JP2010167329A - Aeration agitator - Google Patents

Aeration agitator Download PDF

Info

Publication number
JP2010167329A
JP2010167329A JP2009009802A JP2009009802A JP2010167329A JP 2010167329 A JP2010167329 A JP 2010167329A JP 2009009802 A JP2009009802 A JP 2009009802A JP 2009009802 A JP2009009802 A JP 2009009802A JP 2010167329 A JP2010167329 A JP 2010167329A
Authority
JP
Japan
Prior art keywords
impeller
air supply
air
rectifying plate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009009802A
Other languages
Japanese (ja)
Other versions
JP5188997B2 (en
Inventor
Kosuke Oide
浩輔 大出
Takahide Nagahara
孝英 長原
Tomoya Okamura
知也 岡村
Ryoko Hakui
涼子 伯井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009009802A priority Critical patent/JP5188997B2/en
Publication of JP2010167329A publication Critical patent/JP2010167329A/en
Application granted granted Critical
Publication of JP5188997B2 publication Critical patent/JP5188997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aeration agitator where an aeration operation dissolving oxygen into water is performed at high efficiency, further, a sufficient oxygen dissolving rate at which oxygen is dissolved to water quantity is secured, and also, the clogging of an air supply port hardly occurs. <P>SOLUTION: In the aeration agitator where a cylindrical tube body 4 is arranged around a stirring shaft 3 fitted with an impeller 2, and a downward stream is generated in the inside of the tube body 4 by the impeller 2, the wall part of the tube body 4 on the downstream side of the impeller 2 is provided with an air supply port 51, and a blower mechanism 6 by which air is supplied to the outer circumferential part of the impeller 2 via the air supply port 51 is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、曝気攪拌装置に関し、特に、水に酸素を溶かす曝気運転を高効率で行うとともに、水量に対して酸素を溶かす十分な酸素溶解速度を確保し、かつ給気孔の目詰まりを起こしにくくする曝気攪拌装置に関するものである。   The present invention relates to an aeration stirrer, and in particular, performs aeration operation in which oxygen is dissolved in water with high efficiency, ensures a sufficient oxygen dissolution rate for dissolving oxygen with respect to the amount of water, and is less likely to cause clogging of air supply holes. The present invention relates to an aeration stirrer.

汚水などを活性汚泥で好気的に処理する曝気攪拌装置として、例えば、下記特許文献1に記載のものがある。
この曝気攪拌装置は、図4に示すように、処理槽8内に垂直に配置されたドラフトチューブ81と、ドラフトチューブ81内に位置し、かつ電動機82により駆動軸83を介して回転されるインペラ84と、インペラ84の下に配置され、かつブロワ85に接続された散気管86と、散気管86の下に配置された整流部材87とを具備している。
そして、この曝気攪拌装置は、インペラ84によりドラフトチューブ81内に下向流を形成し、これに空気を吹き込むことにより、処理すべき水に散気しながら水を攪拌するようにしている。
As an aeration stirrer that aerobically treats sewage with activated sludge, for example, there is one described in Patent Document 1 below.
As shown in FIG. 4, the aeration and agitation apparatus includes a draft tube 81 arranged vertically in the treatment tank 8, and an impeller that is located in the draft tube 81 and is rotated by a motor 82 via a drive shaft 83. 84, an air diffuser 86 disposed below the impeller 84 and connected to the blower 85, and a rectifying member 87 disposed below the air diffuser 86.
And this aeration stirrer forms the downward flow in the draft tube 81 with the impeller 84, and blows air in this, so that water is stirred while being diffused in the water to be treated.

このような曝気攪拌装置のインペラについて検討されているものとして、攪拌による汚水中の繊維の絡まりを防止するために、各翼を遠心方向から回転後方に所要角度傾斜させたインペラを取り付けた攪拌装置(特許文献2参照)や、振動や粗大気泡の吸い込み側への逆流(フラッディング)を防止する目的でボス比を大きくしたり、気泡の分散のためにインペラの下にさらに小円盤状の遠心インペラ取り付けけた攪拌装置(特許文献3参照)が知られている。   In order to prevent entanglement of fibers in the sewage due to agitation, an agitation device equipped with an impeller in which each blade is inclined at a required angle from the centrifugal direction to the rear of the rotation is studied as an impeller of such aeration agitation device. (Refer to Patent Document 2), and the boss ratio is increased for the purpose of preventing vibrations and backflow (flooding) of coarse bubbles to the suction side, or a small disc-shaped centrifugal impeller under the impeller to disperse bubbles. An attached stirrer (see Patent Document 3) is known.

しかしながら、最近では、省エネルギーのニーズの高まりと下水の高度処理が推進されており、水に酸素を溶かす曝気効率のさらなる上昇、具体的には、省エネルギーが求められると同時に、酸素移動動力効率を既存の技術より1.2倍以上に増加させることが求められている。
この場合、曝気の気泡を細かくする必要があるが、空気を水中に供給する給気孔は、従来と同様に十分に大きく保つ必要がある。
すなわち、水に空気を吹き込むために設けた給気孔は水中にあるため、空気供給元のブロワを停止した際には、この給気孔にゴミが混在した汚水が入り込み、ブロワの運転再開時には、このゴミが給気孔の一部を塞ぎ、空気の排出を妨げるというような問題も発生する。
Recently, however, the need for energy conservation and advanced treatment of sewage have been promoted, and a further increase in aeration efficiency that dissolves oxygen in water, specifically, energy saving is required, and at the same time, the efficiency of oxygen transfer power Therefore, it is required to increase it by 1.2 times or more.
In this case, it is necessary to make the bubbles of the aeration fine, but it is necessary to keep the air supply holes for supplying air into the water sufficiently large as in the conventional case.
In other words, since the air supply holes provided to blow air into the water are in the water, when the blower of the air supply source is stopped, sewage mixed with dust enters the air supply holes. There also arises a problem that dust blocks a part of the air supply holes and prevents the air from being discharged.

特許第3239170号公報Japanese Patent No. 3239170 特開昭60−227821号公報Japanese Patent Laid-Open No. 60-227821 特開平5−253592号公報Japanese Patent Laid-Open No. 5-253592

本発明は、上記従来の曝気攪拌装置が有する問題点に鑑み、水に酸素を溶かす曝気運転を高効率で行うとともに、水量に対して酸素を溶かす十分な酸素溶解速度を確保し、かつ給気孔の目詰まりを起こしにくくする曝気攪拌装置を提供することを目的とする。   In view of the problems of the above-described conventional aeration and agitation devices, the present invention performs an aeration operation for dissolving oxygen in water with high efficiency, ensures a sufficient oxygen dissolution rate for dissolving oxygen relative to the amount of water, and provides air supply holes. An object of the present invention is to provide an aeration stirrer that makes it difficult to cause clogging.

上記目的を達成するため、本発明の曝気攪拌装置は、インペラを取り付けた攪拌軸の周囲に筒体を配設し、該インペラにより筒体の内部に下向き流を発生させるようにした曝気攪拌装置において、インペラの周囲で筒体の壁部に給気孔を設け、該給気孔を介してインペラの外周部に空気を排出するブロワ機構を設けたことを特徴とする。   In order to achieve the above object, the aeration stirrer according to the present invention has a cylindrical body disposed around a stirring shaft to which an impeller is attached, and the impeller generates a downward flow inside the cylindrical body. In the present invention, an air supply hole is provided in the wall portion of the cylindrical body around the impeller, and a blower mechanism for discharging air to the outer peripheral portion of the impeller through the air supply hole is provided.

この場合において、インペラの下流側の位置で筒体の周囲に空気室を設けるとともに、該空気室と筒体の内部とを給気孔により連通させることができる。   In this case, an air chamber can be provided around the cylinder at a position downstream of the impeller, and the air chamber and the inside of the cylinder can be communicated with each other through an air supply hole.

また、インペラの下流側に、インペラによる旋回流を筒軸方向に整流する中空の整流板を配設し、該整流板の下部に空気の排出孔を設けるとともに、整流板の周囲で筒体の壁部に給気孔を設け、該給気孔を介して整流板の内部に空気を供給するブロワ機構を設けることができる。   In addition, a hollow rectifying plate that rectifies the swirling flow by the impeller in the cylinder axis direction is disposed on the downstream side of the impeller, and an air discharge hole is provided at a lower portion of the rectifying plate, and the cylindrical body is surrounded around the rectifying plate. An air supply hole can be provided in the wall, and a blower mechanism that supplies air to the inside of the current plate through the air supply hole can be provided.

また、整流板の位置で筒体の周囲に空気室を設けるとともに、該空気室と整流板の内部とを給気孔により連通させることができる。   In addition, an air chamber can be provided around the cylindrical body at the position of the rectifying plate, and the air chamber and the inside of the rectifying plate can be communicated with each other through an air supply hole.

また、整流板の断面形状を、楕円又は翼断面形状とすることができる。   Moreover, the cross-sectional shape of a baffle plate can be made into an ellipse or a blade | wing cross-sectional shape.

また、筒体の上部を喇叭状に拡径するとともに、該拡径部と対向するように所定間隔をあけて円板を配設し、周囲から筒体の半径内方向に水を流入させる流入口を設けることができる。   Further, the diameter of the upper part of the cylinder is expanded in a bowl shape, and a disk is provided at a predetermined interval so as to face the enlarged diameter part, so that water flows in from the periphery in the radial inward direction of the cylinder. An inlet can be provided.

本発明の曝気攪拌装置によれば、インペラを取り付けた攪拌軸の周囲に筒体を配設し、該インペラにより筒体の内部に下向き流を発生させるようにした曝気攪拌装置において、インペラの周囲で筒体の壁部に給気孔を設け、該給気孔を介してインペラの外周部に空気を排出するブロワ機構を設けることから、給気孔から排出された気泡は、速度勾配の強いインペラ外周部の水流に入り込むことで細分化され微細気泡に変化する。
すなわち、本発明の曝気攪拌装置では、気泡を細かくするために給気孔を小さくする必要がないことから、給気孔を大径に設けて目詰まりの発生を防止するとともに、水深の浅いインペラ付近に設けたこの大径の給気孔から水中に空気を送り込むことにより、ブロワの動力を軽減して省エネルギー化を図ることができる。
そして、速度勾配の強い水流で細分化された微細気泡は、浮力を失っているため、水流と共に水槽の底部に運ばれ長い時間滞留するとともに、微細気泡は同じ体積の粗大気泡より表面積が大きく水との接触面積が大きいことから酸素の溶解速度を高めることができ、これにより、浮力が大きく少量の酸素が水に移動したときには水面に達する通常の気泡に比較し、微細気泡内の多くの割合の酸素を水に移動させることができる。
According to the aeration stirrer of the present invention, in the aeration stirrer in which the cylindrical body is disposed around the stirring shaft to which the impeller is attached, and the impeller generates a downward flow inside the cylindrical body, the periphery of the impeller The air supply holes are provided in the wall of the cylinder body, and a blower mechanism is provided to discharge air to the outer periphery of the impeller through the air supply holes. It is subdivided and enters into fine bubbles by entering the water stream.
That is, in the aeration stirrer of the present invention, since it is not necessary to make the air supply hole small in order to make the bubbles fine, the air supply hole is provided with a large diameter to prevent clogging, and near the impeller having a shallow water depth. By sending air into the water from the large-diameter air supply hole provided, the power of the blower can be reduced to save energy.
Since the fine bubbles subdivided by the water flow with a strong velocity gradient have lost buoyancy, they are carried together with the water flow to the bottom of the water tank and stay for a long time, and the fine bubbles have a larger surface area than coarse bubbles of the same volume. The oxygen dissolution rate can be increased due to the large contact area with the water, and as a result, a large percentage of the fine bubbles in the fine bubbles compared to the normal bubbles that reach the water surface when large amounts of oxygen move to the water due to large buoyancy. Of oxygen can be transferred to water.

また、インペラの下流側の位置で筒体の周囲に空気室を設けるとともに、該空気室と筒体の内部とを給気孔で連通させることにより、複数の給気孔をインペラの周囲に容易に周設することができる。この場合、給気孔の半径位置は、中心から筒体の半径の0.5〜1.0倍の位置となるように設けられる。   In addition, an air chamber is provided around the cylinder body at a position downstream of the impeller, and the air chamber and the inside of the cylinder body are communicated with each other through the air supply holes, so that the plurality of air supply holes can be easily surrounded around the impeller. Can be set. In this case, the radial position of the air supply hole is provided so as to be 0.5 to 1.0 times the radius of the cylindrical body from the center.

また、インペラの下流側に、インペラによる旋回流を筒軸方向に整流する中空の整流板を配設し、該整流板の下部に空気の排出孔を設けるとともに、整流板の周囲で筒体の壁部に給気孔を設け、該給気孔を介して整流板の内部に空気を供給するブロワ機構を設けることにより、整流板を介して水中に気泡を排出するとともに、該気泡を整流板を通過する水流の乱れによって細分化することができる。
さらに、整流板は、インペラによる旋回流を筒軸方向に整流することにより、インペラの外周部より下流側で、かつ、整流板の上流側で形成された微細気泡が旋回流により合体して粗大化することを防止することができる。
In addition, a hollow rectifying plate that rectifies the swirling flow by the impeller in the cylinder axis direction is disposed on the downstream side of the impeller, and an air discharge hole is provided at a lower portion of the rectifying plate, and the cylindrical body is surrounded around the rectifying plate. Air supply holes are provided in the wall, and by providing a blower mechanism that supplies air to the inside of the rectifying plate through the air supply holes, air bubbles are discharged into the water through the rectifying plate, and the bubbles pass through the rectifying plate. It can be subdivided by turbulent water flow.
Furthermore, the rectifying plate rectifies the swirling flow by the impeller in the cylinder axis direction, so that the fine bubbles formed on the downstream side of the outer periphery of the impeller and on the upstream side of the rectifying plate are coalesced by the swirling flow and are coarse. Can be prevented.

また、整流板の位置で筒体の周囲に空気室を設けるとともに、該空気室と整流板の内部とを給気孔で連通させることにより、複数の給気孔を整流板の周囲に容易に周設することができる。   In addition, an air chamber is provided around the cylindrical body at the position of the rectifying plate, and a plurality of air supply holes are easily provided around the rectifying plate by communicating the air chamber and the inside of the rectifying plate with the air supply holes. can do.

また、整流板の断面形状を、楕円又は翼断面形状とすることにより、整流板を通過した水流に小さな渦を発生させることができ、この渦流を通過した気泡を微細化することができる。   Further, by making the cross-sectional shape of the rectifying plate an ellipse or a blade cross-sectional shape, a small vortex can be generated in the water flow that has passed through the rectifying plate, and the bubbles that have passed through this vortex flow can be refined.

また、筒体の上部を喇叭状に拡径するとともに、該拡径部と対向するように所定間隔をあけて円板を配設し、周囲から筒体の半径内方向に水を流入させる流入口を設けることにより、流入口からの水流は、徐々に水流を上昇させ、インペラによる筒体からの下向き流を水槽の底部で外向き流とするとともに、該外向き流を水槽の側壁で上向き流となし、該上向き流を水面付近で略水平の内向き流として筒体に流入させることができ、これにより、低動力で水槽全体に微細気泡を含んだ水を循環させることができる。   Further, the diameter of the upper part of the cylinder is expanded in a bowl shape, and a disk is provided at a predetermined interval so as to face the enlarged diameter part, so that water flows in from the periphery in the radial inward direction of the cylinder. By providing the inlet, the water flow from the inlet gradually raises the water flow, and the downward flow from the cylinder by the impeller is turned outward at the bottom of the water tank, and the outward flow is directed upward at the side wall of the water tank The upward flow can be made to flow into the cylindrical body as a substantially horizontal inward flow near the water surface, whereby water containing fine bubbles can be circulated throughout the water tank with low power.

本発明の曝気攪拌装置の一実施例を示す断面図である。It is sectional drawing which shows one Example of the aeration stirring apparatus of this invention. 同曝気攪拌装置を示し、(a)は図1のA−A線断面図、(b)は同B−B線断面図、(c)はインペラと整流板を示す拡大断面図である。The aeration stirring apparatus is shown, (a) is a cross-sectional view taken along line AA in FIG. 1, (b) is a cross-sectional view taken along line BB, and (c) is an enlarged cross-sectional view showing an impeller and a current plate. 同曝気攪拌装置を示し、(a)は筒体と空気室を示す斜視図、(b)は整流板と筒体を示す透視図、(c)は整流板の作用を示す断面図である。The aeration stirring apparatus is shown, (a) is a perspective view showing a cylinder and an air chamber, (b) is a perspective view showing a rectifying plate and a cylinder, and (c) is a cross-sectional view showing an operation of the rectifying plate. 従来の曝気攪拌装置を示す断面図である。It is sectional drawing which shows the conventional aeration stirring apparatus.

以下、本発明の曝気攪拌装置の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of the aeration and stirring apparatus of the present invention will be described with reference to the drawings.

図1〜図3に、本発明の曝気攪拌装置の一実施例を示す。
この曝気攪拌装置は、電動機1で回転する、インペラ2を取り付けた攪拌軸3の周囲に円筒の筒体4を配設し、インペラ2により筒体4の内部に下向き流を発生させるようにしている。
そして、この曝気攪拌装置は、インペラ2のやや下流側の周囲で筒体4の壁部に給気部51aを設け、給気部51aの給気孔51を介してインペラ2の外周部に空気を供給するブロワ機構6を設けている。
1 to 3 show an embodiment of the aeration stirrer of the present invention.
In this aeration and agitation device, a cylindrical cylinder 4 is arranged around an agitation shaft 3 attached with an impeller 2 that is rotated by an electric motor 1, and a downward flow is generated inside the cylinder 4 by the impeller 2. Yes.
And this aeration stirring apparatus provides the air supply part 51a in the wall part of the cylinder 4 around the slightly downstream side of the impeller 2, and air is supplied to the outer peripheral part of the impeller 2 through the air supply hole 51 of the air supply part 51a. A supply blower mechanism 6 is provided.

筒体4は、その上部を喇叭状に拡径するとともに、該拡径部41と対向するように所定間隔をあけて円板42を水平に配設し、周囲から筒体4の半径内方向に水を流入させる流入口43を設けている。   The cylindrical body 4 has its upper portion enlarged in a bowl shape, and a circular plate 42 is horizontally disposed at a predetermined interval so as to face the enlarged diameter portion 41. An inflow port 43 through which water flows is provided.

筒体4の拡径部41の直径(内径)は、筒体4の直管部内径の2.5倍以上であり、その上側にインペラ直径の1/4程度の隙間を隔てて、拡径部41の内径と同様の外径を持つ円板42を配設している。
これにより、インペラ2による筒体4からの下向き流を水槽の底部で外向き流とするとともに、該外向き流を水槽の側壁で上向き流となし、該上向き流を水面付近で略水平の内向き流として筒体4に流入させることができ、これにより、低動力で水槽全体に微細気泡を含んだ水を循環させることができる。
The diameter (inner diameter) of the enlarged diameter portion 41 of the cylindrical body 4 is 2.5 times or more than the inner diameter of the straight pipe portion of the cylindrical body 4, with a gap about 1/4 of the impeller diameter on the upper side. A disc 42 having an outer diameter similar to the inner diameter of the portion 41 is provided.
As a result, the downward flow from the cylindrical body 4 by the impeller 2 is turned outward at the bottom of the water tank, the outward flow is made upward at the side wall of the water tank, and the upward flow is made to be substantially horizontal in the vicinity of the water surface. It can be made to flow into the cylinder 4 as a counter flow, whereby water containing fine bubbles can be circulated in the entire water tank with low power.

インペラ2の下流側には、インペラ2による旋回流を筒軸方向に整流する中空の整流板7が配設されている。平面視が十字をなすこの整流板7の下部には、空気の排出孔71が設けられている。
筒体4の壁部には、この整流板7の周囲で給気孔52が設けられており、前記ブロワ機構6により該給気孔52を介して整流板7の内部に空気を供給するようになっている。
整流板7は、図3(c)に示すように、その断面形状が楕円又は翼断面形状に形成されており、該整流板7を通過した水流に整流板7の下流側で小さな渦を発生させることができる。
On the downstream side of the impeller 2, a hollow rectifying plate 7 that rectifies the swirling flow generated by the impeller 2 in the cylinder axis direction is disposed. An air discharge hole 71 is provided at the lower part of the current plate 7 having a cross shape in plan view.
An air supply hole 52 is provided in the wall portion of the cylindrical body 4 around the rectifying plate 7, and air is supplied to the inside of the rectifying plate 7 through the air supply hole 52 by the blower mechanism 6. ing.
As shown in FIG. 3C, the rectifying plate 7 has an elliptical or blade cross-sectional shape, and a small vortex is generated downstream of the rectifying plate 7 in the water flow that has passed through the rectifying plate 7. Can be made.

ブロワ機構6は、地上に設置したブロワ61から、空気の導管62を介して水中に空気を導入する。
ブロワ機構6は、インペラ2と整流板7の位置で、それぞれ筒体4の周囲に空気室63を設けており、インペラ2側の空気室63と筒体4の内部とを円周上の複数の給気孔51により連通させるとともに、整流板7側の空気室63と整流板7の内部とを整流板7との接合部で複数の給気孔52により連通させている。
The blower mechanism 6 introduces air into the water from a blower 61 installed on the ground via an air conduit 62.
The blower mechanism 6 is provided with air chambers 63 around the cylinder 4 at the positions of the impeller 2 and the rectifying plate 7, and a plurality of air chambers 63 on the impeller 2 side and the inside of the cylinder 4 are arranged on the circumference. These air supply holes 51 communicate with each other, and the air chamber 63 on the rectifying plate 7 side and the inside of the rectifying plate 7 are communicated with each other through a plurality of air supply holes 52 at joint portions of the rectifying plate 7.

なお、インペラ側の給気孔51及び排出孔71は円形で、気孔径の大型化が図られており、具体的には気孔径を3〜7mm、好ましくは約5mmかそれ以上としている。
また、給気孔51の下限位置は、インペラ2の外周部の最下部の高さ(水深)より、インペラ直径の0.1倍から1倍の長さ分下側となるような高さ(水深)としている。
The air supply holes 51 and the discharge holes 71 on the impeller side are circular, and the pore diameter is increased. Specifically, the pore diameter is 3 to 7 mm, preferably about 5 mm or more.
Further, the lower limit position of the air supply hole 51 is a height (water depth) that is lower than the height (water depth) of the lowermost portion of the outer periphery of the impeller 2 by 0.1 to 1 time the impeller diameter. ).

ところで、通常は給気孔51又は排出孔71を大きくすると、その付近で発生する気泡の径も大きくなり、そのことで空気流量あたりの気泡の表面積、すなわち気泡の総容積あたりの総表面積(気泡と水の境界の面積)が小さくなり、水への酸素溶解速度が小さくなってしまう。
それに加えて、大きな径の気泡は浮力が大きいため、水流の方向が上向以外の場合、すなわち下向きや横向き(水平方向)の場合においても、その気泡はほぼ上向きとなる傾向がある。
一例として、こうした気泡の滞留時間を保つために、気泡の発生位置を槽底部に設定する技術が古くからあるが、その場合においても、気泡の滞留距離は高々水深長さであり、発生してから大気へと開放されるまでの時間(滞留時間)は短く、供給する空気量に対する酸素溶解量の比が小さい(20%程度)という課題が残る。
By the way, normally, when the air supply hole 51 or the discharge hole 71 is enlarged, the diameter of the bubble generated in the vicinity of the air supply hole 51 or the discharge hole 71 is also increased, so that the surface area of the bubble per air flow rate, that is, the total surface area per the total volume of the bubble (bubble and The area of the boundary of water) becomes small, and the oxygen dissolution rate in water becomes small.
In addition, since bubbles with a large diameter have a large buoyancy, the bubbles tend to be almost upward even when the direction of the water flow is other than upward, that is, downward or sideways (horizontal direction).
As an example, in order to maintain the residence time of such bubbles, the technology for setting the bubble generation position at the bottom of the tank has been around for a long time, but even in this case, the bubble retention distance is at most a depth of water and is generated. The time from the release to the atmosphere (residence time) is short, and the problem remains that the ratio of the dissolved oxygen amount to the supplied air amount is small (about 20%).

そこで、本実施例では、高効率曝気を行うための手段として、気泡を微細化し、気泡を長時間水中に滞留させる。
この気泡の微細化と、気泡の長時間の滞留とについて以下に述べる。
Therefore, in this embodiment, as a means for performing high-efficiency aeration, the bubbles are refined and the bubbles are retained in water for a long time.
The bubble miniaturization and the long-term retention of bubbles will be described below.

気泡の微細化については、気泡径を1mm以下、好ましくは、0.5mm以下に微細化することが望ましい。
上記のように、大径の給気孔51から空気を排出し、排出後、瞬時に気泡が1mm以下の気泡に微細化するように、気泡がその発生直後に水流の速度勾配の大きな場所(乱れの強い場所)を通過するような構造とする。
気泡の微細化現象は、上記のように、水流の速度勾配の大きなところで顕著に発生するが、本実施例の曝気攪拌装置で水流の速度勾配の大きなところは2つある。
As for the bubble miniaturization, it is desirable to make the bubble diameter 1 mm or less, preferably 0.5 mm or less.
As described above, air is discharged from the large-diameter air supply holes 51, and immediately after the discharge, the bubbles are immediately refined into bubbles having a size of 1 mm or less. To pass through a strong location).
As described above, the bubble miniaturization phenomenon occurs remarkably where the water flow velocity gradient is large, but there are two places where the water flow velocity gradient is large in the aeration stirrer of this embodiment.

本実施例の曝気攪拌装置の構造においては、まず、インペラ2の外周部において水流の速度勾配が大きい。そのため、インペラ2の外周部付近に給気孔51を設けている。
インペラ2の外周部の速度勾配について以下に記す。
インペラ2の外周端部の速度(周速)は、インペラ2の回転速度と直径できまる。一例としてインペラ2の回転速度を1000rpm〜1200rpm、直径を0.2〜0.3mと設定した場合、インペラ外周部の速度は約10〜15m/s(以下、平均値をもって12.5m/sとする)になる。
このとき、インペラ2の羽根の外周部の表面には、インペラ2とほぼ同じ流速の水流が発生するため、インペラ2の外周部においては水流の速度は12.5m/sとなる。
インペラ2の直後では、同様に速度勾配が大きな水流が発生するため、この水流の中に気泡を投入すると、気泡発生部の給気孔51が3〜7ミリ程度と大きくても、気泡径は、その発生部近傍で、水流により1mm以下に微細化される。
In the structure of the aeration stirrer of the present embodiment, first, the velocity gradient of the water flow is large in the outer peripheral portion of the impeller 2. Therefore, an air supply hole 51 is provided in the vicinity of the outer peripheral portion of the impeller 2.
The velocity gradient at the outer periphery of the impeller 2 will be described below.
The speed (circumferential speed) of the outer peripheral end of the impeller 2 is determined by the rotational speed and diameter of the impeller 2. As an example, when the rotation speed of the impeller 2 is set to 1000 rpm to 1200 rpm and the diameter is set to 0.2 to 0.3 m, the speed of the outer periphery of the impeller is about 10 to 15 m / s (hereinafter, the average value is 12.5 m / s) ).
At this time, since a water flow having substantially the same flow velocity as that of the impeller 2 is generated on the surface of the outer peripheral portion of the impeller 2, the speed of the water flow is 12.5 m / s in the outer peripheral portion of the impeller 2.
Immediately after the impeller 2, a water flow with a large velocity gradient is generated in the same manner. Therefore, when bubbles are introduced into this water flow, even if the air supply holes 51 of the bubble generation part are as large as 3 to 7 mm, the bubble diameter is In the vicinity of the generating part, it is refined to 1 mm or less by the water flow.

気泡の出口である給気孔51は、筒体内壁の内壁より5mm以上内側で、中心より筒体の円筒半径の0.5倍より外側とし、インペラ2の外周部の最下部の高さ(水深)よりインペラ径の0.1倍から1倍の長さ分下流側とし、その給気部51aがある筒体4の周囲に空気室63を設け、この空気室63には、槽外部よりブロワ61で空気の導管62を介して空気を供給する。
給気孔51又は排出孔71は水深が浅いところとなるため、送風のためのブロワ61の動力は小さくてすむ。
The air supply hole 51 that is the outlet of the bubble is at least 5 mm inside from the inner wall of the cylindrical body wall and outside the cylindrical radius of the cylindrical body by 0.5 times from the center, and the height (water depth) of the outer peripheral portion of the impeller 2 The air chamber 63 is provided on the downstream side by a length of 0.1 to 1 times the impeller diameter, and the air chamber 63 is provided around the cylindrical body 4 where the air supply portion 51a is located. Air is supplied at 61 through an air conduit 62.
Since the air supply hole 51 or the discharge hole 71 has a shallow water depth, the power of the blower 61 for blowing air can be small.

次に、水流の速度勾配が大きなところとして、上記以外に水流速度の絶対値が高い場所(2m/s以上)として、整流板7の下側があり、こうした箇所は水流の乱れが大きく、速度勾配が大きい。
本実施例の曝気攪拌装置においては、水平の旋回流を抑えるための整流板7の下側(下流側)は、水流の速度勾配が大きく、細かい渦が発生しているため、この整流板7の下部に空気の排出孔71を設けておき、整流板7を中空としてその内部にブロワ61にて空気を供給している。
Next, as a place where the velocity gradient of the water flow is large, there is a lower side of the rectifying plate 7 as a place where the absolute value of the water flow velocity is high (2 m / s or more) other than the above. Is big.
In the aeration stirrer of the present embodiment, the lower side (downstream side) of the rectifying plate 7 for suppressing the horizontal swirling flow has a large velocity gradient of the water flow and a fine vortex is generated. An air discharge hole 71 is provided in the lower portion of the air flow passage, and the air is supplied by a blower 61 to the inside of the rectifying plate 7 which is hollow.

次に、気泡の槽内での滞留時間の長期化について説明する。
微細化された気泡を槽内で長時間滞留させる手段として、長時間滞留するような水流、すなわち長い軌跡を描くような水流とともに流すようにする。
その水流とは、表層部で発生し表層部から水槽底部へと向かい、底部では外周部へ向かい壁面付近で上昇するというようなもので、水流はその長い距離を進むにつれて速度を減少させながら流れるため、平均的には水槽内を長時間滞留するものである。
このような水流とともに流すための気泡を発生させる位置、すなわち給気孔51又は排出孔71の位置は、巨視的にみて表層部とする。
こうすることにより、気泡は少なくとも水槽の表層から底部、底部から表面へ向かって大気開放という風に、水深分の長さの2倍以上は滞留距離を経ることになる。
また、気泡は水流とともに様々な軌跡を描いて流れるが、それらのなかには表層から底部、底部から表面に向かわずに表層の取水口へと向かい、再度下向きに流れるといった循環を何度も繰り返すものもあり、全気泡の平均滞留時間は長期化される。
Next, the extension of the residence time in the bubble tank will be described.
As a means for retaining the micronized bubbles in the tank for a long time, it is made to flow along with a water flow that stays for a long time, that is, a water flow that draws a long trajectory.
The water flow is such that it occurs at the surface layer part and goes from the surface layer part to the bottom of the water tank, and at the bottom part goes to the outer peripheral part and rises near the wall surface. Therefore, on average, the water tank stays for a long time.
The position where the bubbles for flowing along with the water flow are generated, that is, the position of the air supply hole 51 or the discharge hole 71 is a surface layer portion when viewed macroscopically.
By doing so, the bubbles pass through a staying distance of at least twice the length of the water depth, at least in the wind of air release from the surface layer to the bottom of the water tank and from the bottom to the surface.
In addition, the bubbles flow in various traces along with the water flow, and some of them repeat the circulation many times, such as going from the surface layer to the bottom, from the bottom to the surface water intake without going to the surface, and flowing downward again. Yes, the average residence time of all bubbles is lengthened.

また、従来の曝気攪拌装置で、水槽底部に空気を送る場合には高い圧力が必要であり、ブロワ61の必要動力が大きいという問題を有するが、本実施例では、水槽の表層部で空気を送り込む構造のため、ブロワ動力が小さくてすみ、しかも、給気孔51を大きくできるため、気泡出口部の抵抗が小さくなり、ブロワ61の必要動力を抑えることができる。   Further, in the conventional aeration and stirring device, when air is sent to the bottom of the water tank, a high pressure is required, and there is a problem that the required power of the blower 61 is large, but in this embodiment, air is supplied at the surface layer of the water tank. Since the blow-in structure requires only a small blower power, and the air supply hole 51 can be enlarged, the resistance of the bubble outlet portion is reduced and the required power of the blower 61 can be suppressed.

かくして、本実施例の曝気攪拌装置は、上記の構造により下記の効果が得られる。
1.本実施例の曝気攪拌装置による微細気泡は、同じ体積の粗大気泡と比べて表面積が大きく、水との接触面積が大きいことから、酸素の溶解速度が高くなる。
Thus, the aeration stirrer of the present embodiment can obtain the following effects by the above structure.
1. The fine bubbles produced by the aeration and agitation apparatus of the present embodiment have a larger surface area and larger contact area with water than coarse bubbles of the same volume, so that the oxygen dissolution rate is increased.

2.直径が0.05mm〜0.5mm程度の微細気泡は、浮力が小さいため、ほぼ全体が水流とともに流れるため、循環する水流とともに流れることにより、長時間水中に滞留することとなる。
この効果により、大気へ開放されるまでに気泡内の酸素のうち平均40%以上の割合の酸素が水に溶ける。
2. Since the fine bubbles having a diameter of about 0.05 mm to 0.5 mm have a small buoyancy, almost the entire bubble flows together with the water flow, and therefore stays in the water for a long time by flowing along with the circulating water flow.
Due to this effect, an average of 40% or more of the oxygen in the bubbles dissolves in water before being released to the atmosphere.

3.水深の浅い位置(水深1m程度、深槽に対しては10%程度の水深)に給気孔51又は排出孔71を設けることができ、この給気孔51又は排出孔71より空気を水中へ送り込めるため水圧の影響が小さく、そのため、ブロワ61の必要動力が、水深5m程度の位置に吹き込む従来からの水中曝気式に比べて小さくてすむ。
運転条件としての水圧だけをみると、従来機の1/5程度、深槽においては1/10程度と極めて小さくなる。
3. An air supply hole 51 or a discharge hole 71 can be provided at a shallow depth (water depth of about 1 m, or about 10% for a deep tank), and air can be fed into the water from the air supply hole 51 or the discharge hole 71. Therefore, the influence of the water pressure is small, so that the required power of the blower 61 can be smaller than that of the conventional underwater aeration type in which the blower 61 is blown into a position having a water depth of about 5 m.
Looking only at the water pressure as the operating condition, it becomes extremely small, about 1/5 of the conventional machine and about 1/10 in the deep tank.

4.給気孔51又は排出孔71の径を3mm〜7mmと大きくできるため、目詰まりがし難いという効果がある。また、空気の排出抵抗が小さく、ブロワ動力が小さくできる効果がある。 4). Since the diameter of the air supply hole 51 or the discharge hole 71 can be increased to 3 mm to 7 mm, there is an effect that clogging is difficult. In addition, the air discharge resistance is small, and the blower power can be reduced.

5.筒体4の上部を喇叭状に拡径するとともに、該拡径部41と対向するように所定間隔をあけて円板42を水平に配設し、周囲から筒体4の半径内方向に水を流入させる流入口43を設けることにより、流入する水は、なだらかな縮小管内を流れる場合と同様に徐々に流路面積が減少する流路内で加速するので損失が少なく、低動力で大きな流量の水流を発生させる水流発生構造としているため、低動力で水槽内全体にその気泡と水を循環させることができる。 5. The upper portion of the cylindrical body 4 is enlarged in a bowl shape, and a circular plate 42 is horizontally disposed at a predetermined interval so as to face the enlarged diameter portion 41. By providing the inflow port 43 for inflowing water, the inflowing water accelerates in the flow passage where the flow passage area gradually decreases in the same manner as when flowing in the gentle reduction pipe, so there is little loss and a large flow rate with low power. Therefore, the bubbles and water can be circulated throughout the water tank with low power.

6.下記の構成により、微細化した0.5mm以下の気泡が再び合体により粗大化することを防止しており、微細気泡はそのまま槽内全体に拡がる。
インペラ2の回転によりインペラ2の下流側の水流は攪拌軸3の回りに旋回する速度成分を含んだスパイラル状の流れとなる。
このインペラ2の下流側の水流は、図3(b)に示すように、整流板7により、旋回成分が抑制されるため軸方向に流れる。そのため、旋回流により発生する遠心力により、気泡が旋回中心に集まり合体するといったことを防止できる。
6). With the following configuration, the refined bubbles of 0.5 mm or less are prevented from being coarsened again by coalescence, and the fine bubbles spread as they are throughout the tank.
Due to the rotation of the impeller 2, the water flow on the downstream side of the impeller 2 becomes a spiral flow including a speed component swirling around the stirring shaft 3.
The water flow on the downstream side of the impeller 2 flows in the axial direction because the swirl component is suppressed by the rectifying plate 7 as shown in FIG. Therefore, it is possible to prevent bubbles from being collected at the center of rotation and coalesced by the centrifugal force generated by the swirling flow.

7.整流板7の断面は楕円型や翼型であるため、その整流板7を通過した水流は、下流側で小さな渦をともなうが、この場所に発生した気泡は、上記水流により微細化される。 7). Since the cross-section of the rectifying plate 7 is elliptical or wing-shaped, the water flow that has passed through the rectifying plate 7 has a small vortex on the downstream side, but the bubbles generated at this location are refined by the water flow.

以上、本発明の曝気攪拌装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the aeration stirring apparatus of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. can do.

本発明の曝気攪拌装置は、水に酸素を溶かす曝気運転を高効率で行うとともに、水量に対して酸素を溶かす十分な酸素溶解速度を確保し、かつ給気孔の目詰まりを起こしにくくするという特性を有していることから、下水処理の曝気攪拌装置の用途に好適に用いることができるほか、例えば、染色や食品の曝気攪拌装置の用途にも用いることができる。   The aeration stirrer of the present invention is characterized by performing aeration operation for dissolving oxygen in water with high efficiency, ensuring a sufficient oxygen dissolution rate for dissolving oxygen with respect to the amount of water, and preventing clogging of the air supply holes. Therefore, it can be suitably used for an aeration stirrer for sewage treatment, and can also be used for, for example, a dyeing or food aeration stirrer.

1 電動機
2 インペラ
3 攪拌軸
4 筒体
41 拡径部
42 円板
43 流入口
51 給気孔
51a 給気部
52 給気孔
6 ブロワ機構
61 ブロワ
62 導管
63 空気室
7 整流板
71 排出孔
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Impeller 3 Stirring shaft 4 Cylindrical body 41 Expanded part 42 Disc 43 Inlet 51 Air supply hole 51a Air supply part 52 Air supply hole 6 Blower mechanism 61 Blower 62 Conduit 63 Air chamber 7 Rectifying plate 71 Exhaust hole

Claims (6)

インペラを取り付けた攪拌軸の周囲に筒体を配設し、該インペラにより筒体の内部に下向き流を発生させるようにした曝気攪拌装置において、インペラの周囲で筒体の壁部に給気孔を設け、該給気孔を介してインペラの外周部に空気を供給するブロワ機構を設けたことを特徴とする曝気攪拌装置。   In an aeration stirrer in which a cylindrical body is arranged around a stirring shaft to which an impeller is attached, and a downward flow is generated inside the cylindrical body by the impeller, an air supply hole is formed in a wall portion of the cylindrical body around the impeller. An aeration stirrer provided with a blower mechanism that supplies air to the outer peripheral portion of the impeller through the air supply hole. インペラの下流側の位置で筒体の周囲に空気室を設けるとともに、該空気室と筒体の内部とを給気孔により連通させたことを特徴とする請求項1記載の曝気攪拌装置。   The aeration stirrer according to claim 1, wherein an air chamber is provided around the cylinder at a position downstream of the impeller, and the air chamber and the inside of the cylinder are communicated with each other through an air supply hole. インペラの下流側に、インペラによる旋回流を筒軸方向に整流する中空の整流板を配設し、該整流板の下部に空気の排出孔を設けるとともに、整流板の周囲で筒体の壁部に給気孔を設け、該給気孔を介して整流板の内部に空気を供給するブロワ機構を設けたことを特徴とする請求項1又は2記載の曝気攪拌装置。   On the downstream side of the impeller, a hollow rectifying plate that rectifies the swirling flow by the impeller in the cylinder axis direction is provided, and an air discharge hole is provided at the lower portion of the rectifying plate, and the wall of the cylindrical body around the rectifying plate The aeration and agitation device according to claim 1 or 2, further comprising a blower mechanism that is provided with an air supply hole and supplies air into the rectifying plate through the air supply hole. 整流板の位置で筒体の周囲に空気室を設けるとともに、該空気室と整流板の内部とを給気孔により連通させたことを特徴とする請求項3記載の曝気攪拌装置。   The aeration stirrer according to claim 3, wherein an air chamber is provided around the cylindrical body at the position of the rectifying plate, and the air chamber and the inside of the rectifying plate are communicated with each other through an air supply hole. 整流板の断面形状を、楕円又は翼断面形状としたことを特徴とする請求項3又は4記載の曝気攪拌装置。   The aeration stirrer according to claim 3 or 4, wherein a cross-sectional shape of the rectifying plate is an ellipse or a blade cross-sectional shape. 筒体の上部を喇叭状に拡径するとともに、該拡径部と対向するように所定間隔をあけて円板を配設し、周囲から筒体の半径内方向に水を流入させる流入口を設けたことを特徴とする請求項1、2、3又は4記載の曝気攪拌装置。   The upper part of the cylindrical body is expanded in a bowl shape, a disk is arranged at a predetermined interval so as to face the expanded diameter part, and an inflow port through which water flows in from the periphery inward in the radial direction of the cylindrical body The aeration stirrer according to claim 1, wherein the aeration stirrer is provided.
JP2009009802A 2009-01-20 2009-01-20 Aeration stirrer Expired - Fee Related JP5188997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009802A JP5188997B2 (en) 2009-01-20 2009-01-20 Aeration stirrer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009802A JP5188997B2 (en) 2009-01-20 2009-01-20 Aeration stirrer

Publications (2)

Publication Number Publication Date
JP2010167329A true JP2010167329A (en) 2010-08-05
JP5188997B2 JP5188997B2 (en) 2013-04-24

Family

ID=42699966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009802A Expired - Fee Related JP5188997B2 (en) 2009-01-20 2009-01-20 Aeration stirrer

Country Status (1)

Country Link
JP (1) JP5188997B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081481A1 (en) * 2010-12-15 2012-06-21 メタウォーター株式会社 Diffuser tube
JP2013233515A (en) * 2012-05-10 2013-11-21 Jfe Engineering Corp Aerator
KR101340802B1 (en) 2013-07-01 2013-12-11 윤미자 Dissolved oxygen machine
JP2015096250A (en) * 2013-11-15 2015-05-21 株式会社神鋼環境ソリューション Method of removing residue from stirrer of methane fermentation tank and methane fermentation tank allowing easy removal of residue from stirrer
CN107935165A (en) * 2017-12-22 2018-04-20 苏州清然环保科技有限公司 Aerator and the wastewater treatment equipment with the aerator
CN110282728A (en) * 2019-07-24 2019-09-27 南昌航空大学 A kind of non-blocking aeration device
CN114768598A (en) * 2022-05-05 2022-07-22 青岛众凯食品有限公司 Quick mixer for food additive processing and mixing process

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135669A (en) * 1974-04-04 1975-10-28
JPS5190764A (en) * 1975-02-08 1976-08-09
JPS5599796U (en) * 1978-12-27 1980-07-11
JPS5599794U (en) * 1978-12-27 1980-07-11
JPS586290A (en) * 1981-07-03 1983-01-13 Ebara Corp Aeration device
JPS59112894A (en) * 1982-12-20 1984-06-29 Ataka Kogyo Kk Aerator
JPH0491799U (en) * 1990-12-28 1992-08-10
JPH05253592A (en) * 1992-03-09 1993-10-05 Mitsui Mining Co Ltd Stirring aerator
JP2000084382A (en) * 1998-09-17 2000-03-28 Nkk Corp Air diffusion and stirring device
JP2001276878A (en) * 2000-04-03 2001-10-09 Ishigaki Co Ltd Submerged aerating and stirring device
JP2002248489A (en) * 2001-02-26 2002-09-03 Mitsui Miike Mach Co Ltd Air blowoff device of axial flow stirrer
JP2008296169A (en) * 2007-06-01 2008-12-11 Hitachi Plant Technologies Ltd Method for operating aeration/agitation system
JP4200183B1 (en) * 2008-05-23 2008-12-24 アタカ大機株式会社 Stirrer
JP2009006232A (en) * 2007-06-27 2009-01-15 Hitachi Plant Technologies Ltd Stirrer
JP2010017655A (en) * 2008-07-10 2010-01-28 Hitachi Plant Technologies Ltd Aeration agitator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135669A (en) * 1974-04-04 1975-10-28
JPS5190764A (en) * 1975-02-08 1976-08-09
JPS5599796U (en) * 1978-12-27 1980-07-11
JPS5599794U (en) * 1978-12-27 1980-07-11
JPS586290A (en) * 1981-07-03 1983-01-13 Ebara Corp Aeration device
JPS59112894A (en) * 1982-12-20 1984-06-29 Ataka Kogyo Kk Aerator
JPH0491799U (en) * 1990-12-28 1992-08-10
JPH05253592A (en) * 1992-03-09 1993-10-05 Mitsui Mining Co Ltd Stirring aerator
JP2000084382A (en) * 1998-09-17 2000-03-28 Nkk Corp Air diffusion and stirring device
JP2001276878A (en) * 2000-04-03 2001-10-09 Ishigaki Co Ltd Submerged aerating and stirring device
JP2002248489A (en) * 2001-02-26 2002-09-03 Mitsui Miike Mach Co Ltd Air blowoff device of axial flow stirrer
JP2008296169A (en) * 2007-06-01 2008-12-11 Hitachi Plant Technologies Ltd Method for operating aeration/agitation system
JP2009006232A (en) * 2007-06-27 2009-01-15 Hitachi Plant Technologies Ltd Stirrer
JP4200183B1 (en) * 2008-05-23 2008-12-24 アタカ大機株式会社 Stirrer
JP2010017655A (en) * 2008-07-10 2010-01-28 Hitachi Plant Technologies Ltd Aeration agitator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081481A1 (en) * 2010-12-15 2012-06-21 メタウォーター株式会社 Diffuser tube
JP2012125692A (en) * 2010-12-15 2012-07-05 Metawater Co Ltd Diffuser tube
JP2013233515A (en) * 2012-05-10 2013-11-21 Jfe Engineering Corp Aerator
KR101340802B1 (en) 2013-07-01 2013-12-11 윤미자 Dissolved oxygen machine
JP2015096250A (en) * 2013-11-15 2015-05-21 株式会社神鋼環境ソリューション Method of removing residue from stirrer of methane fermentation tank and methane fermentation tank allowing easy removal of residue from stirrer
CN107935165A (en) * 2017-12-22 2018-04-20 苏州清然环保科技有限公司 Aerator and the wastewater treatment equipment with the aerator
CN107935165B (en) * 2017-12-22 2024-01-19 苏州清然环保科技有限公司 Aeration device and wastewater treatment device with same
CN110282728A (en) * 2019-07-24 2019-09-27 南昌航空大学 A kind of non-blocking aeration device
CN114768598A (en) * 2022-05-05 2022-07-22 青岛众凯食品有限公司 Quick mixer for food additive processing and mixing process

Also Published As

Publication number Publication date
JP5188997B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5188997B2 (en) Aeration stirrer
CA1139462A (en) Apparatus for contacting liquid with a gas
JP2008126226A (en) Agitation aerator
JP4106196B2 (en) Gas-liquid mixing and dissolving device
JP4377087B2 (en) Gas-liquid mixing and dissolving device
JP2009279529A (en) Agitation apparatus
CN114656047A (en) High-efficient dive aeration machine
JP2010264337A (en) Aeration agitator
JP4875777B1 (en) Aeration stirrer
JP4570050B2 (en) Convection inducing device in tank
JP4935416B2 (en) Stirring tank
JPH05253592A (en) Stirring aerator
KR20040097040A (en) Submersible Aerator with the Encreased Capacity of Aeration and Ability of Diffusion
US4305894A (en) Arrangement in apparatus for mixing gases with and dissolving gases in liquids
JP2009247927A (en) Aeration agitator
KR102498267B1 (en) Rotating injection assembly comprising microbubble-generated mixed aerator
JP4947747B1 (en) Stirrer
JP3828061B2 (en) Underwater aerator
CN111170480A (en) Cyclone aerator and cyclone aeration device with same
CN208292731U (en) A kind of aerator for sanitary sewage disposal
KR101125133B1 (en) submersible aerator with diffusional chambers
JP2006132455A (en) Stirring pump
CN211999068U (en) Cyclone aerator and cyclone aeration device with same
JPS6232998B2 (en)
KR102150056B1 (en) Nano bubble dissolving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees