時 許 出 願 人  株式会社 荏原製作所第1図 第4図     第5図
FIG. 1 is a front view showing a part of a conventional bottom discharge type aeration device in cross section, and FIG. 2 is a cross section showing the left half of a bottom discharge type aeration device according to the bottom discharge type aeration invention. Front view shown, 4th
The figure and FIG. 5 are explanatory diagrams showing the difference in n6 between the lower discharge type and lower discharge type aeration devices. 1.■.Casing, 2..-.Underwater gear motor ^3
... Impeller, 4 e... Motor support, 5...
・Air diffuser pipe, 6... air diffuser hole, 7... air supply pipe, 8...
・Fist/Air supply port, 9... - Suction port, 10... Discharge date and time Applicant Ebara Corporation Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)  曝気槽内で用いられ、羽根車軸芯を鉛直方向
とし、羽根車内の流れ方向を上から下、まえは上から斜
め下方向とし九曝気装置K>いて、羽根車から吐出し口
重での流路をかさ形ノズル形状とし、気体を処理液中に
供給する散気口位置を、羽根車から吐出し口までの子午
面流線と水平融のなす角度が60以下となるような範!
PIK設けた仁とを特徴とする曝気装置。 (#)  散気口位置から吐出し口までの子牛面流線上
の距離りと羽根車の興の高さHとの比を0・5≦4 ≦
2・5とした特許請求の範囲第1項記戦の曝気装置。
(1) Used in an aeration tank, the impeller axis is vertical, the flow direction inside the impeller is from top to bottom, and the front is diagonally downward from top. The flow path is shaped like an umbrella nozzle, and the position of the diffuser port for supplying gas into the processing liquid is set so that the angle between the meridional streamline from the impeller to the discharge port and the horizontal melt is 60 or less. Range!
An aeration device characterized by a PIK installed. (#) Set the ratio of the distance on the calf surface streamline from the diffuser port position to the discharge port to the height H of the impeller to be 0.5≦4≦
2.5 The aeration device according to claim 1.
JP56105066A 1981-07-03 1981-07-07 Aerator Granted JPS588588A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56105066A JPS588588A (en) 1981-07-07 1981-07-07 Aerator
US06/393,723 US4512936A (en) 1981-07-03 1982-06-30 Aeration apparatus
KR8202973A KR850001349B1 (en) 1981-07-03 1982-07-03 Aerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56105066A JPS588588A (en) 1981-07-07 1981-07-07 Aerator

Publications (2)

Publication Number Publication Date
JPS588588A true JPS588588A (en) 1983-01-18
JPS6136476B2 JPS6136476B2 (en) 1986-08-19

Family

ID=14397580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56105066A Granted JPS588588A (en) 1981-07-03 1981-07-07 Aerator

Country Status (1)

Country Link
JP (1) JPS588588A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180298A (en) * 1988-01-08 1989-07-18 Shin Meiwa Ind Co Ltd Aerating stirring apparatus
US5307313A (en) * 1990-02-23 1994-04-26 Kabushiki Kaisha Toshiba Flag circuit for memory
JPH07106931A (en) * 1993-10-07 1995-04-21 Nec Corp Semiconductor integrated circuit device
JP2010017655A (en) * 2008-07-10 2010-01-28 Hitachi Plant Technologies Ltd Aeration agitator
CN101830557A (en) * 2010-05-07 2010-09-15 海宁瑞星皮革有限公司 Air diffusion aerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077424A (en) * 1995-05-23 2000-06-20 Ebara Corporation Method for aerobically treating wastewater and a treatment tank for such method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180298A (en) * 1988-01-08 1989-07-18 Shin Meiwa Ind Co Ltd Aerating stirring apparatus
US5307313A (en) * 1990-02-23 1994-04-26 Kabushiki Kaisha Toshiba Flag circuit for memory
JPH07106931A (en) * 1993-10-07 1995-04-21 Nec Corp Semiconductor integrated circuit device
JP2010017655A (en) * 2008-07-10 2010-01-28 Hitachi Plant Technologies Ltd Aeration agitator
CN101830557A (en) * 2010-05-07 2010-09-15 海宁瑞星皮革有限公司 Air diffusion aerator

Also Published As

Publication number Publication date
JPS6136476B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
US4733972A (en) Floating mixer apparatus with foam dispersing spray
US4157304A (en) Aeration method and system
CA1139464A (en) Multiple stage jet nozzle aeration system
US4224158A (en) Aeration system and method with tapered nozzle
KR101012273B1 (en) The highly efficient rotary eddy flow typed surface aerator and the wastewater treatment method with thereof
CN105836906A (en) Efficient centrifugal submerged aerator
JPS588588A (en) Aerator
US4512895A (en) Pumpless clarifier apparatus and process for operation thereof in combination with a draft tube circulator/aerator
JPS5852686B2 (en) Mandarin Congouriyu Haneguruma
EP0027911B1 (en) Apparatus for contacting liquid with a gas
US20040055960A1 (en) Directional wastewater aerator and method
JPH0642796Y2 (en) Submersible mechanical aerator
CN207713484U (en) Multi-function jet device
JPS586290A (en) Aeration device
JPH03270796A (en) Apparatus for purifying water area
JPS5811099A (en) Aerator
JP3429227B2 (en) Middle and deep aeration type wastewater treatment equipment
KR102305562B1 (en) Aerator for water quality improvement
CN208694328U (en) A kind of coagulation integration hypervelocity sedimentation basin
CN216377637U (en) Novel microorganism aeration coupling all-in-one
JPH08173987A (en) Aeration apparatus suitable for tank with high depth of water
KR101836993B1 (en) Fluid mixing and reaction device
JP3908365B2 (en) Aerator for oxidation ditch
JPS6136477B2 (en)
CN208617415U (en) A kind of aerator cavitation air-dispersing impeller