JPS5826028A - Manufacture of anhydrous sodium carbonate crystal - Google Patents

Manufacture of anhydrous sodium carbonate crystal

Info

Publication number
JPS5826028A
JPS5826028A JP12469381A JP12469381A JPS5826028A JP S5826028 A JPS5826028 A JP S5826028A JP 12469381 A JP12469381 A JP 12469381A JP 12469381 A JP12469381 A JP 12469381A JP S5826028 A JPS5826028 A JP S5826028A
Authority
JP
Japan
Prior art keywords
sodium carbonate
crystals
anhydrous sodium
deposition
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12469381A
Other languages
Japanese (ja)
Inventor
Keiichi Nakaya
圭一 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12469381A priority Critical patent/JPS5826028A/en
Publication of JPS5826028A publication Critical patent/JPS5826028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To stably obtain dense, hard and excellent anhydrous sodium carbonate crystals from an aqueous sodium carbonate soln. by deposition by specifying the relation between the deposition speed and the concn. of a slurry in the deposition vessel. CONSTITUTION:When anhydrous sodium carbonate crystals are deposited from an aqueous sodium carbonate soln., the crystals are deposited while keeping the deposition speed and the concn. of a slurry in the deposition vessel in the region X of the diagram using the difference DELTAt between the temp. of the aqueous sodium carbonate soln. and the temp. of transition of sodium carbonate monohydrate anhydrous sodium carbonate as a parameter. The region bounded by lines A, B, C is X, and the line A changes in accordance with DELTAt. When crystals are deposited in a region Y above the line A, the crystal surfaces are made rough and crystal nuclei are newly generated to deposit fine crystals among the desired crystals. As the value of DELTAt is increased, such phenomena are liable to occur, so it is required to reduce the deposition speed.

Description

【発明の詳細な説明】 本発明は炭酸ソーダ水溶液から、粒度のそろった、硬く
て、嵩比重の大きな無水炭酸ソーダ結晶を製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing anhydrous sodium carbonate crystals of uniform particle size, hardness, and high bulk specific gravity from an aqueous sodium carbonate solution.

嵩比重の大きい無水炭酸ソーダ結晶の製造法として普通
に用いられる方法は軽灰と称する嵩比重が0.4程度の
多孔質な無水炭酸ソーダに水を添加して得られる炭酸ソ
ーダ1水塩を加熱して無水炭酸ソーダ結晶を得るもので
ある。
A commonly used method for producing anhydrous soda crystals with a large bulk specific gravity is to add water to porous anhydrous soda carbonate, which is called light ash and has a bulk specific gravity of about 0.4. Anhydrous soda crystals are obtained by heating.

しかしながら、この方法によって得られる無水炭酸ソー
ダの嵩比重は1.0程度のものが得られるにすぎず、こ
の結晶は、未だに多孔質であり、角張った形状であり、
破砕しやすく、従って微粒子の混入は避けえず、また、
粒径奄通常は広い範囲にばらついておシ、取扱い上も流
動性の悪いものである。また、この結晶は多孔質の故に
吸湿性も大きく、また、空気中の炭酸ガスによ〕セスキ
炭酸ソーダとなシやすい性質を本っている。
However, the bulk specific gravity of anhydrous soda carbonate obtained by this method is only about 1.0, and the crystals are still porous and have an angular shape.
It is easy to crush, so contamination with fine particles is unavoidable, and
The particle size usually varies over a wide range and has poor fluidity when handled. In addition, since this crystal is porous, it has a high hygroscopic property, and also has the property of being easily converted into sodium sesquicarbonate by carbon dioxide gas in the air.

本発明は、従来法のこれら欠点を解消する亀ので、真に
嵩比重が大きく、緻密で、硬く、透明で、かつ、粒径の
そろった球状の無水炭酸ソーダ結晶を提供しうるもので
ある。炭酸ソーダ水溶液から無水炭酸ソーダ結晶を析出
させるに際し、ただ単に水溶液温度と、無水炭酸ソーダ
#炭酸ソーダl水塩の転移温度(以下、単に転移温度と
いう)との温度差を限定するのみで析出させる場合には
必ずしも前述のような曳好な結晶を得ることができず、
微細な結晶となったシ、また、微細な結晶が集合した形
状や、あるいは球状がいびつになったり、表面に小さな
結晶がくっついたような粗面となったシする。この原因
は明らかではないが、析出槽内の過飽和濃度が全体的に
、あゐいは部分的に高過ぎることにより、新しい核が発
生したシ、結晶表面の均一な成長を阻害したシすること
、また、過飽和濃度が低過ぎることにより、結晶成長面
の成長性の差が助長され、いびつになったシするものと
考えられるが、これらを個々に限定し、制御することは
困難である。
The present invention overcomes these drawbacks of the conventional method and can provide spherical anhydrous soda crystals that have a truly large bulk specific gravity, are dense, hard, transparent, and have uniform particle sizes. . When precipitating anhydrous sodium carbonate crystals from an aqueous solution of sodium carbonate, the crystals can be precipitated by simply limiting the temperature difference between the temperature of the aqueous solution and the transition temperature of anhydrous sodium carbonate #sodium carbonate hydrate (hereinafter simply referred to as transition temperature). In some cases, it is not always possible to obtain crystals with the above-mentioned properties,
The shape may be fine crystals, or the shape may be an aggregation of fine crystals, the spherical shape may be distorted, or the surface may have a rough surface with small crystals stuck to it. The cause of this is not clear, but it is possible that the supersaturation concentration in the precipitation tank was too high overall or in some areas, resulting in the generation of new nuclei or inhibiting the uniform growth of the crystal surface. Furthermore, it is thought that too low supersaturation concentration promotes differences in the growth properties of the crystal growth surface, resulting in distortion, but it is difficult to limit and control these individually.

本発明は多くの実験を重ねて検討を加えた結果、良好な
形晶を常に得るための、結晶析出槽内の具体的な条件を
見出したことによシなされたものである。
The present invention has been made based on the discovery of specific conditions within the crystal precipitation tank to consistently obtain well-formed crystals as a result of numerous experiments and studies.

即ち、無水炭酸ソーダ結晶スラリーを、スラリー結晶が
沈積しないように、また、過飽和の偏在をなくすために
、流動流速をson/h〜4000 !El / h 
s度に攪拌流動せしめた結晶析出槽において、析出速度
と析出槽内スラリー濃度とが、ある特定の関係を示す場
合に前述の如き曳好な結晶を得ることが可能であること
を見出したものである。即ち、第1図は析出槽における
析出速度と析出槽におけるスラリー濃度の好ましい関係
を、溶液温度と転移温度との温度差Δtをパラメーター
として示すグラフであるが、この第1図においてライン
ム、B、Oに囲まれた領域Xに、析出速度とスラリー濃
度の関係をもたらすことにより、安定に前述の良好な結
晶を得ることを見出した。
That is, in order to prevent slurry crystals from depositing and to eliminate uneven distribution of supersaturation, the flow rate of the anhydrous soda carbonate crystal slurry was set at son/h to 4000! El/h
It has been discovered that in a crystal precipitation tank which is stirred and flowed at a rate of 1000 s, it is possible to obtain crystals with good properties as described above when the precipitation rate and the slurry concentration in the precipitation tank exhibit a certain relationship. It is. That is, FIG. 1 is a graph showing the preferable relationship between the precipitation rate in the precipitation tank and the slurry concentration in the precipitation tank using the temperature difference Δt between the solution temperature and the transition temperature as a parameter. It has been found that by creating a relationship between the precipitation rate and the slurry concentration in the region X surrounded by O, the above-mentioned good crystals can be stably obtained.

第1図について更に詳しく説明する。FIG. 1 will be explained in more detail.

第1図において、2インムは炭酸ソーダ水溶液において
、その液底体温度と、炭酸ソーダ1水塩#炭酸ソーダ無
水塩の転移温度との差Δtによって変化する。ラインム
の上方の領域Yにおいて、結晶の析出を行った場合は結
晶表面が粗面となったシ、また、新たな結晶核の発生が
起り、微細な結晶が混在するようになる。特にΔtが大
きくなるにつれ、特にこのよう々現象を起しゃすくなシ
、結晶析出速度を遅くする必要が生ずることになる。
In FIG. 1, 2im changes in a sodium carbonate aqueous solution depending on the difference Δt between the liquid bottom body temperature and the transition temperature of sodium carbonate monohydrate/sodium carbonate anhydrous salt. In the region Y above the line, when crystals are precipitated, the crystal surface becomes rough, new crystal nuclei are generated, and fine crystals are mixed. In particular, as Δt increases, it becomes necessary to slow down the crystal precipitation rate in order to prevent such phenomena from occurring.

その結果、第1図において、Δtをパラメーターとした
ラインムのグループが示されている。
As a result, in FIG. 1, a group of lines with Δt as a parameter is shown.

ラインB1 ライン0は析出槽におけるスラリー濃度条
件を示すものである。ラインBよりもスラリー濃度が低
い場合は新しい結晶核が発生し易く、微細な結晶になり
易い。また、析出槽内壁にスケールの付着が起シ易く、
安定して良好な結晶を得ることが困難となる。
Line B1 Line 0 indicates the slurry concentration conditions in the precipitation tank. When the slurry concentration is lower than line B, new crystal nuclei are likely to be generated and fine crystals are likely to be formed. In addition, scale is likely to adhere to the inner wall of the precipitation tank.
It becomes difficult to obtain stable and good crystals.

また、ツイン0よりスラリー濃度が高い場合には、結晶
粒子間の摩耗が多くなシ、得られる結晶粒子の大きさが
時間に対し、脈動的に変動し、安定して良好な結晶を得
るのに不都合である。
In addition, when the slurry concentration is higher than Twin 0, there is a lot of wear between the crystal particles, and the size of the obtained crystal particles fluctuates over time, making it difficult to obtain stable and good crystals. It is inconvenient for

以上、説明した析出槽内条件を満す具体的な方法は特に
限定を要するものではなく、適宜最適の方法で実施すれ
ばよい。
The specific method that satisfies the conditions in the precipitation tank described above is not particularly limited, and may be carried out in an appropriate and optimal manner.

例えば、析出速度の調節は析出槽に供給する炭酸ソーダ
1水塩の量を調節する方法でもよいし、固体型1と苛性
ンーダ溶液の供給速度を調節する方法で屯よい。更には
、水を蒸発させる速度を調節することによってもよい。
For example, the precipitation rate may be adjusted by adjusting the amount of sodium carbonate monohydrate supplied to the precipitation tank, or by adjusting the supply rate of the solid form 1 and the caustic soda solution. Furthermore, the rate at which water is evaporated may be adjusted.

また、ムtの調節は、溶液中に含まれるMail 。Moreover, the adjustment of the message is done by using the Mail contained in the solution.

NaOH等の濃度を調節する方法でもよいし、勿論、溶
液自体の温度を調節することによってもよい。
This may be done by adjusting the concentration of NaOH or the like, or of course by adjusting the temperature of the solution itself.

次に実施例により、更に具体的に説明する。Next, a more specific explanation will be given with reference to Examples.

実施例 内部循環ポンプと蒸気加熱ジャケットを有する内容積1
−の結晶析出槽を用意し、これに、第1表に示す母液組
成、温度、Δt1スラ17−濃度、析出速度を維持する
ように炭酸ソーダ1水塩結晶を、槽内均一になるように
供給した。
Example internal volume 1 with internal circulation pump and steam heating jacket
- Prepare a crystal precipitation tank, and add sodium carbonate monohydrate crystals to it uniformly in the tank so as to maintain the mother liquor composition, temperature, Δt1 slurry 17- concentration, and precipitation rate shown in Table 1. supplied.

マタ、コノ過程において、第1表の母液組成、温度、ス
ラリー濃度が維持されるように適宜、固体Na01.4
81NaOH水溶液を供給した。また、温度の維持は、
蒸気ジャケットに供給する蒸気供給量を調節することに
より、±0.2℃の範囲で行われた。また、スラリー濃
度の維持は、スラリー濃度が高い場合には結晶を、スラ
リー濃度が低い場合には母液を、それぞれ取シ出すこと
によシ行われる。得られた、無水炭酸ンーダ結畠の特性
及び操業状況を第1表に併記し九。
In the Mata and Kono processes, solid Na01.4
81 NaOH aqueous solution was fed. In addition, maintaining the temperature is
By adjusting the amount of steam supplied to the steam jacket, the measurement was carried out within a range of ±0.2°C. Further, the slurry concentration is maintained by taking out the crystals when the slurry concentration is high, and by taking out the mother liquor when the slurry concentration is low. The characteristics and operating conditions of the obtained anhydrous carbonated soil are also listed in Table 1.9.

[相]1:比較例 @2:200j(D試料粉末′をz o o rntの
メスシリンダーに入れ、これをパイプレーク−で振動さ
せて容積の変化がなくなった時の容積で計算した。
[Phase] 1: Comparative Example @ 2: 200j (D sample powder' was placed in a measuring cylinder of zoornt, and the volume was calculated based on the volume when there was no change in volume by vibrating it with a pipe lake.

@13:  乾燥後の試料粉末を検定前で80メツシ瓢
下を除去した後の粉末sogを内容積250 rnl、
の粉砕機にメノーボール15個(合計5sl)と共に入
れ、170 r、p、mで30分間粉砕した。粉砕後の試料を検定部
で200メツシユ下の粉 末を分離し、この粉末重量を元の試料 重量に対して100分率で表示した。
@13: The powder sog after removing 80 pieces of gourd from the sample powder after drying before the test has an internal volume of 250 rnl,
The mixture was placed in a pulverizer together with 15 agate balls (5 sl in total) and pulverized at 170 r, p, m for 30 minutes. The powder under 200 meshes of the sample after pulverization was separated in an assay section, and the weight of this powder was expressed as a percentage of the original sample weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、無水炭酸ソーダ結晶析出権におけるスラリー
濃度と無水炭酸ソーダ結晶の析出速度の好ましい関係を
示すグラフであって、析出槽濃度と、無水炭酸ソーダー
炭酸ソーダ1水塩の転移温度との温度差Δtをパラメー
ターとして示すものである。 手続補正書(方式) 昭和57年2り//日 特許庁長官 島田春樹 殿 3゜補正をする者 事件との関係 特許出願人 住 所  東京都千代田区丸の内二丁目1番2号名称 
(004)旭硝子株式会社 昭和57年1月26日(発送日) 6 補正により増加する発明の数
FIG. 1 is a graph showing a preferable relationship between the slurry concentration and the precipitation rate of anhydrous sodium carbonate crystals in the anhydrous sodium carbonate crystal precipitation right, and shows the relationship between the precipitation tank concentration and the transition temperature of anhydrous sodium carbonate and sodium carbonate monohydrate. The temperature difference Δt is shown as a parameter. Procedural amendment (method) Haruki Shimada, Commissioner of the Japan Patent Office, 2//1980 Relationship with the case of the person making the amendment Patent applicant address: 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name
(004) Asahi Glass Co., Ltd. January 26, 1980 (shipment date) 6 Number of inventions increased by amendment

Claims (1)

【特許請求の範囲】[Claims] 炭酸ソーダ水溶液から無水炭酸ソーダ結晶を析出させる
無水炭酸ソーダ製造の製造方法において、無水炭酸ソー
ダ結晶の析出速度と析出槽でのスラリー濃度を第1図の
領域Xに保持しながら析出させることを特徴とする無水
炭酸ソーダ結晶の製造方法。
A manufacturing method for producing anhydrous soda carbonate in which anhydrous sodium carbonate crystals are precipitated from an aqueous sodium carbonate solution, characterized in that the precipitation is carried out while maintaining the precipitation rate of anhydrous soda carbonate crystals and the slurry concentration in the precipitation tank within region X in Figure 1. A method for producing anhydrous soda crystals.
JP12469381A 1981-08-11 1981-08-11 Manufacture of anhydrous sodium carbonate crystal Pending JPS5826028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12469381A JPS5826028A (en) 1981-08-11 1981-08-11 Manufacture of anhydrous sodium carbonate crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12469381A JPS5826028A (en) 1981-08-11 1981-08-11 Manufacture of anhydrous sodium carbonate crystal

Publications (1)

Publication Number Publication Date
JPS5826028A true JPS5826028A (en) 1983-02-16

Family

ID=14891746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12469381A Pending JPS5826028A (en) 1981-08-11 1981-08-11 Manufacture of anhydrous sodium carbonate crystal

Country Status (1)

Country Link
JP (1) JPS5826028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288472A (en) * 1993-02-08 1994-02-22 Ruiz Raymundo L Process for the recovery of the sodium hydroxide and sodium chloride from the effluent of a diaphragm cell as solid sodium bicarbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288472A (en) * 1993-02-08 1994-02-22 Ruiz Raymundo L Process for the recovery of the sodium hydroxide and sodium chloride from the effluent of a diaphragm cell as solid sodium bicarbonate

Similar Documents

Publication Publication Date Title
US20100139549A1 (en) Quartz Glass Crucible for Pulling Silicon Single Crystal and Method of Manufacturing Quartz Glass Crucible for Pulling Silicon Single Crystal
US5429652A (en) Mold for molding glass having a nickel and graphite surface coating
CN107140949B (en) Preparation method of high-purity and high-sintering-activity indium tin oxide mixed powder
JPS5826028A (en) Manufacture of anhydrous sodium carbonate crystal
JPH026340A (en) Production of nickel hydroxide
JP2012017240A (en) Method for manufacturing silica glass crucible for pulling silicon single crystal
CN209144025U (en) A kind of semiconductor grade silica crucible
TW219376B (en)
CN115160197A (en) Preparation method of carbocisteine bulk drug
US3694151A (en) Method of manufacturing alpha-strontiumhydrophosphate
US5395806A (en) Dense, granular alkaline earth metal carbonate and alkali metal salt composition for use in glass manufacture
JP2684548B2 (en) Method for producing sodium bicarbonate
JPS59169993A (en) Synthesis of diamond
JPS6065719A (en) Preparation of lithium aluminate powder
JPS63230520A (en) Production of calcium carbonate having controlled particle diameter
JPH01145320A (en) Production of common salt having 8-14-hedron crystal
JP2007044639A (en) Crystallization method and crystallization apparatus
JPS62113788A (en) Production of single crystal alumina
KR20010069578A (en) Method for growing the zy-quartz crystal
EP0098724A1 (en) Single crystal production
KR810000263B1 (en) Process for producing magnesium carbonate
US3367748A (en) Process for growing high perfection crystals
JPH06122595A (en) Growth of zinc oxide single crystal
CN118108235A (en) Method for preparing potassium chloride by floatation
JPS5836923A (en) Manufacture of aggregate of corundum particle