JPS5852686B2 - Mandarin Congouriyu Haneguruma - Google Patents

Mandarin Congouriyu Haneguruma

Info

Publication number
JPS5852686B2
JPS5852686B2 JP49110381A JP11038174A JPS5852686B2 JP S5852686 B2 JPS5852686 B2 JP S5852686B2 JP 49110381 A JP49110381 A JP 49110381A JP 11038174 A JP11038174 A JP 11038174A JP S5852686 B2 JPS5852686 B2 JP S5852686B2
Authority
JP
Japan
Prior art keywords
impeller
shroud
edge
side edge
suction side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49110381A
Other languages
Japanese (ja)
Other versions
JPS5059858A (en
Inventor
クラーク ルーニイ トーマス
エドウイン クランダール ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Water Technologies Holding Corp
Original Assignee
Envirex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envirex Inc filed Critical Envirex Inc
Publication of JPS5059858A publication Critical patent/JPS5059858A/ja
Publication of JPS5852686B2 publication Critical patent/JPS5852686B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2342Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force
    • B01F23/23421Surface aerating with stirrers near to the liquid surface, e.g. partially immersed, for spraying the liquid in the gas or for sucking gas into the liquid, e.g. using stirrers rotating around a horizontal axis or using centrifugal force the stirrers rotating about a vertical axis
    • B01F23/234211Stirrers thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • F04D29/183Semi axial flow rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 この発明は機械的曝気装置のための改良された低速羽根
車に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improved low speed impeller for a mechanical aeration system.

いつばんに羽根車は、軸方向あるいは半径方向の液流を
発生させるように設計されており、後者の例としては遠
心羽根車がある。
Impellers are often designed to produce axial or radial liquid flow, an example of the latter being a centrifugal impeller.

排出流が軸方向と半径方向との混合流となる時には混合
流用の羽根車といわれている。
When the discharge flow is a mixed flow of axial and radial directions, it is called a mixed flow impeller.

羽根車は支持兼回転軸に取付けたボスから延長するいく
つかのベーンすなわち羽根を備えている。
The impeller has a number of vanes extending from a boss attached to a supporting and rotating shaft.

大型の羽根車の場合には羽根の効率は一般的に、液流を
ボスのまわりにか、または、ボスを通って案内する囲い
板を中央部のスペースに設けることによって改善される
In the case of large impellers, the efficiency of the vanes is generally improved by providing a shroud in the central space that guides the liquid flow around or through the boss.

ボスと囲い板とは、もちろん、一体構造にしてもよい。Of course, the boss and the shroud may be of an integral structure.

羽根車の各羽根はボスに取付けるか、または、囲い板と
接触する個所を含む縁部を有する構造にする。
Each blade of the impeller is attached to a boss or constructed with an edge including the point where it contacts the shroud.

羽根の他の縁部は羽根車の回転と液流の方向とに関連し
て前縁部、吸引側縁部および吐出側縁部と普通呼ばれて
いる3つの部分になっている。
The other edges of the vanes are in three parts, commonly referred to as the leading edge, the suction side edge and the discharge side edge, in relation to the rotation of the impeller and the direction of liquid flow.

羽根車その他の設計要因としては、羽根車のバランス、
製造上好適な外形、羽根のまわりに紐や布片が巻きつい
たときに、それをどうするか、という問題などがある。
Other design factors for the impeller include impeller balance,
There are issues such as what is the best shape for manufacturing, and what to do when strings or pieces of cloth get wrapped around the blades.

廃水や産業廃棄物を曝気して生物学的に処理する方法と
して水面に羽根車を設けることは広く行われていること
である。
Providing impellers on the water surface is a widely used method for aerating and biologically treating wastewater and industrial waste.

羽根車はフロートあるいは固定構造物に支持した減速歯
車装置つき電動機の垂直出力軸の下端部に固定されるの
が普通である。
The impeller is typically fixed to the lower end of the vertical output shaft of a motor with a reduction gear set supported on a float or fixed structure.

高速曝気装置には垂直に近い部分をもつほぼ円形のパタ
ーンに従って廃水を偏向させる上方部材を有する立て形
吸引管に軸流羽根車を設けたものが多い。
High-speed aeration systems often include an axial impeller mounted on a vertical suction tube having an upper member that deflects wastewater according to a generally circular pattern with near-vertical sections.

馬力当りすなわち単位電流消費量当りに吸排される廃水
量に関しては高速曝気装置は設備費を多く要する割には
効率が低い。
Regarding the amount of wastewater sucked and discharged per horsepower, that is, per unit current consumption, high-speed aeration equipment is low in efficiency despite its high equipment cost.

低速曝気装置は175HP以下の電動機またはエンジン
によって駆動され一般には2つの型式に分類される。
Low speed aerators are driven by electric motors or engines of less than 175 HP and are generally classified into two types.

その1つの型式のものは大量の廃水を水面の近くのとこ
ろで攪拌して曝気処理し、第2の型式のものは処理槽の
底面近くのところで攪拌を行なうために処理槽のかなり
底の方から大量の廃水を吸引して水平方向に吐出し、水
面を経て水槽の壁の方にむかって強い水流を発生させる
One type aerates a large amount of wastewater by stirring it close to the water surface, and the second type aerates the wastewater near the bottom of the tank, starting well from the bottom of the tank. It sucks in a large amount of wastewater and discharges it horizontally, creating a strong stream of water that passes through the water surface and toward the walls of the aquarium.

固定構造型の槽に吸上げ式の曝気装置を用いると処理槽
の底面の近くのところに入口を配装した大型の吸上げ管
が必要になる。
When a suction type aeration device is used in a fixed structure tank, a large suction pipe with an inlet near the bottom of the treatment tank is required.

このような曝気装置では一般に軸流型の羽根車が用いら
れ、排出流には高速曝気装置と同様の垂直方向成分が含
まれる。
Such aerators typically use axial impellers, and the discharge stream has a vertical component similar to that of high-speed aerators.

吸上げ管をもたない開放型の羽根車は構造が簡単である
ため使用上は好適であるが、多くの開放型羽根車は現在
吸上げ式とされているが、これは10ft(約3.03
7?Z)以上の深さでは効率が若干低下する。
Open-type impellers without suction pipes have a simple structure and are suitable for use, but many open-type impellers are currently considered to be suction types, but these are 10ft (approx. .03
7? At depths greater than Z), efficiency decreases slightly.

この種の羽根車では水面に対する相対位置が多少変わる
と効率が著しく変動する。
The efficiency of this type of impeller changes significantly when its position relative to the water surface changes slightly.

この明細書では吸排能力と浸漬範囲という2つの要因を
とり扱かうが、これらの2つの要因は、下水あるいは廃
水処理槽の設計上、曝気装置ユニットをフロートに取付
けた場合と橋梁状支持体に取付けた場合とでは、若干具
った意義をもつ。
This specification deals with two factors: suction/drainage capacity and immersion range, and these two factors are important when designing a sewage or wastewater treatment tank, when the aeration unit is mounted on a float and when it is mounted on a bridge-like support. It has a slightly different meaning compared to when it is installed.

多(の下水または廃水処理槽の場合、水槽を流れる水の
流量と水位とは次式 面よりも上方の水位を表わす) に従う溢流せきの公式によって計算される。
(In the case of sewage or wastewater treatment tanks, the flow rate of water flowing through the tank and the water level represent the water level above the surface of the following equation).

上式は、せきの長さが一定の場合、流量Qの増減に伴っ
て水位が上下することを示している。
The above equation shows that when the length of the weir is constant, the water level rises and falls as the flow rate Q increases and decreases.

この関係は固定式の水面曝気装置を備えた標準的な下水
処理槽の場合、流量の大きな日中には羽根車が深く浸漬
して最大能力で作動し、流量が著しく減少する夜間には
水位が下がり羽根車の浸漬深さが低下することによって
小さな能力で作動するように利用されている。
This relationship means that for a standard sewage treatment tank with a fixed surface aeration system, the impeller is deeply immersed and operates at maximum capacity during the day when the flow rate is high, and at night when the flow rate is significantly reduced, the water level It is used to operate at a lower capacity by lowering the immersion depth of the impeller.

この自然調節方式は、供給酸素を利用する有機物の生物
学的な浄化過程にとって、きわめて有利である。
This natural regulation method is extremely advantageous for biological purification processes of organic matter that utilize supplied oxygen.

さらに、小流量の場合、吸排効率および能力の低下によ
り所要動力量が下がるので、動力費が節約されるのは自
明であろう。
Furthermore, it is obvious that in the case of a small flow rate, the amount of power required is reduced due to the reduction in suction/discharge efficiency and capacity, so that the power cost is saved.

しかし従来の羽根車には小さな浸漬範囲に対して吸排能
力の変動が大きいという欠点があった。
However, conventional impellers have the drawback of large fluctuations in suction and discharge capacity for small immersion ranges.

このことは、羽根車が対処し得る狭い範囲内に水位を維
持するために、処理槽の全体的設計という見地からは不
可能に近いほど長大な出口せきを設けなげればならない
ことを意味する。
This means that in order to maintain the water level within the narrow range that the impeller can manage, the outlet weir must be of such a length that it is almost impossible to do so from the perspective of the overall design of the treatment tank. .

そのため一定の水位が保たれるように機械的に操作され
る出口せきが用いられることもあった。
Mechanically operated outlet weirs were sometimes used to maintain a constant water level.

このような構造では廃水処理設備が複雑化し、保守を要
しない低速曝気装置を使用した意味がなくなる上、水位
を一定に保つために上記した自然調節方式のいくつかの
利点も失なわれる。
Such a structure complicates the wastewater treatment equipment, negates the use of maintenance-free low-speed aeration equipment, and also eliminates some of the advantages of the natural regulation method described above for maintaining a constant water level.

また多(の従来の廃水処理設備は、はぼ一定の状態で長
時間作動するようにしてあり、そのために低速曝気装置
を水位に対して一定の高さに支持するようなフロートに
取付けている例もある。
In addition, conventional wastewater treatment equipment is designed to operate for long periods of time in a more or less constant state, and for this purpose, a low-speed aeration device is installed on a float that is supported at a constant height relative to the water level. There are also examples.

このようなフロートは各曝気装置を正しく支持すると共
に、吸排作用の下方への反力に対して曝気装置を安定に
保持するように設計する必要がある。
Such floats need to be designed to properly support each aeration device and to hold the aeration device stably against the downward reaction force of suction and discharge.

吸排作用には必ずいくらかの脈動を伴ない、曝気ユニッ
トはその結果として水中で上下に揺動する。
The sucking and pumping action is always accompanied by some pulsation, and the aeration unit as a result rocks up and down in the water.

曝気ユニットのいくつかの単位曝気装置は予測できない
僅かな相互作用によって上下に変位する。
Some unit aerators of the aeration unit are displaced up and down due to unpredictable slight interactions.

いくつかの曝気装置がいっせいに下方に変位すると、電
流消費が急激に増大し、電源が過負荷となり回路遮断器
が作動することもあり得る。
If several aeration devices are displaced downwards all at once, the current consumption will increase sharply, and the power supply may be overloaded and the circuit breaker may trip.

このような状態は特にいくつかの曝気ユニットを始動ま
たは停止させるときに起りやすい。
Such a situation is particularly likely to occur when starting or stopping some aeration units.

羽根車の特性について言えば、羽根車がご(僅か水中で
下方に変位したときに、過大なトルク負荷を電動機に与
える羽根車は、このような不安定性を必然的にもってい
る。
Regarding the characteristics of the impeller, an impeller that applies an excessive torque load to the motor when the impeller is slightly displaced downward in water inevitably has such instability.

したがって本発明の目的は、表面曝気を利用した標準的
な生物学的処理槽において必要とされろ所望の吸排能力
と浸漬範囲とを有する安定性の高い羽根車を提供するこ
とにある。
It is therefore an object of the present invention to provide a highly stable impeller having the desired suction and removal capacity and immersion range required in standard biological treatment tanks utilizing surface aeration.

本発明による羽根車は45°の底角をもつ倒立円錐形の
囲い板と、その吸引側縁部がシュラウドの円錐頂角より
も実質的に下方は位置するように該囲い板から下方に伸
長する3枚ないし5枚の羽根とを備えている。
The impeller according to the invention has an inverted conical shroud having a base angle of 45° and extending downwardly from the shroud such that its suction side edge is located substantially below the conical apex angle of the shroud. It is equipped with 3 to 5 blades.

各羽根の前縁部と羽根車軸の間の含み角は300のオー
ダであり、羽根車の全高はその直径の2/3のオーダで
ある。
The included angle between the leading edge of each blade and the impeller shaft is on the order of 300 degrees, and the total height of the impeller is on the order of 2/3 of its diameter.

本発明による羽根車の主な特徴は、標準作動範囲に対す
る浸漬限度の幅が広いことにある。
The main feature of the impeller according to the invention is the wide range of immersion limits for the standard operating range.

第1図と第2図に示した処理槽8はじゃま板を前方に取
付けた入口管9と、処理槽8内の水位を制御する出口せ
き10とを備えている。
The treatment tank 8 shown in FIGS. 1 and 2 includes an inlet pipe 9 with a baffle plate attached to the front, and an outlet weir 10 for controlling the water level in the treatment tank 8.

処理槽804つの側壁の1つには、出口せき10の全長
にわたって桶11が設けてあり、桶11には排水管12
が取付けである。
A tub 11 is provided on one of the four side walls of the treatment tank 80 over the entire length of the outlet weir 10, and a drain pipe 12 is provided in the tub 11.
is the installation.

機械的曝気装置13は処理槽8の中央部の梁状支持体1
4上に取付けてあり、上部駆動モータ15と、減速歯車
装置16と、該減速歯車装置16から下方に支持体14
の下部へと伸長する出力軸17と、処理槽8の水面上で
該出力軸17とともに回転するように該出力軸17の下
端部に取付けた羽根車21とを有する。
The mechanical aeration device 13 is installed on the beam-shaped support 1 in the center of the treatment tank 8.
4, which includes an upper drive motor 15, a reduction gearing 16, and a support 14 extending downwardly from the reduction gearing 16.
It has an output shaft 17 extending toward the bottom of the processing tank 8, and an impeller 21 attached to the lower end of the output shaft 17 so as to rotate together with the output shaft 17 above the water surface of the processing tank 8.

羽根車21は囲い板22と数枚の羽根23と詳細には図
示していないボスとから成り、そのボスによって出力軸
17に着脱可能に固定されている。
The impeller 21 consists of a shroud 22, several blades 23, and a boss (not shown in detail), and is removably fixed to the output shaft 17 by the boss.

バブと囲い板22は公知の適宜の構造としてよい。The bubble and shroud 22 may be any suitable structure known in the art.

本発明の1つの特徴は羽根23が平らな板体の形状をも
ち、内側の縁端のところで例えば溶接により直接囲い板
22に固定されていることにある。
One feature of the invention is that the vane 23 has the shape of a flat plate and is fixed directly to the shroud 22 at its inner edge, for example by welding.

囲い板22は底角が45°の倒立円錐体をなし、縁部2
2aによって画定される円形上面を有する。
The shroud 22 has an inverted cone shape with a base angle of 45°, and the edge 2
It has a circular upper surface defined by 2a.

したがって円錐体の下方頂点22bから上端までの囲い
板22の全高は、縁部22aの半径に等しい。
The total height of the shroud 22 from the lower apex 22b to the upper end of the cone is therefore equal to the radius of the edge 22a.

実用上の目的から囲い板22は図示のように截頭円錐形
状であり、小円形の下端面22cを有する。
For practical purposes, the shroud 22 has a frustoconical shape as shown, and has a small circular lower end surface 22c.

おのおのの羽根23の内側の縁端は上記に述べたとおり
であるが、それ以外の外側の縁端は第3図から第5図に
示したように、前縁部25と吸容側の内外方縁部26a
、26bと、吐出側縁部27とから戒っている。
The inner edges of each blade 23 are as described above, but the other outer edges are the front edge 25 and the inner and outer sides of the suction side, as shown in FIGS. Edge portion 26a
, 26b and the discharge side edge 27.

羽根23は出力軸17の軸線の下方延長線とほぼ30°
の角度を含み、該軸線の周囲に等角度に配置されている
The blade 23 is approximately 30 degrees from the downward extension of the axis of the output shaft 17.
and are equiangularly disposed about the axis.

羽根230面と羽根車21の軸線とは囲い板22の上面
と600の角度で交差する。
The blade 230 plane and the axis of the impeller 21 intersect with the upper surface of the shroud 22 at an angle of 600°.

各羽根23の前縁部25はその基準点から下方に、円錐
の頂点22bの下方約0.3Rのところまで延長してい
る。
The leading edge 25 of each vane 23 extends downwardly from its reference point to approximately 0.3R below the conical apex 22b.

吐出側の縁部27は囲い板22の縁部22aからほぼ半
径Rに等しい垂直距離だけ延長し、円錐体の頂点22b
の高さのレベルに到っている。
The edge 27 on the discharge side extends from the edge 22a of the shroud 22 by a vertical distance approximately equal to the radius R, and extends from the edge 22a of the shroud 22 to the apex 22b of the cone.
It has reached a level of height.

吸引側の縁部26aは頂点22bの高さレベルにおいて
前縁部25かも水平に延長し、吸引側の縁部26bは、
そこからさらに上記の吐出側縁部27の下端部のところ
に到る。
The suction side edge 26a also extends horizontally at the front edge 25 at the height level of the apex 22b, and the suction side edge 26b is
From there, it further reaches the lower end of the discharge side edge 27 mentioned above.

以上では羽根23の基本的な形状を説明したが、実際に
は羽根23の外形は羽根車の効率が少しでも改善される
ように曲線状、わん曲形状など適宜の形状とすることが
できる。
The basic shape of the blades 23 has been described above, but in reality, the outer shape of the blades 23 can be made into an appropriate shape such as a curved shape or a curved shape so that the efficiency of the impeller is improved even a little.

さらに第6図に示したように、さらに別の領域を羽根2
3に設けてもよい。
Furthermore, as shown in FIG.
3 may be provided.

すなわち、同図に示したように、前縁部25aが羽根2
3の回転方向に僅かなレーキ角をもつように三角形の領
域31を形成させてもよい。
That is, as shown in the figure, the leading edge 25a is connected to the blade 2.
The triangular region 31 may be formed so as to have a slight rake angle in the direction of rotation.

また羽根車の所定の設計条件の下で多少羽根車の容量を
増したい場合には、吐出側縁部27aが外方に1.2R
に相当する距離だけ延長するように後縁部32を形成し
てもよい。
In addition, if it is desired to increase the capacity of the impeller to some extent under the predetermined design conditions of the impeller, the discharge side edge 27a may be extended outward by 1.2R.
The trailing edge 32 may be formed to extend by a distance corresponding to .

この距離は1.2Rより大きくしてもよいが、1.5R
を著しく超過しないようにしなげればならない。
This distance may be greater than 1.2R, but 1.5R
shall not be significantly exceeded.

羽根車210羽根23の数は4枚あるいは5枚としても
よい。
The number of blades 23 of the impeller 210 may be four or five.

しかし羽根23は囲い板220周りに90°またはそれ
以上の角度にわたって設けられるため、6個またはそれ
以上の羽根23を設けることは羽根おが過度に重なり合
った状態になるためよくない。
However, since the blades 23 are provided around the shroud 220 over an angle of 90° or more, it is not good to provide six or more blades 23 because the blades will overlap excessively.

上述したように通常の水槽、池、沼などは大形であり、
かなり多(の曝気装置を等間隔に設置する必要がある。
As mentioned above, ordinary aquariums, ponds, swamps, etc. are large in size.
It is necessary to install quite a number of aeration devices at equal intervals.

処理槽8は単一ユニットとしての標準的な生物学的処理
槽と考えてよい。
Treatment vessel 8 may be considered a standard biological treatment vessel as a single unit.

処理槽8は80ft x80ft x20ft (約2
4.24mx 24.24??ZX 6.06??Z)
で、せき10の高さは18ft(約5.454771)
である。
The processing tank 8 is 80ft x 80ft x 20ft (approximately 2
4.24mx 24.24? ? ZX 6.06? ? Z)
So, the height of weir 10 is 18ft (approximately 5.454771)
It is.

標準廃水の場合、処理槽8の標準許容流量Qは1分間7
500ガロン(約28387.5立)のオーダであり、
最小流量と最大流量はそれぞれ1分間2500ガロ*ン
(約9462.5立)、22000ガロン(約8327
0立)である。
In the case of standard wastewater, the standard allowable flow rate Q of the treatment tank 8 is 7 per minute.
It is on the order of 500 gallons (approximately 28,387.5 feet),
The minimum and maximum flow rates are 2,500 gallons (approximately 9,462.5 feet) and 22,000 gallons (approximately 8,327 gallons) per minute, respectively.
0 standing).

これらの流量について前述の式により次の表のようにせ
き10上の水位が計算される。
For these flow rates, the water level above the weir 10 is calculated as shown in the following table using the above-mentioned formula.

上表かられかるように本発明の羽根車によると、せき1
0の長さはその浸漬範囲のため僅か29ft (約8.
79crn)とすればよい。
As can be seen from the above table, according to the impeller of the present invention, the weir 1
0 is only 29ft long due to its immersion range.
79crn).

同じ処理槽8に従来の羽根車を取付けた場合にはせき1
0の長さは80ft(約24.0477Z)ないし12
0ft(約36.367?Z)とする必要がある。
If a conventional impeller is installed in the same treatment tank 8, the weir 1
0 length is 80ft (approximately 24.0477Z) to 12
It needs to be 0ft (approximately 36.367?Z).

せき10は特に廉価な装置であるが、このように長くす
ると第2図の破線で表わしたように、桶11を処理槽8
の周囲に設けなげればならなくなり、処理設備が著しく
複雑化する。
The weir 10 is a particularly inexpensive device, but if it is made this long, the tub 11 is connected to the treatment tank 8, as indicated by the broken line in FIG.
The processing equipment will become significantly more complicated.

以上述べたように本発明によれば、羽根車が上記のよう
な構造を持ち、特に各羽根の外周縁が前縁部25、内外
方吸引側縁部26a 、26b及び吐出側縁部27によ
って構成されているため、広い作動浸漬範囲にわたって
所望の吸排能力が得られる結果、せき10の長さを大き
く短縮できる。
As described above, according to the present invention, the impeller has the above structure, and in particular, the outer peripheral edge of each blade is formed by the front edge 25, the inner and outer suction side edges 26a and 26b, and the discharge side edge 27. As a result, the length of the weir 10 can be significantly shortened as a result of the desired suction and drainage ability being obtained over a wide operating immersion range.

又、水位に対して一定の高さに支持するようなフロート
を取付ける必要がなく、羽根車が水中で下方へ若干変位
しても過大なトルク負荷の発生で電源回路が遮断するよ
うな事態には至らず、作動が安定する。
In addition, there is no need to install a float that supports the impeller at a constant height relative to the water level, and even if the impeller is slightly displaced downward in the water, an excessive torque load will occur and the power circuit will be cut off. The operation becomes stable.

さらに、各羽根は平らな板材を成形加工し、囲い板へ固
定するだけでよいので製作も容易である。
Furthermore, each blade is easy to manufacture because it is only necessary to form a flat plate and fix it to the shroud.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は曝気装置を橋梁形支持体に取付けた生物学的処
理槽の1例を示し、一部は断面によって表わした立面図
、第2図は第1図に図示した処理槽の上面図、第3図は
出力軸を断面で、シュラウドの外形を破線で表わした羽
根車の下面図、第4図は第3図の羽根車の一部側面図、
第5図は第3図の5−5線の方向より見た羽根車の側面
図、第6図は周縁部の形状を変えた羽根を示す説明図で
ある。 8・・・・・・処理槽、9・・・・・・入口管、10・
・・・・・出口せき、11・・・・・・桶、12・・・
・・・排水管、13・・・・・・機械的曝気装置、14
・・・・・・梁状支持体、15・・・・・・上部駆動モ
ータ、16・・・・・・減速歯車装置、17・・・・・
・出力軸、21・・・・・・羽根車、22・・・・・・
囲い板、23・・・・・・羽根、22a・・・・・・囲
い板上面、25・・・・・・22の前縁部、26a 、
26b・・・・・・22の吸込側縁部の半径方向内方の
部分および外方の部分、27・・・・・・22の吐出側
縁部。
Figure 1 shows an example of a biological treatment tank in which an aeration device is attached to a bridge-type support, with some sections showing an elevational view, and Figure 2 a top view of the treatment tank shown in Figure 1. Figure 3 is a bottom view of the impeller with the output shaft in cross section and the outline of the shroud shown in broken lines; Figure 4 is a partial side view of the impeller in Figure 3;
FIG. 5 is a side view of the impeller seen from the direction of line 5--5 in FIG. 3, and FIG. 6 is an explanatory diagram showing a blade having a different shape at the peripheral edge. 8... Processing tank, 9... Inlet pipe, 10.
...Exit weir, 11...Pail, 12...
... Drain pipe, 13 ... Mechanical aeration device, 14
...Beam-shaped support, 15 ... Upper drive motor, 16 ... Reduction gear device, 17 ...
・Output shaft, 21... Impeller, 22...
Shrouding plate, 23...Blade, 22a...Shrouding plate top surface, 25...Front edge of 22, 26a,
26b...22's radially inner and outer portions of the suction side edges, 27...22's discharge side edges.

Claims (1)

【特許請求の範囲】 1 下方へ延びた垂直の出力軸を有する1駆動モータと
、該出力軸の下端に固定され且つ下方流入端を有する羽
根車と、該羽根車の上端が液面よりも所定の距離だけ高
く、下端が所定の浸漬レベルにくるように駆動モータを
支持する手段から成る液体曝気混合装置において、 上記羽根車が高さRの倒立円錐形囲い板と3ないし5枚
の平形の羽根とから成り、該囲い板の上端が半径Rの円
形状である羽根車の上端部を形成し、各羽根は平板の形
状であり、羽根車の上方に向かう液流に対して300の
レーキ角をもち且つ傾斜面が羽根車の上端において羽根
車の軸線と交差するように配置され、各羽根の外周縁は
囲い板へと続く後縁部、前縁部25、内方吸引側縁部2
6a、外方吸引側縁部26b、及び吐出側縁部27かも
成り、各羽根の前縁部は該囲い板から半径方向外方に且
つ下方に延長して吸引側縁部へと続き、各羽根の吐出側
縁部は高さRでIR〜1.5Rの半径をもち且つ外方吸
引側縁部から囲い板の上端外縁部へと延び、各羽根の内
方吸引側縁部が囲い板の下端の下方約0.3Rのところ
に位置し、しかも羽根車の下端を形成していることを特
徴とする機械的液面曝気装置用の立て要理合流0羽根車
。 2 各羽根の前縁部が半径方向後方への僅かなレーキ角
を有することを特徴とする特許請求の範囲第1項に記載
の羽根車。 3 上記囲い板の下面を截頭したことを特徴とする特許
請求の範囲第1項に記載の羽根車。 4 上記羽根車の上端が液面レベルよりも0.25R−
0,2R上方に位置するように上記支持手段が駆動モー
タを支持していることを特徴とする特許請求の範囲第1
項に記載の羽根車。
[Claims] 1. 1 drive motor having a vertical output shaft extending downward, an impeller fixed to the lower end of the output shaft and having a lower inflow end, the upper end of the impeller being lower than the liquid level. A liquid aeration mixing device comprising means for supporting a drive motor a predetermined distance higher and with its lower end at a predetermined immersion level, wherein said impeller comprises an inverted conical shroud of height R and three to five flat shrouds. The upper end of the shrouding plate forms the upper end of a circular impeller with a radius R, and each blade is in the shape of a flat plate, and the upper end of the shrouding plate forms the upper end of a circular impeller with a radius of R. It has a rake angle and is arranged so that the inclined surface intersects the axis of the impeller at the upper end of the impeller, and the outer peripheral edge of each blade has a trailing edge that continues to the shroud, a leading edge 25, and an inner suction side edge. Part 2
6a, an outer suction side edge 26b, and a discharge side edge 27, the leading edge of each vane extending radially outwardly and downwardly from the shroud and continuing to the suction side edge; The discharge side edge of each vane has a height R and a radius of IR~1.5R and extends from the outer suction side edge to the upper outer edge of the shroud, and the inner suction side edge of each vane is connected to the shroud. A 0-vertical merging impeller for a mechanical liquid level aeration device, characterized in that the impeller is located approximately 0.3R below the lower end and forms the lower end of the impeller. 2. The impeller according to claim 1, wherein the leading edge of each blade has a slight rake angle radially rearward. 3. The impeller according to claim 1, wherein the lower surface of the shrouding plate is truncated. 4 The upper end of the impeller is 0.25R- lower than the liquid level.
Claim 1, wherein the support means supports the drive motor so as to be located above 0.2R.
The impeller described in section.
JP49110381A 1973-09-26 1974-09-25 Mandarin Congouriyu Haneguruma Expired JPS5852686B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US40110073 US3904714A (en) 1973-09-26 1973-09-26 Low-speed mechanical aerator impeller

Publications (2)

Publication Number Publication Date
JPS5059858A JPS5059858A (en) 1975-05-23
JPS5852686B2 true JPS5852686B2 (en) 1983-11-24

Family

ID=23586299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49110381A Expired JPS5852686B2 (en) 1973-09-26 1974-09-25 Mandarin Congouriyu Haneguruma

Country Status (8)

Country Link
US (1) US3904714A (en)
JP (1) JPS5852686B2 (en)
BE (1) BE819964A (en)
FR (1) FR2257799A1 (en)
GB (1) GB1441502A (en)
IT (1) IT1030060B (en)
NL (1) NL7412642A (en)
SE (1) SE7412092L (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2313114A1 (en) * 1975-06-04 1976-12-31 Procedes Sem NEW IMPROVEMENTS TO PROPELLERS FOR MIXERS
JPS6031537B2 (en) * 1981-11-20 1985-07-23 聡 砂田 Gas-liquid contact device
DE3372396D1 (en) * 1982-10-28 1987-08-13 Goodwin R Int Ltd Agitating particulate solids
US4652382A (en) * 1984-10-19 1987-03-24 International Waste Water Reclamation Technologies, Inc. Process and apparatus for continuously treating sewage wastewater by chemical oxidation
US5040900A (en) * 1989-06-16 1991-08-20 United States Pollution Control Company, Inc. Sludge stabilizing method and apparatus
US4943165A (en) * 1989-06-16 1990-07-24 United States Pollution Control Company, Inc. Sludge stabilizing method and apparatus
US20040188334A1 (en) * 1998-09-28 2004-09-30 Mcwhirter John R. Novel biochemical oxidation system
US6224041B1 (en) 1999-05-28 2001-05-01 Smith & Loveless, Inc. Splash plate structure for aerators
JP2010042411A (en) * 2009-09-25 2010-02-25 Penn State Research Foundation Surface aeration blade wheel
EP2867537B1 (en) 2012-06-20 2020-02-19 Philadelphia Mixing Solutions, Ltd. High efficiency, non-ragging, formed axial impeller
US10173184B2 (en) * 2015-03-25 2019-01-08 Schlumberger Technology Corporation Blender for mixing and pumping solids and fluids and method of use thereof
NO344723B1 (en) * 2018-05-16 2020-03-23 Tore Hystad Centrifugal pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072944A (en) * 1934-12-21 1937-03-09 Chicago Pump Co Aerator
US2354653A (en) * 1940-06-11 1944-08-01 Gen Electric Impeller
US2346366A (en) * 1941-12-29 1944-04-11 Lewis H Durdin Mechanical aerator
FR88774E (en) * 1962-05-07 1967-06-07
US3470092A (en) * 1967-05-08 1969-09-30 Degremont Sa System for the purification of waste waters

Also Published As

Publication number Publication date
JPS5059858A (en) 1975-05-23
US3904714A (en) 1975-09-09
SE7412092L (en) 1975-03-27
NL7412642A (en) 1975-04-01
IT1030060B (en) 1979-03-30
AU7349074A (en) 1976-03-25
GB1441502A (en) 1976-07-07
BE819964A (en) 1975-01-16
FR2257799A1 (en) 1975-08-08

Similar Documents

Publication Publication Date Title
US4231974A (en) Fluids mixing apparatus
US3341450A (en) Gasification apparatus and method
SE452180B (en) UNDER WATER SAND PUMP
SE448523B (en) WASHER OUTLET
JPS5852686B2 (en) Mandarin Congouriyu Haneguruma
AU595633B2 (en) Apparatus for introducing a gas into a liquid
WO2005099881A9 (en) Improved surface aeration impeller designs
WO2000041801A1 (en) Gas-liquid mixing device
WO2004025125A2 (en) Surface aeration impellers
EP0058225B1 (en) Pressurized aeration tank for activated-sludge process sewage treatment
JP4570050B2 (en) Convection inducing device in tank
JPH05253592A (en) Stirring aerator
CN106368953A (en) Dry type sewage pump
JP4754586B2 (en) Aeration stirrer
EP0027911B1 (en) Apparatus for contacting liquid with a gas
JP2001252681A (en) Device for controlling water level of oxidation ditch
CN209906361U (en) Hyperboloid sewage agitator
CN208980408U (en) A kind of intelligent spiral undercurrent aerating system
KR20020024179A (en) Underwater pump
JPH047274B2 (en)
EP1581745A2 (en) Surface aeration impellers
JPS586290A (en) Aeration device
JP2005305257A (en) Aerator
JP2010247112A (en) Agitator
WO2005089920A1 (en) Aerator for oxygenating a liquid