JP5146730B2 - Method and apparatus for reducing carbon dioxide in gas - Google Patents

Method and apparatus for reducing carbon dioxide in gas Download PDF

Info

Publication number
JP5146730B2
JP5146730B2 JP2007326282A JP2007326282A JP5146730B2 JP 5146730 B2 JP5146730 B2 JP 5146730B2 JP 2007326282 A JP2007326282 A JP 2007326282A JP 2007326282 A JP2007326282 A JP 2007326282A JP 5146730 B2 JP5146730 B2 JP 5146730B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
mixed gas
oxygen
reduction
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007326282A
Other languages
Japanese (ja)
Other versions
JP2009149453A (en
Inventor
良行 吉田
直樹 白川
哲也 三野
健 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007326282A priority Critical patent/JP5146730B2/en
Priority to PCT/JP2008/003813 priority patent/WO2009078175A1/en
Publication of JP2009149453A publication Critical patent/JP2009149453A/en
Application granted granted Critical
Publication of JP5146730B2 publication Critical patent/JP5146730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

本発明は、二酸化炭素を含む混合ガス中の酸素濃度を極低酸素分圧にして、そのガスを加熱、還元することで二酸化炭素の削減する方法及び二酸化炭素削減装置に関する。   The present invention relates to a method and a carbon dioxide reduction device for reducing carbon dioxide by setting an oxygen concentration in a mixed gas containing carbon dioxide to an extremely low oxygen partial pressure and heating and reducing the gas.

近年、地球温暖化の原因の一つとして温室効果ガスの影響が指摘され、特に、二酸化炭素などの温室効果ガスを削減することで、地球の温暖化の進行を防ぐための試みが全世界的になされている。現在までに、二酸化炭素の削減については様々な固定化、有効利用が提案されている。   In recent years, the effects of greenhouse gases have been pointed out as one of the causes of global warming, and in particular, attempts to prevent the global warming by reducing greenhouse gases such as carbon dioxide are global. Has been made. To date, various immobilization and effective utilization have been proposed for the reduction of carbon dioxide.

二酸化炭素の固定化、有効利用方法として、地中貯留や海洋隔離、植林による地上隔離といった隔離による方法、および物理・化学的方法を用いての分離回収後、炭素への分解や化学品への変換し、有効利用する方法が挙げられる。   Carbon dioxide fixation, effective utilization methods include geological storage, marine sequestration, ground sequestration by plantation, and separation and recovery using physical and chemical methods, followed by decomposition into carbon and chemical products. The method of converting and using it effectively is mentioned.

一方、カーボンへの分解や化学的反応を利用し化学品への変換については、依然、基礎研究の段階であるが、金属との反応やメタンを利用することでカーボンを取り出すこと、また、触媒反応を利用する方法や、電気化学的還元、光化学的還元により化学品への変換が行われている。   On the other hand, decomposition into carbon and conversion to chemicals using chemical reactions are still at the basic research stage, but it is possible to extract carbon by using reactions with metals and methane, and by using catalysts. Conversion to a chemical product is performed by a method utilizing a reaction, electrochemical reduction, or photochemical reduction.

地中貯留による隔離は、圧入時に圧縮や液化のエネルギが必要なこと、長期的に二酸化炭素が安定して隔離されているかまだ不明な点も多いこと、また、海洋隔離については海洋による二酸化炭素の吸収能力が高いという利点があるが、生物への影響など環境への悪影響が未知であるといった課題がある。   Sequestration by underground storage requires compression and liquefaction energy at the time of injection, there are still many unclear points about whether carbon dioxide has been stably sequestered in the long term. However, there is a problem that adverse effects on the environment, such as effects on living things, are unknown.

植林による地上隔離は生物の光合成を利用するので、かなりの量の二酸化炭素の処理が期待できる。かつ、熱帯林の保護や砂漠化防止にも役立つ。しかしながら、植樹・植林も広大な土地が必要であり、成長するまでに何年にも亘る時間が必要となる。 Ground sequestration by planting uses biological photosynthesis, so a considerable amount of carbon dioxide can be expected. It also helps protect tropical forests and prevent desertification. However, planting and planting also requires vast land, and it takes many years to grow.

金属との反応やメタンを利用することで、直接、二酸化炭素からカーボンへ分解することは非常に魅力的であるが、現状の技術では二酸化炭素を還元し、カーボンへ分解するためには反応を起こすための金属や大量の熱エネルギが必要であるといった問題点がある。   Although it is very attractive to directly decompose carbon dioxide into carbon by using a reaction with metal or methane, the current technology reduces the carbon dioxide, and in order to decompose it into carbon, a reaction is required. There are problems such as requiring metal to wake up and a large amount of heat energy.

電気化学的還元としては、特殊な電極を使用して電解溶液中の二酸化炭素を分解し、ギ酸、メタン等を常温で生成する方法等が知られているが、大規模な反応槽が必要であり、反応を促進させるためには大量の電気エネルギを供給する必要がある。   As electrochemical reduction, a method is known in which carbon dioxide in an electrolytic solution is decomposed using a special electrode to produce formic acid, methane, etc. at room temperature, but a large-scale reaction tank is required. In order to promote the reaction, it is necessary to supply a large amount of electric energy.

光化学的還元は、半導体を利用した光電極反応による還元であり、還元に必要なエネルギを太陽光から得る。これは二酸化炭素を溶かした水溶液中に光電極を入れ、光を当てることによって一方の電極で水を酸化して酸素を得、他方の電極で二酸化炭素を還元して一酸化炭素を得るものが知られている。しかし、光電極の性能が十分でなく、反応の安定性に課題がある。   Photochemical reduction is reduction by a photoelectrode reaction using a semiconductor, and obtains energy necessary for reduction from sunlight. This is one in which a photoelectrode is placed in an aqueous solution in which carbon dioxide is dissolved, and light is irradiated to oxidize water at one electrode to obtain oxygen, and at the other electrode to reduce carbon dioxide to obtain carbon monoxide. Are known. However, the performance of the photoelectrode is not sufficient, and there is a problem in the stability of the reaction.

触媒反応を利用する二酸化炭素の還元としては、二酸化炭素を一酸化炭素、メタノール等に転換してそれを利用するという手段等が知られており、特許文献1には二酸化炭素と水素との混合物に触媒存在下でマイクロ波を照射し、マイクロ波で触媒を加熱することにより触媒表面で二酸化炭素を分解し、メタノールを生成する方法が提案されているが、水素ガスを用いることで爆発等の危険性がありその取り扱いに課題がある。
特願2004−332797公報
As the reduction of carbon dioxide using a catalytic reaction, means for converting carbon dioxide into carbon monoxide, methanol or the like and using the same are known. Patent Document 1 discloses a mixture of carbon dioxide and hydrogen. A method of generating methanol by decomposing carbon dioxide on the catalyst surface by irradiating microwaves in the presence of the catalyst and heating the catalyst with microwaves has been proposed. There is danger and there is a problem in the handling.
Japanese Patent Application No. 2004-332797

本発明の二酸化炭素削減方法は、二酸化炭素ガスを含む混合ガスを生成する工程と、前記混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の極低酸素分圧に生成する工程と、前記混合ガスを加熱することにより前記混合ガス中の二酸化炭素を炭素へ還元して二酸化炭素を削減する還元工程とを備えることを特徴とする。   The carbon dioxide reduction method of the present invention includes a step of generating a mixed gas containing carbon dioxide gas, and an extremely low oxygen partial pressure in which the oxygen concentration in the mixed gas is 10 minus 20th atmospheric pressure or less, 10 or less minus 35th atmospheric pressure or more. And a reduction step of reducing the carbon dioxide in the mixed gas by reducing the carbon dioxide in the mixed gas to carbon by heating the mixed gas.

また、本発明の二酸化炭素削減方法は、前記二酸化炭素が除去された混合ガスを大気に排出する工程をさらに備えることを特徴とする。   In addition, the carbon dioxide reduction method of the present invention further includes a step of discharging the mixed gas from which the carbon dioxide has been removed to the atmosphere.

前記二酸化炭素を含む混合ガスは、窒素、酸素、アルゴン、ネオン、ヘリウムのうちの一種、または複数種を含むことを特徴とする。   The mixed gas containing carbon dioxide includes one or more of nitrogen, oxygen, argon, neon, and helium.

前記極低酸素分圧は、固体電解質体の酸素イオン伝導性を利用することを特徴とする。   The extremely low oxygen partial pressure uses oxygen ion conductivity of a solid electrolyte body.

前記還元装置内の加熱温度は300℃以上3000℃以下であることを特徴とする。   The heating temperature in the reducing device is 300 ° C. or higher and 3000 ° C. or lower.

本発明の二酸化炭素削減装置は、二酸化炭素ガスを含む混合ガスを生成する混合ガス生成装置と、前記混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の酸素分圧に生成する酸素分子排出装置と、前記酸素分圧の混合ガスを加熱して前記混合ガス中の二酸化炭素を炭素へ還元する還元装置とを備えることを特徴とする。   The carbon dioxide reduction device of the present invention includes a mixed gas generation device that generates a mixed gas containing carbon dioxide gas, and an oxygen concentration in the mixed gas of 10 minus 20th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more oxygen content. An oxygen molecule discharging device that generates pressure, and a reducing device that heats the mixed gas having the partial pressure of oxygen to reduce carbon dioxide in the mixed gas to carbon.

また、本発明の二酸化炭素削減装置は、二酸化炭素ガスを含む混合ガスを生成する混合ガス生成装置と、前記混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の酸素分圧に生成する酸素分子排出装置と、前記酸素分圧の混合ガスを加熱して前記混合ガス中の二酸化炭素を炭素へ還元する還元装置とを備え、前記還元装置は、前記混合ガス生成装置を備えることを特徴とする。   The carbon dioxide reduction device of the present invention includes a mixed gas generation device that generates a mixed gas containing carbon dioxide gas, and an oxygen concentration in the mixed gas of 10 minus 20th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more. An oxygen molecule discharging device that generates oxygen partial pressure; and a reducing device that heats the mixed gas having the oxygen partial pressure to reduce carbon dioxide in the mixed gas to carbon, the reducing device generating the mixed gas A device is provided.

さらに、本発明の二酸化炭素削減装置は、前記二酸化炭素が除去された混合ガスを大気に排出する排出装置をさらに備えることを特徴とする。   Furthermore, the carbon dioxide reduction device of the present invention further includes a discharge device that discharges the mixed gas from which the carbon dioxide has been removed to the atmosphere.

前記二酸化炭素を含む混合ガスは、窒素、酸素、アルゴン、ネオン、ヘリウムのうちの一種、または複数種を含むことを特徴とする。   The mixed gas containing carbon dioxide includes one or more of nitrogen, oxygen, argon, neon, and helium.

前記酸素分子排出装置は、固体電解質体の酸素イオン伝導性を利用することを特徴とする。   The oxygen molecule discharging apparatus uses oxygen ion conductivity of a solid electrolyte body.

前記加熱温度は、300℃以上3000℃以下であることを特徴とする。   The heating temperature is 300 ° C. or higher and 3000 ° C. or lower.

本発明によれば、極低酸素ガスを利用することで、電極、触媒、水などの他の材料を使用することなく、直接、二酸化炭素から炭素へ還元することにより二酸化炭素を効果的に効率良く削減することが出来る。   According to the present invention, by utilizing extremely low oxygen gas, carbon dioxide can be effectively efficiently reduced directly from carbon dioxide to carbon without using other materials such as electrodes, catalysts, and water. It can be reduced well.

混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の極めて低い極低酸素分圧で二酸化炭素を炭素に還元する。
還元に伴う化学式は、以下の通りである。
CO(gas)=C+O(gas)
図1は、横軸が温度を示し、縦軸が酸素分圧を示す。図1は、化学式と熱力学的計算から求めた相関図で、温度と酸素分圧の関係で還元領域が変化することを示す。すなわち、温度が高くなればなるほど、又酸素分圧が低くなるほど還元反応が進むことを示す。図内の矢印(T)は、CO濃度が50%の場合、酸素分圧が10のマイナス30気圧時に、約400℃で還元境界線を通過し還元が始まることを示す。また、系内のCOの濃度が変わるとその還元境界線が図のように変化する。すなわち、CO濃度が100ppmの場合は、酸素分圧が10のマイナス30気圧時に約500℃から還元が始まる。本発明によれば、混合ガス中の二酸化炭素含有量50%を5%以下に削減することができる。
Carbon dioxide is reduced to carbon at an extremely low partial pressure of oxygen, in which the oxygen concentration in the mixed gas is an extremely low oxygen partial pressure of 10 minus 20th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more.
The chemical formula associated with the reduction is as follows.
CO 2 (gas) = C + O 2 (gas)
In FIG. 1, the horizontal axis represents temperature, and the vertical axis represents oxygen partial pressure. FIG. 1 is a correlation diagram obtained from a chemical formula and thermodynamic calculation, and shows that the reduction region changes depending on the relationship between temperature and oxygen partial pressure. That is, the higher the temperature and the lower the oxygen partial pressure, the more the reduction reaction proceeds. The arrow (T) in the figure indicates that when the CO 2 concentration is 50%, when the oxygen partial pressure is 10 minus 30 atm, the reduction starts at about 400 ° C. and the reduction starts. Further, when the CO 2 concentration in the system changes, the reduction boundary line changes as shown in the figure. That is, when the CO 2 concentration is 100 ppm, the reduction starts from about 500 ° C. when the oxygen partial pressure is 10 minus 30 atm. According to the present invention, the carbon dioxide content 50% in the mixed gas can be reduced to 5% or less.

以下、本発明の実施例を図面を参照して説明する。
図2は、二酸化炭素削減装置10を示す概略図を示す。二酸化炭素削減装置10は、プロセスガスと二酸化炭素とを混合するガス混合器12と、混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の極めて低い極低酸素分圧に生成する酸素分子排出装置14と、二酸化炭素を炭素に還元する還元装置16とを備える。二酸化炭素を含む混合ガスは、プロセスガスとして窒素、酸素、アルゴン、ネオン、ヘリウムのうちの一種、または複数種を含むガスが使用される。還元装置内の加熱温度は300℃以上3000℃以下である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 is a schematic diagram showing the carbon dioxide reduction device 10. The carbon dioxide reduction device 10 includes a gas mixer 12 that mixes a process gas and carbon dioxide, and an extremely low extremely low oxygen content in which the oxygen concentration in the mixed gas is 10 minus 20th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more. An oxygen molecule discharging device 14 that generates pressure is provided, and a reducing device 16 that reduces carbon dioxide to carbon. As the mixed gas containing carbon dioxide, a gas containing one or more of nitrogen, oxygen, argon, neon, and helium is used as a process gas. The heating temperature in the reducing device is 300 ° C. or higher and 3000 ° C. or lower.

二酸化炭素ガスを含む混合ガスは、酸素分子排出装置14に循環ポンプ17を介して導入される。酸素分子排出装置の酸素濃度の酸素分圧は、酸素分圧制御装置18により制御される。   A mixed gas containing carbon dioxide gas is introduced into the oxygen molecule discharging device 14 via a circulation pump 17. The oxygen partial pressure of the oxygen concentration of the oxygen molecule discharging device is controlled by the oxygen partial pressure control device 18.

なお、二酸化炭素とプロセスガスとの混合は、図3に示すように還元装置にガス混合器12を設けて、還元装置16内で二酸化炭素とプロセスガスとを混合してもよい。   As shown in FIG. 3, the carbon dioxide and the process gas may be mixed by providing a gas mixer 12 in the reduction device and mixing the carbon dioxide and the process gas in the reduction device 16.

さらに、図2において、還元装置16内に設けた三酸化二アルミニウムの坩堝の表面に炭素を固定して二酸化炭素を除去する以外に、直接的に二酸化炭素を含まない混合ガスを大気に排出するようにしてもよい。   Further, in FIG. 2, in addition to removing carbon dioxide by fixing carbon to the surface of a dialuminum trioxide crucible provided in the reducing device 16, a mixed gas not containing carbon dioxide is directly discharged to the atmosphere. You may do it.

酸素分子排出装置14は、酸素イオン伝導性を有する固体電解質体と、固体電解質体の内外両面に配設され金又は白金よりなるネット状の電極とを備える。図4は、酸素分子排出装置の概略図を示す。図4の酸素分子排出装置14は、酸素イオン伝導性を有するジルコニア製固体電解質体21と、固体電解質体21の内面及び外面に配設され金又は白金よりなるネット状の電極22、23とを備える。ジルコニア製固体電解質体21は、両端部でコバール材からなる金属製管体20と銀ロウ付け固着される。固体電解質体の電極と管体は、内側電極を構成する。酸素分圧排出装置の内圧は、3kg/cm以下であり、通常0.1〜1.0kg/cmである。 The oxygen molecule discharging device 14 includes a solid electrolyte body having oxygen ion conductivity, and net-like electrodes made of gold or platinum and disposed on both the inner and outer surfaces of the solid electrolyte body. FIG. 4 shows a schematic diagram of an oxygen molecule discharging apparatus. 4 includes a zirconia solid electrolyte body 21 having oxygen ion conductivity, and net-like electrodes 22 and 23 made of gold or platinum, which are disposed on the inner and outer surfaces of the solid electrolyte body 21. Prepare. The zirconia solid electrolyte body 21 is fixed to the metal tube body 20 made of a Kovar material at both ends by silver brazing. The electrode and tube of the solid electrolyte body constitute an inner electrode. The internal pressure of the oxygen partial pressure discharge apparatus is 3 kg / cm 2 or less, is usually 0.1~1.0kg / cm 2.

内面電極22と外面電極23との間に直流電源Eから電流Iを流すと、酸素分子(O2)が内面電極22において電気的に還元されてイオン(O2-)化され、固体電解質21を通して輸送され、外面電極23で電子を奪われて再び酸素分子に変えられる。この密閉容器の外部に放出された酸素分子を空気等の補助気体をキャリアガスとして排気することにより、密閉容器に供給される混合ガス中の酸素分子を除去して、その酸素分圧を制御できる。このようにすると、H2Oの熱分解によって生じたH2とO2のうち、O2が酸素分子排出装置14により除去される。従ってH2O<<H2+(1/2)O2という化学平衡が連続的に右辺側へと進行し、水分が分解除去されることになる。 When a current I is passed from the DC power source E between the inner surface electrode 22 and the outer surface electrode 23, oxygen molecules (O 2 ) are electrically reduced and ionized (O 2− ) at the inner surface electrode 22, and the solid electrolyte 21. The electrons are taken away by the outer electrode 23 and converted into oxygen molecules again. By exhausting oxygen molecules released to the outside of the sealed container using an auxiliary gas such as air as a carrier gas, the oxygen molecules in the mixed gas supplied to the sealed container can be removed and the oxygen partial pressure can be controlled. . In this way, one of H 2 and O 2 produced by thermal decomposition of H 2 O, O 2 is removed by oxygen molecules discharge device 14. Therefore, the chemical equilibrium of H 2 O << H 2 + (1/2) O 2 continuously proceeds to the right side, and moisture is decomposed and removed.

このように酸素分子排出装置14は、固体電解質体内21に導入されたガスが固体電解質体内21中を通過する間に混合ガス中の酸素分子を外気に排出して、極めて低い酸素分圧を生成する。図4において、●は、不活性ガス、○○は、酸素分子、○は、酸素イオンである。   As described above, the oxygen molecule discharge device 14 discharges oxygen molecules in the mixed gas to the outside air while the gas introduced into the solid electrolyte body 21 passes through the solid electrolyte body 21 to generate an extremely low oxygen partial pressure. To do. In FIG. 4, ● is an inert gas, OO is an oxygen molecule, and ◯ is an oxygen ion.

固体電解質体を構成する固体電解質 は、例えば、一般式(ZrO21-x-y(In23x(Y23y(0<x<0.20、0<y<020、0.08<x+y<0.20)で表されるジルコニア系が利用できる。その中でも、0<x<0.20、y=0であることが望ましく、さらに、0.06<x<0.12、y=0であることがより望ましい。 The solid electrolyte constituting the solid electrolyte body is, for example, a general formula (ZrO 2 ) 1-xy (In 2 O 3 ) x (Y 2 O 3 ) y (0 <x <0.20, 0 <y <020, 0.08 < A zirconia system represented by x + y <0.20) can be used. Among them, 0 <x <0.20 and y = 0 are preferable, and 0.06 <x <0.12 and y = 0 are more preferable.

固体電解質 は、上記に例示したもの以外に、例えば、Ba およびIn を含む複合Ba酸化物であって、この複合酸化物のBaの一部をLaで固溶置換したもの、特に、原子数比{La/(Ba+La)}を0.3以上としたものや、さらにInの一部をGaで置換したものや、一般式{Ln1-xSrxGa1-(y+z)MgyCoz3、ただし、Ln=La,Ndの1種または2種、x=0.05〜0.3、y=0〜0.29、z=0.01〜0.3、y+z=0.025〜0.3}で示されるものや、一般式{Ln(1-x)xGa(1-y-z)B1yB2z3-δ、ただし、Ln=La,Ce,Pr,Nd,Smの1種または2種以上、A=Sr,Ca,Baの1種または2種以上、B1=Mg,Al,Inの1種または2種以上、B2=Co,Fe,Ni,Cu の1種または2種以上}で示されるものや、一般式{Ln2-xxGe1-yLyO5、ただし、Ln=La,Ce,Pr,Sm,Nd,Gd,Yd,Y,Sc、M=Li,Na,K,Rb,Ca,Sr,Baの1種もしくは2種以上、L=Mg,Al,Ga,In,Mn,Cr,Cu,Znの1種もしくは2種以上}や、一般式{La(1-x)SrxGa(1-y-z)MgyAlz3、ただし、0<x≦0.2、0<y≦0.2、0<z<0.4}や、一般式{La(1-x)xGa(1-y-z)B1yB2z3、ただし、Ln=La,Ce,Pr,Sm,Ndの1種もしくは2種以上、A=Sr,Ca,Baの1種もしくは2種以上、B1=Mg,Al,Inの1種もしくは2種以上、B2=Co,Fe,Ni,Cuの1種もしくは2種以上、x=0.05〜0.3、y=0〜0.29、z=0.01〜0.3、y+z=0.025〜0.3}等が採用できる。 In addition to those exemplified above, the solid electrolyte is, for example, a composite Ba oxide containing Ba and In, in which a part of Ba of this composite oxide is replaced by solid solution with La, in particular the atomic ratio. {La / (Ba + La)} is set to 0.3 or more, a part of In is further substituted with Ga, and the general formula {Ln 1−x Sr x Ga 1− (y + z) Mg y Co z O 3 , wherein one or two of Ln = La and Nd, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.025 to 0.3}, formula {Ln (1-x) a x Ga (1-yz) B1 y B2 z O 3-δ, however, Ln = La, Ce, Pr , Nd, 1 or more kinds of Sm, a = Sr , One or more of Ca, Ba, one or more of B1 = Mg, Al, In, B2 = one or more of Co, Fe, Ni, Cu} The or general formula {Ln 2-x M x Ge 1-y LyO 5, however, Ln = La, Ce, Pr , Sm, Nd, Gd, Yd, Y, Sc, M = Li, Na, K, Rb , Ca, Sr, Ba, or one or more, L = Mg, Al, Ga, In, Mn, Cr, Cu, or Zn, or a general formula {La (1-x) Sr x Ga (1-yz) Mg y Al z O 3 , where 0 <x ≦ 0.2, 0 <y ≦ 0.2, 0 <z <0.4}, and the general formula {La (1-x) A x Ga ( 1-yz) B1 y B2 z O 3 , where Ln = La, Ce, Pr, Sm, Nd, one or more, A = Sr, Ca, Ba, one or more, B1 = Mg , One or more of Al, In, one or more of B2 = Co, Fe, Ni, Cu, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.025 to 0.3} etc. That.

酸素分圧値を所定の値に設定する酸素分圧制御装置18は、酸素分圧設定部と固定化装置から排出される側の極低酸素分圧ガスの酸素分圧を測定する排出側の酸素分圧センサからなり、センサによるモニタ値を酸素分圧設定値と比較して酸素ポンプ部分から送り出されるガスの酸素分圧を所定値に制御するPID制御方式による酸素分圧制御部を備える。   The oxygen partial pressure control device 18 that sets the oxygen partial pressure value to a predetermined value is a discharge side that measures the oxygen partial pressure of the extremely low oxygen partial pressure gas that is discharged from the oxygen partial pressure setting unit and the immobilization device. It comprises an oxygen partial pressure sensor, and includes an oxygen partial pressure control unit based on a PID control system that controls the oxygen partial pressure of the gas delivered from the oxygen pump portion to a predetermined value by comparing the monitor value of the sensor with the oxygen partial pressure set value.

二酸化炭素を炭素に還元する還元装置は、比較的高温で二酸化炭素を炭素に還元するのであるが、温度を昇温させる際には以下のような公知の加熱方法が適用される。抵抗加熱法、高周波誘導加熱法、アーク放電法、電子線加熱法、赤外線加熱、レーザビーム加熱などを挙げることができる。抵抗加熱、高周波誘導加熱法、アーク放電法では、全てるつぼを使用し、それぞれ抵抗に電流を流した際に発生するジュール熱、高周波による金属、または炭素るつぼ中の誘導電流による発熱、るつぼと電極間のアーク放電による加熱により、るつぼ中にある焼結体は加熱される。一方、電子線加熱法、赤外線集光加熱、レーザビーム加熱はそれぞれ電子線流、赤外線、レーザを集中もしくは集光させることで加熱対象物を加熱する方法である。   A reduction device that reduces carbon dioxide to carbon reduces carbon dioxide to carbon at a relatively high temperature. When the temperature is raised, the following known heating method is applied. Examples thereof include a resistance heating method, a high frequency induction heating method, an arc discharge method, an electron beam heating method, infrared heating, and laser beam heating. In the resistance heating, high frequency induction heating method, and arc discharge method, all use crucibles, Joule heat generated when current is passed through the resistance, metal due to high frequency, heat generation due to induction current in carbon crucible, crucible and electrode The sintered body in the crucible is heated by the heating by the arc discharge. On the other hand, the electron beam heating method, infrared condensing heating, and laser beam heating are methods for heating an object to be heated by concentrating or condensing electron beam flow, infrared rays, and laser, respectively.

二酸化炭素ガスから炭素に還元し、その炭素を収集するという点では、ルツボ内で加熱するなどの方法をとるなど、抵抗加熱、高周波誘導加熱、アーク放電法などの方法が加熱には望ましく、るつぼに炭素を使用出来るという意味では抵抗加熱、高周波誘導加熱がより望ましい。   In terms of reducing carbon dioxide gas to carbon and collecting the carbon, methods such as resistance heating, high-frequency induction heating, and arc discharge methods are desirable for heating, such as heating in a crucible. In the sense that carbon can be used, resistance heating and high frequency induction heating are more preferable.

加熱操作にともなって、最初の段階では、加熱焼結体の表面から発生する酸素の影響を受けて酸素の発生が検知される。それに伴い、処理装置内の酸素量は僅かではあるが上昇する。その後、酸素分圧は再び低下するが、二酸化炭素が還元される温度以上になると、酸素分圧制御装置の酸素濃度計の酸素濃度の値が再度上昇し、酸素の発生が確認できる。さらに加熱すると、酸素分圧は安定し、加熱を続けることで還元を行う。   Along with the heating operation, in the first stage, the generation of oxygen is detected under the influence of oxygen generated from the surface of the heated sintered body. Along with this, the amount of oxygen in the processing apparatus increases slightly. Thereafter, the oxygen partial pressure decreases again, but when the temperature exceeds the temperature at which carbon dioxide is reduced, the oxygen concentration value of the oxygen concentration meter of the oxygen partial pressure control device rises again, and the generation of oxygen can be confirmed. When further heated, the oxygen partial pressure becomes stable, and the reduction is performed by continuing the heating.

抵抗加熱炉からなる還元装置内に三酸化二アルミニウムの坩堝を置き、系内を1気圧のアルゴンガスと二酸化炭素の混合ガスとする。酸素分子排出装置により酸素分圧を3.2×10のマイナス30乗気圧の雰囲気とした後、還元装置の温度を1100℃とし、72時間保持した。その結果、還元装置内に入れていた三酸化二アルミニウムの坩堝の表面は黒く変色した。図5は、アルミナが炭素により黒く変色する処理前と処理後の坩堝の表面を示す。図6は、EDXでの分析の結果を示すスペクトルであり、三酸化二アルミニウムを構成する酸素、アルミニウムの他に炭素のピークを確認した。   A crucible made of dialuminum trioxide is placed in a reducing apparatus consisting of a resistance heating furnace, and the inside of the system is a mixed gas of argon gas and carbon dioxide at 1 atm. After the oxygen partial pressure was changed to an atmosphere of minus 30 to atmospheric pressure of 3.2 × 10 using the oxygen molecule discharging device, the temperature of the reducing device was set to 1100 ° C. and held for 72 hours. As a result, the surface of the crucible made of dialuminum trioxide that had been placed in the reducing device turned black. FIG. 5 shows the surface of the crucible before and after the treatment when the alumina turns black due to carbon. FIG. 6 is a spectrum showing the result of analysis by EDX, and a peak of carbon was confirmed in addition to oxygen and aluminum constituting dialuminum trioxide.

また、抵抗加熱炉からなる還元装置内にシリコンウエハを置き、系内を1気圧のアルゴンガスと二酸化炭素の混合ガスとした。酸素分子排出装置により酸素分圧を7.5×10のマイナス30乗気圧の雰囲気とした後、還元装置の温度を1100℃とし、48時間保持した。その結果、シリコンウエハ上で還元された炭素の厚み3μm〜6μmが確認された。図7のSEM写真に示すように、還元装置内に入れていたシリコンウエハの表面に黒く粒子状の物体が出現した。この粒子をEDXでの分析したところ、炭素のピークであることを確認した(図8)。   In addition, a silicon wafer was placed in a reduction apparatus consisting of a resistance heating furnace, and the inside of the system was a mixed gas of argon gas and carbon dioxide at 1 atm. After the oxygen partial pressure was changed to an oxygen partial pressure of 7.5 × 10 minus 30th atmospheric pressure by the oxygen molecule discharging apparatus, the temperature of the reducing apparatus was set to 1100 ° C. and held for 48 hours. As a result, a thickness of 3 to 6 μm of carbon reduced on the silicon wafer was confirmed. As shown in the SEM photograph of FIG. 7, a black particle-like object appeared on the surface of the silicon wafer that had been put in the reducing apparatus. When this particle was analyzed by EDX, it was confirmed that it was a carbon peak (FIG. 8).

本発明は、製鉄所での溶鉱炉、ゴミ焼却炉などにおいては、それらから出る大量の廃熱を有効に利用でき、さらには二酸化炭素の削減が出来るため、地球温暖化の原因である温室効果ガスの削減に貢献することが可能となる。また、太陽光や風力、地熱発電で得られる電力を利用すれば、二酸化炭素の削減プラントとして利用出来る可能性が期待出来る。さらには、この発明により生成される炭素は産業界での再利用が可能である。   The present invention can effectively use a large amount of waste heat generated from blast furnaces, garbage incinerators, etc. in steelworks, and can reduce carbon dioxide, which is a greenhouse gas that causes global warming. Can be reduced. Moreover, if electric power obtained by solar power, wind power, or geothermal power generation is used, the possibility of being used as a carbon dioxide reduction plant can be expected. Furthermore, the carbon produced by this invention can be reused in industry.

酸素分圧と温度との関係を示す図である。It is a figure which shows the relationship between oxygen partial pressure and temperature. 本発明に係る二酸化炭素削減装置を示す概略図である。It is the schematic which shows the carbon dioxide reduction apparatus which concerns on this invention. 本発明に係る他の二酸化炭素削減装置を示す概略図である。It is the schematic which shows the other carbon dioxide reduction apparatus which concerns on this invention. 本発明に係る二酸化炭素削減装置の酸素分子排出装置を示す概略図である。It is the schematic which shows the oxygen molecule discharge apparatus of the carbon dioxide reduction apparatus which concerns on this invention. 炭素で黒く変色した三酸化二アルミニウムの坩堝。A crucible made of dialuminum trioxide that turns black with carbon. 炭素で黒く変色した三酸化二アルミニウムのEDXスペクトル。EDX spectrum of dialuminum trioxide, which turned black with carbon. シリコンウエハ表面の電子顕微鏡写真。An electron micrograph of the silicon wafer surface. 黒く変色したシリコンウエハのEDXスペクトル。EDX spectrum of a silicon wafer that has turned black.

符号の説明Explanation of symbols

10;二酸化炭素削減装置
12;ガス混合機
14;酸素分子排出装置
16;還元装置
18;酸素分圧制御装置
20;管体
21;ジルコニア製固体電解質体
22、23;電極
DESCRIPTION OF SYMBOLS 10; Carbon dioxide reduction device 12; Gas mixer 14; Oxygen molecule discharge device 16; Reduction device 18; Oxygen partial pressure control device 20; Tube 21;

Claims (11)

二酸化炭素ガスを含む混合ガスを生成する工程と、前記混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の極低酸素分圧に生成する工程と、前記混合ガスを加熱することにより前記混合ガス中の二酸化炭素を炭素へ還元して二酸化炭素を削減する還元工程とを備える二酸化炭素削減方法。   A step of generating a mixed gas containing carbon dioxide gas, a step of generating an oxygen concentration in the mixed gas at an extremely low oxygen partial pressure of 10 minus 20th atmospheric pressure or less, 10 minus 35th atmospheric pressure or more, and the mixed gas. And a reduction step of reducing carbon dioxide by reducing carbon dioxide in the mixed gas to carbon by heating the mixed gas. 前記二酸化炭素が除去された混合ガスを大気に排出する工程をさらに備えることを特徴とする請求項1記載の二酸化炭素削減方法。   The carbon dioxide reduction method according to claim 1, further comprising a step of discharging the mixed gas from which the carbon dioxide has been removed to the atmosphere. 前記二酸化炭素を含む混合ガスは、窒素、酸素、アルゴン、ネオン、ヘリウムのうちの一種、または複数種を含むことを特徴とする請求項1記載の二酸化炭素削減方法。   2. The carbon dioxide reduction method according to claim 1, wherein the mixed gas containing carbon dioxide includes one or more of nitrogen, oxygen, argon, neon, and helium. 前記極低酸素分圧は、固体電解質体の酸素イオン伝導性を利用して、前記混合ガス中の酸素分子を外気に排出することで生成されることを特徴とする請求項1記載の二酸化炭素削減方法。 2. The carbon dioxide according to claim 1, wherein the extremely low oxygen partial pressure is generated by discharging oxygen molecules in the mixed gas to the outside air using oxygen ion conductivity of a solid electrolyte body. Reduction method. 前記還元工程における加熱温度は300℃以上3000℃以下であることを特徴とする請求項1記載の二酸化炭素削減方法。 The carbon dioxide reduction method according to claim 1, wherein the heating temperature in the reduction step is 300 ° C or higher and 3000 ° C or lower. 二酸化炭素ガスを含む混合ガスを生成する混合ガス生成装置と、前記混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の酸素分圧に生成する酸素分子排出装置と、前記酸素分圧の混合ガスを加熱して前記混合ガス中の二酸化炭素を炭素へ還元する還元装置とを備える二酸化炭素削減装置。   A mixed gas generating device that generates a mixed gas containing carbon dioxide gas; and an oxygen molecule discharging device that generates an oxygen concentration in the mixed gas to an oxygen partial pressure of 10 minus 20th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more. A carbon dioxide reduction device comprising: a reduction device that heats the mixed gas having the oxygen partial pressure to reduce carbon dioxide in the mixed gas to carbon. 二酸化炭素ガスを含む混合ガスを生成する混合ガス生成装置と、前記混合ガス中の酸素濃度を10のマイナス20乗気圧以下10のマイナス35乗気圧以上の酸素分圧に生成する酸素分子排出装置と、前記酸素分圧の混合ガスを加熱して前記混合ガス中の二酸化炭素を炭素へ還元する還元装置とを備え、前記還元装置は、前記混合ガス生成装置を備える二酸化炭素削減装置。   A mixed gas generating device that generates a mixed gas containing carbon dioxide gas; and an oxygen molecule discharging device that generates an oxygen concentration in the mixed gas to an oxygen partial pressure of 10 minus 20th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more. A reduction device that heats the mixed gas having a partial pressure of oxygen to reduce carbon dioxide in the mixed gas to carbon, and the reduction device includes the mixed gas generation device. 前記二酸化炭素が除去された混合ガスを大気に排出する排出装置をさらに備えることを特徴とする請求項6又は7記載の二酸化炭素削減装置。   The carbon dioxide reduction device according to claim 6 or 7, further comprising a discharge device that discharges the mixed gas from which the carbon dioxide has been removed to the atmosphere. 前記二酸化炭素を含む混合ガスは、窒素、酸素、アルゴン、ネオン、ヘリウムのうちの一種、または複数種を含むことを特徴とする請求項6又は7記載の二酸化炭素削減装置。   The carbon dioxide reduction device according to claim 6 or 7, wherein the mixed gas containing carbon dioxide contains one kind or plural kinds of nitrogen, oxygen, argon, neon, and helium. 前記酸素分子排出装置は、固体電解質体の酸素イオン伝導性を利用して、前記混合ガス中の酸素分子を前記酸素分子排出装置外に排出することを特徴とする請求項6又は7記載の二酸化炭素削減装置。 The oxygen molecule discharging apparatus discharges oxygen molecules in the mixed gas to the outside of the oxygen molecule discharging apparatus by utilizing oxygen ion conductivity of a solid electrolyte body. Carbon reduction device. 前記加熱温度は、300℃以上3000℃以下であることを特徴とする請求項6又は7記載の二酸化炭素削減装置。   The carbon dioxide reduction device according to claim 6 or 7, wherein the heating temperature is not less than 300 ° C and not more than 3000 ° C.
JP2007326282A 2007-12-18 2007-12-18 Method and apparatus for reducing carbon dioxide in gas Active JP5146730B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007326282A JP5146730B2 (en) 2007-12-18 2007-12-18 Method and apparatus for reducing carbon dioxide in gas
PCT/JP2008/003813 WO2009078175A1 (en) 2007-12-18 2008-12-17 Method for lessening carbon dioxide in gas and apparatus for lessening carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326282A JP5146730B2 (en) 2007-12-18 2007-12-18 Method and apparatus for reducing carbon dioxide in gas

Publications (2)

Publication Number Publication Date
JP2009149453A JP2009149453A (en) 2009-07-09
JP5146730B2 true JP5146730B2 (en) 2013-02-20

Family

ID=40795296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326282A Active JP5146730B2 (en) 2007-12-18 2007-12-18 Method and apparatus for reducing carbon dioxide in gas

Country Status (2)

Country Link
JP (1) JP5146730B2 (en)
WO (1) WO2009078175A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111530B2 (en) * 1991-08-23 2000-11-27 東ソー株式会社 Carbon dioxide conversion method
JP2002005581A (en) * 2000-06-20 2002-01-09 Nkk Corp Carbon dioxide resolver
JP4045531B2 (en) * 2001-10-31 2008-02-13 勤三 李 Carbon dioxide decomposition equipment
JP2003192322A (en) * 2001-12-26 2003-07-09 Kinzo Ri Apparatus for decomposing carbon dioxide
EP1752419A4 (en) * 2004-05-25 2010-12-29 Toyo University Educational Foundation Method of decomposing carbon dioxide and method of forming carbon-particle structure

Also Published As

Publication number Publication date
JP2009149453A (en) 2009-07-09
WO2009078175A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US7829051B2 (en) Production and uses of carbon suboxides
CN103249667B (en) The ammonia integrating intensifying method is utilized to produce
Farsi et al. Review and evaluation of clean hydrogen production by the copper–chlorine thermochemical cycle
RU2568184C2 (en) Method for detritiation of soft household wastes and apparatus therefore
EP3978434A1 (en) Gas production device, gas production system, iron production system, chemical product production system, and gas production method
JP5549732B2 (en) Hydrogen production method and apparatus
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
JP4549849B2 (en) New collection process
AU2008228107B2 (en) Hydrogen production by water dissociation in the presence of SnO using the SnO2/SnO couple in a series of thermochemical reactions
JP2018131351A (en) Method for recovering co2 in air to separate carbon
JP5146730B2 (en) Method and apparatus for reducing carbon dioxide in gas
RU2585015C1 (en) Device and method of producing gas
JP2002193601A (en) Method and device for water decomposition
JP2013512407A (en) Method and apparatus for treating waste by means of injection into an immersed plasma
KR102179532B1 (en) An electrolytic apparatus for removing nitrogen oxides, and a method for removing nitrogen oxides
JP5853858B2 (en) Purification method for radioactively contaminated soil
JP2016175820A (en) Method for producing ammonia and compound production device
JP3506475B2 (en) Method and apparatus for producing hydrogen peroxide
JP4431720B2 (en) Chemical decomposition and reaction method
JP2001321670A (en) Hydrocarbon decomposing material and hydrocarbon decomposing device
CN104603307A (en) Method for concentrating metal compound
JP4777854B2 (en) Reactive oxygen species generator and method for producing active oxygen species-containing liquid
EP4353688A1 (en) Photocatalytic decomposition apparatus
Popoli et al. In situ production of fuel and oxidant for a small solid oxide fuel cell on Mars
Morawski et al. Hydrogen Production From Water Under UV Radiation with Carbon Dioxide Mediation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5146730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250