JPS5826001A - Producing apparatus for hydrogen - Google Patents

Producing apparatus for hydrogen

Info

Publication number
JPS5826001A
JPS5826001A JP56124703A JP12470381A JPS5826001A JP S5826001 A JPS5826001 A JP S5826001A JP 56124703 A JP56124703 A JP 56124703A JP 12470381 A JP12470381 A JP 12470381A JP S5826001 A JPS5826001 A JP S5826001A
Authority
JP
Japan
Prior art keywords
hydrogen
sludge
titanide
nickel
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56124703A
Other languages
Japanese (ja)
Other versions
JPS6125642B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP56124703A priority Critical patent/JPS5826001A/en
Publication of JPS5826001A publication Critical patent/JPS5826001A/en
Publication of JPS6125642B2 publication Critical patent/JPS6125642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To decompose water by a simple structure and to efficiently generate hydrogen by applying a catalytic action by electrolysis and solar energy or the like to a substance to be treated to generate hydrogen such as liq. sludge. CONSTITUTION:Liq. sludge 21 or a substance to be treated to generate hydrogen such as hydrocarbon or iodide is charged into a vessel 1. A pipe 22 provided with a heat pipe 23 is put in the vessel 1 to deprive the sludge of its heat, and the heat is stored in a regenerator 20. The sludge 29 is filled into a heating chamber 11 through a screw 26. A titanium electrode 33A and a cathode 33B are attached to the chamber 11, and an electrode 4 is turned on. At this time, heat from the regenerator 20 is utilized to generate electric power, and the electric power is supplied to the electrode 4. The sludge 29 in the chamber 11 is isolated from the open air by the light transmitting surface 31, absorbs solar energy 32, and evaporates water. Electrolysis using the supplied current causes a catalytic action, reaction under light energy is accelerated, and hydrogen is generated. The gaseous reaction product is captured in an upper gas chamber 5, fed to a vessel 7, freed of CO2 through an alkali soln. 39, and stored in a vessel 9 through a compressor 8.

Description

【発明の詳細な説明】 本発明は、水の分解による水素発生のために触媒作用を
利用し、太陽エネルギー照射し、さらに電気・化学的反
応を発生させ、また金属半導体電極を挿入させ、分解を
助勢することにより効率を高めるようにした水素を製造
する装置に関する。
Detailed Description of the Invention The present invention utilizes a catalytic action to generate hydrogen by decomposing water, irradiates solar energy, generates an electrical/chemical reaction, and inserts a metal semiconductor electrode to generate hydrogen. The present invention relates to an apparatus for producing hydrogen that improves efficiency by assisting in the production of hydrogen.

在来の、水分解lこよる水素の発生lこけ、熱、光。Conventional hydrogen generation through water splitting, moss, heat, and light.

電気エネルギーEこよって行われる可能性が原理上は周
知である。高い温度において水中に化学物質(金属とそ
の化合物を含む。)を介在させ、その化学物質が酸素を
とるかまたは水酸基をとるかという反応の具体化が、介
在させる化学“物質に複数のものを用いる複数の化学反
応を組み合わせて提案されたものがある。また、高温を
容易に出す太陽炉などで太陽エネルギーを捕集し反応系
に供給する大口径の炉が提案されている。ま九、低温で
行う之めに塩化鉄と水と塩素との反応を別々に行って、
原料と生成物が、合計したときに打消しあって消去され
るようlこし、密閉反応器内で行う方法が提案されてい
る。しかし、これらの方法では一長一短がある。例えば
、高温下で行うlこけ耐熱材料が得られなく且つ効率も
低い。例えば低温下で行うには塩化物や塩素の使用に耐
える材料および扱い上の問題があり且つコストも高い。
The possibility of using electrical energy E is known in principle. When chemical substances (including metals and their compounds) are present in water at high temperatures, the chemical substance takes up oxygen or takes up hydroxyl groups. Some have been proposed by combining multiple chemical reactions.Also, large-diameter furnaces have been proposed that can easily generate high temperatures, such as solar furnaces, which collect solar energy and supply it to the reaction system. The reactions of iron chloride, water, and chlorine are carried out separately at low temperatures.
A method has been proposed in which the raw materials and products are filtered so that they cancel each other out when added together, and the method is carried out in a closed reactor. However, these methods have advantages and disadvantages. For example, it is difficult to obtain a heat-resistant material that does not dissipate under high temperatures, and the efficiency is also low. For example, if the process is carried out at low temperatures, there are problems in materials that can withstand the use of chlorides and chlorine, and handling problems, and the cost is also high.

例えば鉄、錫、沃素とその化合物を介在させて行うと低
い加熱漏下で行い収率も前記のものより良好な場合があ
るが、依然として収率とコストが問題である。
For example, if iron, tin, iodine and their compounds are present, the heating leakage may be lower and the yield may be better than those described above, but the yield and cost are still problems.

したがって、低コストのエネルギを有効に利用し、化合
物の触媒作用を起こさせて、発生ガスを容易に水から分
離させることができ、腐蝕抵抗性の材料を用いることが
でき、比較的に単純な構造を備えたもので、効率の良好
な水分解ができるものが求められてき念。
Therefore, low-cost energy can be effectively used, compounds can be catalyzed to easily separate evolved gases from water, corrosion-resistant materials can be used, and relatively simple There is a strong need for something with a structure that allows efficient water splitting.

本発明は、前記の現状lこかんがみ、介在物として特定
の化合物を用力触媒作用を起こさせ且つ電解による触媒
作用を起させて、太陽エネルギーを照射する機構を備え
た水分解装置の提供を目的とする。また電解通電電極と
して希土類吸水素化合物に通電をし、電気と電気化学の
エネルギーによって反応させる装置の提供を目的とする
In view of the above-mentioned current situation, the present invention aims to provide a water splitting apparatus equipped with a mechanism for irradiating solar energy by causing a specific compound as an inclusion to cause a catalytic action and a catalytic action by electrolysis. shall be. Another object of the present invention is to provide a device that energizes a rare earth hydrogen-absorbing compound as an electrolytic current-carrying electrode and causes it to react with electrical and electrochemical energy.

次に、本発明について一実施例を挙げて説明する。Next, the present invention will be explained by giving an example.

第1図は、本発明の一実施例の配置の側面図を示した。FIG. 1 shows a side view of an arrangement of one embodiment of the invention.

例えば、活性汚泥と適当量の水との混合分散液(以下、
汚泥液と呼ぶ。)21t−1槽1の上方から投入充填す
る。槽11こは、上方からパイプ22を挿入し、パイプ
22の一部にヒートパイプ23を設けて熱をとり、配管
12A金経て、蓄熱器2oに通す。
For example, a mixed dispersion of activated sludge and an appropriate amount of water (hereinafter referred to as
It is called sludge liquid. ) 21t-1 Fill tank 1 from above. A pipe 22 is inserted into the tank 11 from above, a heat pipe 23 is provided in a part of the pipe 22 to remove heat, and the heat is passed through the pipe 12A to the heat storage device 2o.

汚泥液29は、前記の投入汚泥液21と加熱室11の上
部からパイプ22内へ投入される加熱汚泥との混合をし
九汚泥液29となる。この汚泥液29を、槽1の下部番
こ設けたポンプ10t−作動して送り出し、加熱室11
1こ充填する。ポンプ10#−i、モーター2により駆
動機構部271こより、軸25とスクリュ−26t″回
転作動して送出する。
The sludge liquid 29 becomes a sludge liquid 29 by mixing the input sludge liquid 21 and the heated sludge introduced into the pipe 22 from the upper part of the heating chamber 11. This sludge liquid 29 is pumped to the heating chamber 11 by operating the pump 10t provided at the bottom of the tank 1.
Fill 1 bottle. The shaft 25 and screw 26t'' are rotated by the pump 10#-i and the drive mechanism 271 by the motor 2 and delivered.

加熱1111では、汚泥人口基こチタン電極33人を備
え、出口に対応する陰極33B?備え、電源4の間を回
路19人と19Bで連結する。また、電源4d。
In the heating 1111, the sludge base is equipped with 33 titanium electrodes, and the cathode 33B corresponds to the outlet. In addition, the power source 4 is connected to the circuit 19 by 19B. Also, power supply 4d.

モーター2、ポンプ3及びコンプレッサ8に連結する。Connected to motor 2, pump 3 and compressor 8.

ポンプ3F′iヒートパイプ23と蓄熱N20を連絡す
る配管12B#こ挿入され熱媒の循環をする。
A pipe 12B# connecting the pump 3F'i heat pipe 23 and the heat storage N20 is inserted to circulate the heat medium.

蓄熱器20では、熱交換器281こよジ熱を取り出し、
例えば図外ゲイラーと図外タービンをもって発電等に利
用する。その電力を、電源4tこ供給することができる
In the heat storage device 20, the heat exchanger 281 takes out the heat,
For example, a gaylor (not shown) and a turbine (not shown) are used for power generation, etc. The power can be supplied from a power source of 4 tons.

ポンプ10で送り出され念汚泥929F′i、加熱室1
1に送りこまれ、透光表面31で外気と連断され、照射
太陽エネルギー321:十分lこ透光吸収し、水分は次
第に温度を上げられ汚泥から蒸発する。電極33人と3
3Bの間に通電し、陽極33人としてチタンを用いる。
Pump 10 sends out sludge 929F'i, heating chamber 1
1, connected to the outside air through a transparent surface 31, enough irradiated solar energy 321 is absorbed through the sludge, and the water is gradually heated up and evaporated from the sludge. 33 people and 3 electrodes
3B, and titanium is used as the anode.

通電により、チタンは酸化チタンとなって汚泥液通路3
5で混入し、電気分解をし、この電解作用が触媒作用を
し光エネルギによる反応を促進し水素を発生する。加熱
と蒸発と触媒作用とtこより水素発生を効率よ〈反応さ
せる。反応発生気体は、上部気室5fこ捕集し、汚泥は
加熱されており、パイプ22を通り、ヒートパイプ23
により熱を捕集し、さらに残部は投入汚泥液214こ混
入した液291こ環流して再利用する。
When energized, titanium turns into titanium oxide and flows into the sludge liquid passage 3.
5 and undergoes electrolysis, and this electrolytic action acts as a catalyst, promoting the reaction by light energy and generating hydrogen. Efficiently generates hydrogen through heating, evaporation, catalytic action, and reaction. The reaction generated gas is collected in the upper air chamber 5f, and the sludge is heated and passes through the pipe 22 to the heat pipe 23.
The heat is collected by the sludge, and the remainder is recycled into the liquid 291 mixed with the input sludge liquid 214 for reuse.

反応気体は、気N5から、槽7内−こ管16t−経て送
られ、アルカリ溶液39中をくぐり、炭酸ガスをアルカ
リ吸着して除き、配管17から、コンプレッサー8によ
り加圧され、配管18t−通し、槽9内の水素吸着材の
層内に送〈られ、吸着し貯蔵する。
The reaction gas is sent from gas N5 into the tank 7 through a pipe 16t-, passes through an alkaline solution 39, removes carbon dioxide gas by alkali adsorption, is pressurized by a compressor 8 from a pipe 17, and is sent to a pipe 18t- The hydrogen is passed through the tank 9 into a layer of hydrogen adsorbent, where it is adsorbed and stored.

通常の活性汚泥をもって行った結果として、前記の所要
電力として、全所要電力量の83チが、前記の自家系内
発電によって供給することができた。
As a result of using ordinary activated sludge, 83 g of the total required electric power could be supplied by the in-house power generation described above.

本発明の一連の活性汚泥tを用い九実験−こおいて、汚
泥液の含水率を35wt%s照射汚泥層の厚畜を12ミ
リメートルとし、太陽エネルギー(光)照射面積を3平
方メートル、陽極電極にチタンを用い、照射加熱室にお
ける電解電力に50ミリアンペアで600ボルトを通電
した場合、捕集し水素吸着材に吸着さすことができ次発
生水嵩量は標準状囚換算1時間当り、約α1立方メート
ルで6−)た。
Nine experiments were carried out using a series of activated sludges of the present invention, in which the water content of the sludge liquid was 35 wt%, the thickness of the irradiated sludge layer was 12 mm, the solar energy (light) irradiation area was 3 square meters, and the anode electrode When titanium is used in the irradiation heating chamber and 600 volts of electrolytic power is applied at 50 milliamperes in the irradiation heating chamber, the water can be collected and adsorbed to the hydrogen adsorbent, and the volume of water generated is approximately α1 cubic meter per hour in standard condition. So 6-).

前記説明は、活性汚泥の一実施例を示したものであるが
、他の産業または環境廃棄物の中にも、同様に利用でき
るものが多い。
Although the above description shows one embodiment of activated sludge, many other industrial or environmental wastes can be similarly utilized.

汚泥などの処理場に添加する水中に適量の沃素含有をせ
しめたものを用いて有効である。この場合は、沃化水素
を発生し水素を結合分離し次−こ沃素と水素に分解する
。沃素は触媒作用をする。
It is effective to use water that contains an appropriate amount of iodine in water that is added to sludge and other treatment plants. In this case, hydrogen iodide is generated, hydrogen is combined and separated, and then decomposed into iodide and hydrogen. Iodine acts as a catalyst.

汚泥底弁に、適量の石炭、コークス、木炭などの炭素粒
、タール粒・線、重質油を混合して、太陽エネルギー吸
収を増大させ反応を促進させることができ、ある実施例
では、15にマの電力を発生した場合の消費電力が20
0WHという良好なものがあった。
Appropriate amounts of carbon grains such as coal, coke, charcoal, tar grains/wires, and heavy oil can be mixed into the sludge bottom valve to increase solar energy absorption and accelerate the reaction. The power consumption is 20
There was a good one called 0WH.

電解反応に用いる電極として、前記実施例ではチタンを
用いて説明したが、チタンとともlこ、ま念はチタンに
代えて、触媒作用をする他の金属または金属化合物(以
下、金属と呼ぶ。)を用いて有効であり、次に説明する
。この電極材は、水素吸着材を用いて良好な結果をもた
らすものが多い。
In the above embodiments, titanium was used as the electrode used in the electrolytic reaction, but instead of titanium, other metals or metal compounds (hereinafter referred to as metals) that have a catalytic effect may be used. ), which will be explained next. Many of these electrode materials use hydrogen adsorbents and provide good results.

次に、炭水化物、沃化物またはこれら両方を、金属半導
体となる電極を挿入し、電気化学反応を発生させる水分
解の実施例について説明する。
Next, a description will be given of an example of water splitting in which a carbohydrate, an iodide, or both are inserted into an electrode serving as a metal semiconductor to cause an electrochemical reaction.

(1)水+炭水化物+電解作用+電磁波エネルギー(光
); この場合は、CO鵞+H!発生(2)水十沃素十
炭水化物+電解作用十電磁波エネルギー(光); この
場合は、沃化水素子Cへ発生α)とQ)の場合、発生C
O2はアルカリ吸着除去。
(1) Water + carbohydrates + electrolytic action + electromagnetic energy (light); In this case, CO + H! Generation (2) Water, 10 iodine, 10 carbohydrates + electrolytic action, 10 electromagnetic wave energy (light); In this case, generated to hydrogen iodide element C. In the case of α) and Q), generated C
O2 is removed by alkali adsorption.

α)の場合、光照射または電磁波エネルギー照射によっ
て、電解作用と併せて水素発生をし、(2)の場合、沃
化水素の分解をして水素が得られる。
In the case of α), hydrogen is generated by electrolytic action by light irradiation or electromagnetic energy irradiation, and in the case of (2), hydrogen is obtained by decomposing hydrogen iodide.

いずれにしても、水素吸収物として適当なものを用いる
。該当する−のとして、次のものが有効であう念。
In any case, a suitable hydrogen absorber is used. If applicable, please note that the following are valid.

Lax N1y LidlCe、 Nk@ La + Ce 、T i 、Y +などのミツシュメ
タル合金これらについて、実用に適するものを求めて試
験をした結果を、第2図、第3図、第4図に示して説明
する。
Mitsushi metal alloys such as Lax N1y LidlCe, Nk@La + Ce, T i , Y + etc. The results of tests to find ones suitable for practical use are shown and explained in Figures 2, 3, and 4. do.

第2図に示した曲線入Bは、照射エネルギーの波長と単
位面積当りの発電量との関係を示す。AA部分は化学エ
ネルギーに当り、他は熱エネルギーに当る。可視光波長
は0.4〜0.8ミクロンである。
Curve entry B shown in FIG. 2 shows the relationship between the wavelength of irradiation energy and the amount of power generation per unit area. The AA part corresponds to chemical energy, and the others correspond to thermal energy. The visible light wavelength is 0.4-0.8 microns.

化学エネルギーの場合が有効であるが、この一連の試験
では、照射N(第1図11)に用いる電極33人として
は、金属半導体となる電極を用いた場合に入ム域の化学
エネルギー発生が進み、さらに波長でいえば0.1〜1
ミクロン程度の波長を照射し且つ前記電極に通電して、
水分解を発生させるのが適している。可視範囲の波長エ
ネルギーの少しく外域、すなわちnm400〜800の
少しく外方に拡大した範囲である。第3図に示すモル当
り発熱量とnmから、近紫外線から近赤外線の範囲であ
る。
However, in this series of tests, chemical energy generation in the input region was found to be effective when using a metal semiconductor electrode as the electrode used for irradiation N (Fig. 1, 11). Further, in terms of wavelength, it is 0.1 to 1
Irradiating with a wavelength of about microns and energizing the electrode,
It is suitable for water splitting to occur. This is a range slightly outside the wavelength energy of the visible range, that is, a range extending slightly outward from 400 to 800 nm. Based on the calorific value per mole and nm shown in FIG. 3, it is in the range of near ultraviolet to near infrared rays.

本発明lこおいて、前記の0)と(2)の条件下におけ
る炭化水物、沃化物ま九は両方を化学エネルギー発生を
させる金属半導体としては、次のものが適している。
In the present invention, the following metal semiconductors are suitable for generating chemical energy from both hydrocarbons and iodides under the conditions 0) and (2) above.

(a)  Th Os 、 Ti1t (b)  SrT10g 、 8rZrOB 、 Pb
Ti0B 、 BaTi03(c)    TaboI
 、  WOs(d)  さらに、金属伝導体であるが
、半導体とともに使用できるものとして、TiO、La
Ti0s(e)  光照射特番こ陽極反応を起こすもの
であって、電極(第1図33人)に適するものとして、
Zr01・OaO、ThO・OaO、ZrCaO2これ
らの一連の試験の結論として次のことがいえる。すなわ
ち、半導体となる金s1に陽電極として照射エネルギー
の下で通電し水分解をすることおよび光・電磁波エネル
ギー照射の場合も波長が1〜0.1ミクロン範囲のエネ
ルギー照射する条件として化学エネルギー(可視光波長
より少し広い範囲)′5r照射により、きわめて良好な
結果金も几らす。ミツシュメタルとの合金は良好な陽極
材である。
(a) ThOs, Ti1t (b) SrT10g, 8rZrOB, Pb
Ti0B, BaTi03(c) TaboI
, WOs (d) In addition, TiO, La are metal conductors that can be used with semiconductors.
Ti0s(e) Light irradiation special program This causes an anodic reaction and is suitable for electrodes (33 people in Figure 1).
Zr01.OaO, ThO.OaO, ZrCaO2 The following can be concluded from these series of tests. In other words, the gold s1, which becomes a semiconductor, is used as a positive electrode to energize under irradiation energy to decompose water, and in the case of light/electromagnetic wave energy irradiation, chemical energy ( 5r irradiation (within a range slightly wider than visible light wavelengths) gives very good results and even removes gold. Alloys with Mitshu metal are good anode materials.

次に、吸水素材として、一連の前記の試験によって、陽
極材として有効なものは吸水素性を有する。実用的なも
のとして次のものが適している。
Next, water-absorbing materials that are effective as anode materials have water-absorbing properties according to the series of tests described above. The following are suitable for practical use:

(la)  LaNi5 、  これとミツシュメタル
との合金。
(la) LaNi5, an alloy of this and Mitsushmetal.

(lb)  TJFe、Ti0o、TJOol−yMn
y、MnNi5とミツシュメタルとの合金。
(lb) TJFe, Ti0o, TJOol-yMn
y, alloy of MnNi5 and Mitsushmetal.

(1c)  ミツシュメタル 第4図にLaNi、の水素吸着量と解離圧力atmの2
1℃における関係を示す。第4図A点までは、11!m
%21’cにおいて、水素がLaN1Bに入りLaNi
6)(aSとなるが、この後は、 3 atm 、 2
1℃である第4図B点では% LaNi1山となり水素
吸収量を増すが、52℃に昇温すると、6〜gatmま
で吸着していた水素をA点のLaNigHts iこな
るまで放出する。
(1c) Mitsushmetal Figure 4 shows the hydrogen adsorption amount and dissociation pressure atm of LaNi.
The relationship at 1°C is shown. 11 to point A in Figure 4! m
At %21'c, hydrogen enters LaN1B and enters LaNi
6) (It becomes aS, but after this, 3 atm, 2
At point B in FIG. 4, which is 1°C, %LaNi becomes 1 mountain and the amount of hydrogen absorption increases, but when the temperature is raised to 52°C, the hydrogen adsorbed up to 6 to 6 gatm is released until LaNigHts i at point A is reached.

すなわち点入からBの間を水素貯麓に用い得られる。 
Lm * Oe *Nd t Zr * Pr v 8
mおよびこれらを含む(lc)ミツシュメタルと合金も
使用して有効である。
In other words, the area between point I and point B can be used for hydrogen storage.
Lm * Oe * Nd t Zr * Pr v 8
Metals and alloys containing them (lc) are also useful.

【図面の簡単な説明】[Brief explanation of the drawing]

N1図は本発明の一実施例の配置側面図。第2図は照射
エネルギー波長と発生電力量の関係図。 第3図はnmと波長と光・電磁波エネルギーの関係図。 第4図は例示吸水素材の吸収と解離圧の関係図。 1、7.9・・・槽   8・・・コンプレッサーλ−
モーター   3・・・ポンプ   4・・・電源21
、29・・・活性汚泥と水(液) 12人、 12B、 17.18・・・配管22・・・
パイプ     33A・・・陽電極31・−・エネル
ギー照射面33B・・・陰電極35・・・汚泥通路  
   10・・・ポンプ11・・・エネルギー照射室 
20・・・蓄熱室39・・・アルカリ液   25・・
・軸27・・・駆動機構    26・・・スクリュー
32・−照射光、太陽エネルギー AB・・・照射エネルギー波長と発電量関係線AA−・
・化学エネルギー領域 BB−・・熱エネルギー領域 λ−B・・・水素吸着(解離)圧点(温度一定)特許出
願人 株式会社井上ジャパックス研究所代理人 弁理士
 中 西  − ま壜1菖ζ
Figure N1 is a side view of the arrangement of one embodiment of the present invention. Figure 2 is a diagram showing the relationship between the irradiation energy wavelength and the amount of generated power. Figure 3 is a diagram showing the relationship between nm, wavelength, and optical/electromagnetic wave energy. FIG. 4 is a diagram showing the relationship between absorption and dissociation pressure of an exemplary water-absorbing material. 1, 7.9...tank 8...compressor λ-
Motor 3... Pump 4... Power supply 21
, 29...Activated sludge and water (liquid) 12 people, 12B, 17.18... Piping 22...
Pipe 33A...Positive electrode 31...Energy irradiation surface 33B...Cathode electrode 35...Sludge passage
10...Pump 11...Energy irradiation chamber
20... Heat storage chamber 39... Alkaline liquid 25...
- Shaft 27... Drive mechanism 26... Screw 32 - Irradiation light, solar energy AB... Irradiation energy wavelength and power generation amount relationship line AA - -
・Chemical energy region BB--Thermal energy region λ-B...Hydrogen adsorption (dissociation) pressure point (constant temperature) Patent applicant Inoue Japax Research Institute Representative Patent attorney Naka Nishi - Mabottle 1 iris ζ

Claims (1)

【特許請求の範囲】 l 水と活性汚泥、炭水化物、沃化物またはこれらの組
合せ混合物を水素発生′処理物とし投入した磁f九はこ
れらの組合せのエネルギーを照射する面を上面とじ該面
に接し支持する側壁と上面に対向し被処理物を押し上げ
る通路を備えた底面とで密封して形成する照射室と、該
照射室の下部入口に備えた゛電極金属と上部出口に備え
た電極との間に電解電流を通電する電源を接続した被処
理物通電回路とを設け、前記の照射室内で通電による電
解触媒作用のもとにエネルギー照射によっそ水素を分解
生成することを特徴とした水素を製造する装置。 2 陽電極金属は、被処理物に対して金属半導体として
作用し且つ触媒作用を呈する、チタン、チタン化鉄、チ
タン化コバルト、ニッケル、チタン化コバルトニッケル
、マンガン化ニッケルおよびこれらの希土類金属とのミ
ツシ斗メタルのうちの一種以上を任意に選択して用いる
特許請求の範囲の第1項lζ記載の水素を製造する装置
[Scope of Claims] l A magnetic f-nine containing water, activated sludge, carbohydrates, iodide, or a combination thereof as a hydrogen-generating product has its surface irradiated with the energy of these combinations facing upward and is in contact with the surface. An irradiation chamber that is sealed by a supporting side wall and a bottom surface that faces the top surface and is equipped with a passage for pushing up the object to be processed, and a space between an electrode metal provided at the lower entrance of the irradiation chamber and an electrode provided at the upper exit. and a workpiece energization circuit connected to a power source for supplying an electrolytic current, and hydrogen is decomposed and produced by energy irradiation under the electrocatalytic action caused by the energization in the irradiation chamber. Equipment to manufacture. 2. The positive electrode metal is composed of titanium, iron titanide, cobalt titanide, nickel, cobalt nickel titanide, nickel manganate, and rare earth metals such as titanium, iron titanide, cobalt titanide, nickel, cobalt nickel titanide, nickel manganate, and these rare earth metals that act as a metal semiconductor and have a catalytic effect on the object to be treated. An apparatus for producing hydrogen according to claim 1, in which one or more types of Mitsushito metals are arbitrarily selected.
JP56124703A 1981-08-11 1981-08-11 Producing apparatus for hydrogen Granted JPS5826001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124703A JPS5826001A (en) 1981-08-11 1981-08-11 Producing apparatus for hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124703A JPS5826001A (en) 1981-08-11 1981-08-11 Producing apparatus for hydrogen

Publications (2)

Publication Number Publication Date
JPS5826001A true JPS5826001A (en) 1983-02-16
JPS6125642B2 JPS6125642B2 (en) 1986-06-17

Family

ID=14892001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124703A Granted JPS5826001A (en) 1981-08-11 1981-08-11 Producing apparatus for hydrogen

Country Status (1)

Country Link
JP (1) JPS5826001A (en)

Also Published As

Publication number Publication date
JPS6125642B2 (en) 1986-06-17

Similar Documents

Publication Publication Date Title
US5443804A (en) System for the manufacture of methanol and simultaneous abatement of emission of greenhouse gases
Bockris et al. On the splitting of water
US5219671A (en) Hydrogen generation and utility load leveling system and the method therefor
US20130336870A1 (en) Advanced Tritium System for Separation of Tritium from Radioactive Wastes and Reactor Water in Light Water Systems
CN212315530U (en) Hydrogen production device by hydrolysis of sodium borohydride of kilowatt-level fuel cell
US4145269A (en) Multi-step chemical and radiation process for the production of gas
IL271611B2 (en) The separation of hydrogen and oxygen from non-potable water and the recombining of said hydrogen and oxygen to drive a turbine or piston engine
JP4838952B2 (en) Hydrogen gas generator and generator
US5180502A (en) Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
US5833834A (en) Method for generating hydrogen from HBR
JP3939389B2 (en) Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water
JPS5826001A (en) Producing apparatus for hydrogen
US5093302A (en) Radioactive catalyst and oxidation-reduction method and apparatus using same
CN113594525A (en) Energy storage, carbon sequestration and new energy recycling
US20220177304A1 (en) Desalination methods and devices using geothermal energy
TW200400663A (en) High capacity calcium lithium based hydrogen storage material and method of making the same
US5186794A (en) Alkali metal hydroxide generation system and the method therefor
JPH1179701A (en) Gas generating device and system in which gas generating device is incorporated
JP2001321670A (en) Hydrocarbon decomposing material and hydrocarbon decomposing device
CN113264502A (en) Hydrogen production device by hydrolysis of sodium borohydride of kilowatt-level fuel cell
RU2792643C1 (en) Method for hydrogen production
Briner Photochemical production of ozone
US5183652A (en) Radioactive catalyst and oxidation-reduction method and apparatus using same
JP5146730B2 (en) Method and apparatus for reducing carbon dioxide in gas
CA2478807A1 (en) Improvements in electrochemistry