JPS5825881A - Resistance welding method - Google Patents

Resistance welding method

Info

Publication number
JPS5825881A
JPS5825881A JP12302281A JP12302281A JPS5825881A JP S5825881 A JPS5825881 A JP S5825881A JP 12302281 A JP12302281 A JP 12302281A JP 12302281 A JP12302281 A JP 12302281A JP S5825881 A JPS5825881 A JP S5825881A
Authority
JP
Japan
Prior art keywords
welding
welded
aluminum
electrically insulating
overlapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12302281A
Other languages
Japanese (ja)
Inventor
Kenji Matsuno
松野 建治
Hiroshi Matsubayashi
松林 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12302281A priority Critical patent/JPS5825881A/en
Publication of JPS5825881A publication Critical patent/JPS5825881A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/18Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals
    • B23K11/185Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals of aluminium or aluminium alloys

Abstract

PURPOSE:To form a welded nugget of uniform thickness in a weld line direction in mush-seam resistance welding of sheets of Al metals by forming electrically insulating films on the opposite surfaces to be welded of the Al alloys to be welded beforehand. CONSTITUTION:In the stage of sandwiching Al or Al alloy sheets 1, 1' which are sheets of <0.10mm. from above and below with an upper roller electrode and a lower roller electrode 3' under pressure, and subjecting the sheets to mush- seam resistance welding by conducting electricity thereto, electrically insulating film 4 of 0.1-5.0mum thickness consisting essentially of Al2O3 are beforehand formed on the surfaces of the Al sheets to be welded by an anodizing or chemical oxidation method. The parts to contact with the electrodes 3, 3' are removed of the films 4 to maintain conductivity with the roller electrodes. Said parts are pressurized and are supplied electric current with the electrodes 3, 3', whereby these parts are resistance-welded. The thin films of the electrically insulating films crack finely, thus forming welded nuggests 5 of roughly a uniform thickness on the parts 6a near the boundaries 6 of the superposed parts along said boundaries.

Description

【発明の詳細な説明】 本発明は抵抗溶接法に関し、さらに詳しくはアルミニウ
ム板またはアルミニウム合金板のマツシュシーム電気抵
抗溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance welding method, and more particularly to a pine seam electric resistance welding method for aluminum plates or aluminum alloy plates.

アルミニウム板またはアルミニウム合金板(以下アルミ
ニウム(合金)板とよぶ)の端縁同志を重ね合せて重ね
合せ部を形成し、該重ね合せ部の幅よりも幅の広い対向
する電極の間で、該重ね合せ部を抑圧、通電して該重ね
合せ部を押潰し、シーム抵抗溶接を行なう、所謂マツシ
ュシーム抵抗溶接を行なう場合、次のような問題があっ
た。(イ)溶接ナゲツトが生成しない条件での溶接、す
なわ゛ち固相溶接では、スジラッシュ(溶融金属の飛び
出し)は発生しないけれども溶接強度が低い。これは接
合面における緻密なアルミニウム酸化物層のため、低炭
素鋼板の場合のような溶接強度の高い固相溶接(すなわ
ち鍛接)を得ることができないものと考えられる。(ロ
)溶融溶接(すなわち通常の溶接)の場合、電極による
押圧力が低いと、重ね合せ部の幅方向端部附近が特に押
圧力が小さくなシ、従って重ね合一面における接触電気
抵抗が大きくなることに起因すると考えられるが、該端
部近傍が過熱溶融して、着しいスプラッシュの発生が起
シ易い。そのため溶接部の性状が不良となり、さらに電
極が直ぐ汚損して使用に耐えなくなる。−刃端部が溶融
して著るしいスゲラッシュが発生しても、重ね合せ部の
幅方向の中央部附近では、容易には溶融することがなく
、その中央部での溶接強度は極めて低い。また、溶接電
流として使用される交流波形の影響を受けて、重ね合せ
部の幅方向の端部においては、溶融ナゲツトが連続して
生成されないか、または生成されたとしても、その溶融
ナゲツトの大きさの変化が著るしく、溶接線方向におい
て一様な溶接強度を得ることが困難である。従って得ら
れた溶接部の強度、外観および気密性が満足でない。(
ハ)一方電極による押圧力を高くすると、重ね合せ面に
おける接触電気抵抗が低下し、大電流を流しても溶融ナ
ゲツトが生成し難い。に)重ね合せ面におけ、る接触電
気抵抗と、電極面における接触電気抵抗の差が小さく、
かつアルミニウム(合金)の融点が比較的低いため、重
ね合せ面で局部的溶融が起ると、すぐに電極接触面まで
溶融し易く、従って電極が汚損し易い。
The edges of aluminum plates or aluminum alloy plates (hereinafter referred to as aluminum (alloy) plates) are overlapped to form an overlapping part, and between opposing electrodes that are wider than the width of the overlapping part, When performing seam resistance welding by suppressing and energizing the overlapped portion to crush the overlapped portion and perform seam resistance welding, the following problems occur. (a) Welding under conditions where weld nuggets are not generated, ie, solid phase welding, does not cause streak rush (molten metal flying out), but the weld strength is low. This is considered to be due to the dense aluminum oxide layer on the joint surface, which makes it impossible to obtain solid phase welding (ie, forge welding) with high welding strength as in the case of low carbon steel sheets. (b) In the case of fusion welding (that is, normal welding), if the pressing force from the electrode is low, the pressing force will be particularly small near the widthwise ends of the overlapped parts, and therefore the contact electrical resistance on the entire overlapped area will be large. This is thought to be due to the fact that the vicinity of the end is overheated and melted, which tends to cause severe splash. As a result, the properties of the welded portion become poor, and furthermore, the electrode becomes immediately contaminated and becomes unusable. - Even if the edge of the blade melts and a significant sedge lash occurs, it will not melt easily near the center of the overlapping part in the width direction, and the welding strength at that center is extremely low. . In addition, due to the influence of the alternating current waveform used as the welding current, molten nuggets may not be continuously generated at the widthwise ends of the overlapped portion, or even if they are generated, the size of the molten nuggets may be small. The change in strength is significant, making it difficult to obtain uniform welding strength in the welding line direction. Therefore, the strength, appearance and airtightness of the obtained welded part are not satisfactory. (
c) When the pressing force by one electrode is increased, the electrical contact resistance at the overlapping surfaces is reduced, and molten nuggets are difficult to form even when a large current is passed. ) The difference between the contact electrical resistance at the overlapping surface and the contact electrical resistance at the electrode surface is small,
Moreover, since the melting point of aluminum (alloy) is relatively low, if local melting occurs on the overlapping surfaces, it is easy to melt immediately to the electrode contact surface, and therefore the electrodes are easily contaminated.

そのため満足なマツシュシーム抵抗溶接部を得ることが
できず、従ってマツシュシーム溶接部は、通常の重ね合
せシーム溶接部にくらべて段差が小さく、例えば缶胴体
の側面接合部に適用した場合、塗料による保護被膜の形
成(酸性液体に対する防食等のための)や、蓋部との2
重巻締部の気密性の確保が容易である等の利点を有する
にかかわらず、アルミニウム(合金)板の実用的なマツ
シュシーム抵抗溶接部を得ることは困難であった。
Therefore, it is not possible to obtain a satisfactory pine seam resistance weld, and therefore, the pine seam weld has a smaller step than a normal overlapping seam weld, and when applied to the side joint of a can body, for example, it is difficult to obtain a protective coating with paint. (for corrosion protection against acidic liquids, etc.) and the formation of two parts with the lid.
Although the method has advantages such as the ease of ensuring airtightness of the heavily seamed portion, it has been difficult to obtain a practical seam resistance welded portion of an aluminum (alloy) plate.

本発明は以上に述べた従来技術の問題点の解決を図るこ
とを目的とする。
The present invention aims to solve the problems of the prior art described above.

上記目的を達成するため、本発明はアルミニウム板また
はアルミニウム合金板の重ね合せ部を対向する電極の間
でマツシュシーム抵抗溶接する方法において、該アルミ
ニウム板又はアルミニウム合金板の該重ね合せ部におけ
る対向する面の各々には、マツシュシーム抵抗溶接時に
おけるメタルの変形に伴ない微細なりラックを発生する
ごく薄い電気絶縁性被膜が密着形感されていることを特
徴とするアルミニウム板またはアルミニウム合金板のマ
ツシュシーム抵抗溶接法を提供するものである。
In order to achieve the above object, the present invention provides a method for welding a stacked portion of aluminum plates or aluminum alloy plates by mating seam resistance welding between opposing electrodes, in which opposing surfaces of the stacked portion of the aluminum plate or aluminum alloy plate are Matsushi seam resistance welding of aluminum plates or aluminum alloy plates, each of which is characterized by a very thin electrically insulating film that is tightly formed to produce minute racks due to the deformation of the metal during matsushi seam resistance welding. It provides law.

以下図面を参照しながら本発明について説明する。第1
図において、1,1′はアルミニウム(合金)板であり
、2は重ね合せ部である。3は上部ローラ電極でアシ、
3′は下部ローラ電極であり(アルミニウム(合金板)
 1 、1’とローラ電極3゜3′の間に図示されない
線電極が介挿されていてもよい)、通常鋼又は銅合金よ
シなり、その局面中は、マツシュシーム溶接が可能とな
るように、重ね合せ部2の幅、およびマツシュ後(すな
わちマツシーシーム抵抗溶接後)の重ね合せ部2′(第
2図参照)の幅よりも広くなるように定められている。
The present invention will be described below with reference to the drawings. 1st
In the figure, 1 and 1' are aluminum (alloy) plates, and 2 is an overlapping part. 3 is the upper roller electrode,
3' is the lower roller electrode (aluminum (alloy plate)
(a wire electrode (not shown) may be inserted between 1 and 1' and the roller electrode 3' and 3') is usually made of steel or copper alloy, and during that phase, a wire electrode (not shown) may be inserted so as to enable matt seam welding. , the width of the overlapping portion 2, and the width of the overlapping portion 2' (see FIG. 2) after mating (that is, after mat seam resistance welding).

アルミニウム(合金)板1,1′の重ね合せ部2におけ
る対向する面1aおよびl’aには、ごく薄い電気絶縁
性被膜4が密着形成されている。電気絶縁性被膜4は、
第2図に示すように、マツシュシーム溶接時におけるメ
タル(すなわちアルミニウム(合金))の変形に伴ない
微細なりラックを発生する程度に、脆く、かつアルミニ
ウム(合金)板1,1′に充分に密着していることが必
要である。
A very thin electrically insulating coating 4 is closely formed on opposing surfaces 1a and 1'a of the overlapping portion 2 of the aluminum (alloy) plates 1, 1'. The electrically insulating film 4 is
As shown in Figure 2, the matshu seam is brittle enough to cause minute cracks due to deformation of the metal (i.e. aluminum (alloy)) during welding, and adheres well to the aluminum (alloy) plates 1 and 1'. It is necessary to do so.

また溶接時の加熱温度において分解したシ、変質等が起
って、電気絶縁性が失なわれることのないものであるこ
とが必要である。
Furthermore, it is necessary that the electrical insulation properties will not be lost due to decomposition or deterioration at the heating temperature during welding.

以上のような条件を満足する電気絶縁性被膜4が形成さ
れている場合は、比較的広い溶接条件下で、第2図、第
3図に示すような溶融すrアト5がマツシュ後の重ね合
せ部界面6に沿い、その中央近傍部6aに実質的にスゲ
ラッシュを発生することなく形成され、さらに溶接速度
を溶接電流周波数に対し適切な範囲内に定めれば、第4
図に示すように、電流値のピーク値および0値にあまシ
影響することなく、はぼ均一な厚さの溶接ナダット5が
溶接線方向に沿い形成される。
When the electrically insulating film 4 that satisfies the above conditions is formed, under relatively wide welding conditions, the melting layer 5 as shown in FIGS. If the welding speed is set within an appropriate range for the welding current frequency, the fourth
As shown in the figure, a welding pad 5 having a substantially uniform thickness is formed along the welding line direction without affecting the peak value and zero value of the current value.

その理由は必ずしも明らかでないが、およそ次のように
推測される。
Although the reason is not necessarily clear, it is assumed to be as follows.

第2図に示されるように、マツシュシーム抵抗溶接時の
メタルのマツシュに伴い電気絶縁性被膜4にはクラック
7が発生す、るが、そのクラックの面積は、メタルの変
形の大きい端縁部1 b 、 1’ b近傍に対応する
位置で大きく、メタルの変形の比較的小さいマツシュ後
の重ね合せ部2′の中央近傍部1 c 、 1’ c及
びマツシュ後の重ね合せ部2′の端縁部1 b 、 l
’b’の反対側部1d、I’dに対応する位置では小さ
い。さらに端縁部1b、l’bの界面端部1 b’ 、
 l’b’は、マツシュのさいカットエッノ1 f 、
 1’ fが回り込んで形成された部分であって、元々
電気絶縁性被膜4は存在しない。そしてマツシュのさい
クラック7にはメタルが流れ込む。従ってメタル間接触
面積が比較的太となる、マツシュ後の重ね合せ部界面6
の部分である端縁近傍部6bの接触電気抵抗は比較的小
さく、そのためジュール熱の発生も小さいので溶融が起
シ難い。一方中央近傍部6aにおいてはクラック7の重
なる面積が比較的小さいので、接触電気抵抗が犬きくな
シ、ジュール熱の発生も犬であって、溶融ナダット5が
生成するものと推測される。そして端縁近傍部界面6b
は固相状態で強く押圧されているので、該界面を通って
溶融ナゲツト5の溶融メタルがスプラッシュとして飛び
出し難く、また電極3.3′とアルミニウム(合金)板
1,1′との接触面8,8′の接触電気抵抗は、マツシ
ュ後の重ね合せ部界面6の夫にくらべて著るしく小さい
ので、ジュール熱の発生も小さく、さらに電極3,3′
による冷却効果によシ、マツシュ後の重ね合せ部2′す
なわち浴接部の表面近傍のアルミニウム(合金)板部分
1 e 、 l’eは溶融することなく、固相のまま残
るものと推測される。
As shown in FIG. 2, cracks 7 occur in the electrically insulating coating 4 due to the mating of the metal during mating seam resistance welding. b, 1' The deformation of the metal is large at the position corresponding to the vicinity of b, and the deformation of the metal is relatively small. 1c, 1'c near the center of the overlapping part 2' after matashing and the edge of the overlapping part 2' after matashing. Part 1 b, l
It is small at the position corresponding to the opposite side 1d and I'd of 'b'. Furthermore, the interface end 1 b' of the end edge 1b, l'b,
l'b' is matshu no sai cuteno 1 f,
1'f is a portion formed by wrapping around, and the electrically insulating film 4 does not originally exist. And metal flows into the crack 7 of Matshu. Therefore, the contact area between metals is relatively large, and the overlapping part interface 6 after mating
The electrical contact resistance of the portion 6b near the edge is relatively small, and therefore the generation of Joule heat is also small, making it difficult for melting to occur. On the other hand, in the vicinity of the center 6a, since the overlapping area of the cracks 7 is relatively small, the electrical contact resistance is small and the generation of Joule heat is small, so it is assumed that the molten metal 5 is generated. And the edge vicinity interface 6b
is strongly pressed in a solid state, so that the molten metal of the molten nugget 5 is difficult to splash out through the interface, and the contact surface 8 between the electrode 3.3' and the aluminum (alloy) plates 1, 1' , 8' is significantly smaller than that at the interface 6 of the overlapping part after mating, so the generation of Joule heat is also small.
It is presumed that due to the cooling effect caused by mating, the aluminum (alloy) plate parts 1e and l'e near the surface of the overlapping part 2' after matashing, that is, the bath contact part, do not melt and remain in a solid phase. Ru.

電気絶縁性被膜4が、重ね合せ部2における対向する面
のうちの何れか一方のみ、例えば面1aのみに形成され
ている場合は、前述のようにマツシュ後の重ね合せ部界
面6の中央近傍部6aと端縁近傍部6b間の接触電気抵
抗の差が大きくなることがないので、スプラッシュを発
生することなく、中央近傍部6aのみに溶融ナゲツト5
を生成することは困難である。
If the electrically insulating coating 4 is formed only on one of the opposing surfaces of the overlapping portion 2, for example, only on the surface 1a, the electrically insulating coating 4 may be formed near the center of the overlapping portion interface 6 after mating as described above. Since the difference in electrical contact resistance between the portion 6a and the portion 6b near the edge does not become large, the molten nugget 5 is applied only to the portion 6a near the center without causing splash.
is difficult to generate.

本発明の適用されるアルミニウム(合金)板は、板厚が
約0.10w以上であることが好ましい。板厚が0.1
0mより薄いと、清液を行う重ね合せ面と電極接触面と
の距離が短かくなシすぎて、溶融すrヮトが電極接触面
にまで及んでくる傾向にあるからである。
The aluminum (alloy) plate to which the present invention is applied preferably has a thickness of about 0.10w or more. Plate thickness is 0.1
This is because if it is thinner than 0 m, the distance between the overlapping surfaces on which the liquid is applied and the electrode contact surface is too short, and the melted waste tends to reach the electrode contact surface.

重ね合せ部2の幅は約0.3〜1.5 tag 、さら
に望ましくは約0.4〜0.8fiであることが好まし
い。
The width of the overlapping portion 2 is preferably about 0.3 to 1.5 tag, more preferably about 0.4 to 0.8 fi.

約0.3 mより小さいと、溶融ナゲツト5の幅が小さ
くなって、十分な溶接強度が得られないからである。一
方約1.5 mよシ大きいと、重ね合せ部の幅方向の中
央部でのマツシュのさいのメタルフローが少なく、その
部分の電気絶縁性被膜のクラック生成が極めて少なくな
るため、溶接条件の僅かな変化が生じても、重ね合せ面
の発熱量が一定することなく、溶接状態が不安定となる
からである。
This is because if the width is smaller than about 0.3 m, the width of the molten nugget 5 becomes too small and sufficient welding strength cannot be obtained. On the other hand, if the width is larger than about 1.5 m, there will be less metal flow during mating in the widthwise center of the overlapping part, and the generation of cracks in the electrically insulating film in that area will be extremely small, so welding conditions may be This is because even if a slight change occurs, the amount of heat generated at the overlapping surfaces will not be constant and the welded state will become unstable.

アルミニウム(合金)板としては、純アルミニウム板お
よび各種のアルミニウム合金板が使途に応じ適宜用いら
れるが、アルミニウム合金板の場合は、A3004p合
金(JISH4000、Mg0.8〜1.3%、Mn 
1..0〜1.5%)が、後述の実施例に示されるよう
に、溶接強度が高く、かつスプラッシュが発生しない等
の点で特に優れている。その理由は必ずしも明らかでな
いが、適量のMgを含むため融点が特に低くなることも
なく、さらに適量のMnを含むため導電率や熱電導率も
若干低くなることによるものと推測される。
As the aluminum (alloy) plate, pure aluminum plate and various aluminum alloy plates are used as appropriate depending on the purpose.
1. .. 0 to 1.5%) is particularly excellent in terms of high welding strength and no splashing, as shown in Examples below. The reason for this is not necessarily clear, but it is presumed that because it contains an appropriate amount of Mg, the melting point does not become particularly low, and furthermore, because it contains an appropriate amount of Mn, the electrical conductivity and thermal conductivity are slightly lower.

電気絶縁性被膜4としては、アルミニウム(合金、)板
の上に陽極酸化法(例えば硫酸浴、クロム酸浴、シュウ
酸浴、リン酸浴等による)、もしくは化学的酸化法(例
えばMBV法等のベーマイト形成法)によって形成され
たアルミニウム酸化物を主体とする被膜が、特に好適で
ある。基板であるアルミニウム(合金)板との密着性が
優れ、かつ適度に脆く、メタルの変形度にほぼ比例して
クラックの発生面積が大きくなるためと推測される。
The electrically insulating film 4 is formed on an aluminum (alloy) plate by an anodic oxidation method (e.g., sulfuric acid bath, chromic acid bath, oxalic acid bath, phosphoric acid bath, etc.) or chemical oxidation method (e.g., MBV method, etc.). A coating mainly composed of aluminum oxide formed by the boehmite formation method described above is particularly suitable. It is presumed that this is because it has excellent adhesion to the aluminum (alloy) plate that is the substrate and is moderately brittle, and the area where cracks occur increases approximately in proportion to the degree of deformation of the metal.

その被膜厚さは0.1〜5.0μmであることが好まし
い。0.1μmよシ薄いと、重ね合せ面の接触電気抵抗
値が低くな9、それに伴って、重ね合せ面の幅方向の中
央部と端部との接触電気抵抗の差もまた少なくなるため
、溶融すrットをその重ね合せ面の中央部附近にて形成
させることが困難となる。
The thickness of the coating is preferably 0.1 to 5.0 μm. If it is as thin as 0.1 μm, the contact electrical resistance value of the overlapping surfaces will be low9, and accordingly, the difference in contact electrical resistance between the center and end portions of the overlapping surfaces in the width direction will also be small. It becomes difficult to form a molten slit near the center of the overlapping surfaces.

一方、5.0μmよシ厚いと11重ね合せ面の幅方向の
中央部附近での接触電気抵抗が大きくなシすぎるため、
溶接条件の僅かな変化が生じても、重ね合せ面での発熱
が不安定となるからである。
On the other hand, if it is thicker than 5.0 μm, the electrical contact resistance near the center in the width direction of the overlapping surfaces becomes too large.
This is because even if a slight change in welding conditions occurs, the heat generation at the overlapping surfaces becomes unstable.

またエポキシ樹脂、フェノール樹脂、尿素樹脂等の接着
性熱硬化型樹脂、又はアルカリ金属硅酸塩、リン酸塩、
コロイダルシリカ、コロイダルシリカナ等の無機質接着
剤の単体、もしくはこれらと微粉状無機物質(例えばカ
ーデン、アルミナ、酸化チタン、酸化亜鉛、酸化クロム
、酸化鉄、炭酸バリウム等)よシなる被膜も使用可能で
あるが、前記アルミニウム酸化物を主体とする被膜にく
らべると、最適溶接条件下でも若干スゲラッシュが発生
し易い。この場合も被膜厚さはO,1〜5.0μmであ
ることが好ましい。その理由は前述の場合と同じである
In addition, adhesive thermosetting resins such as epoxy resins, phenolic resins, and urea resins, or alkali metal silicates, phosphates,
Single inorganic adhesives such as colloidal silica and colloidal silica, or coatings made of these and fine powder inorganic substances (e.g. carden, alumina, titanium oxide, zinc oxide, chromium oxide, iron oxide, barium carbonate, etc.) can also be used. However, compared to the coating mainly composed of aluminum oxide, sedge lash is a little more likely to occur even under optimal welding conditions. In this case as well, the coating thickness is preferably 0.1 to 5.0 μm. The reason is the same as in the previous case.

熱可塑性樹脂被膜(単独又は微粉状物質を含むもの)、
リン酸、クロム酸混合浴による化学処理被膜等の場合は
、被膜厚さにかかわらず、多量のスゲラッシュを発生す
ることなく溶融ナゲツトを生成することが困難である。
Thermoplastic resin coating (alone or containing fine powder),
In the case of chemically treated coatings using a mixed bath of phosphoric acid and chromic acid, it is difficult to produce molten nuggets without generating a large amount of sedge lash, regardless of the coating thickness.

前記の陽極酸化被膜または化学的酸化被膜を形成する場
合、第5図の場合のように、アルミニウム(合金)板1
,1′の少なくとも重ね合せ部2となるべき部分および
その近傍部1g+1’gの両面に上記被膜4を形成した
後、電極3,3′と接触する部分近傍の被膜4を機械的
手段(例えばミIJングカッター)によって削除しても
よい。さらに特開昭56−23389号公報に開示され
ているように冷却された縦長電極と比較的大径の回動電
極の組を用いて(必要に応じて線電極を介して)溶接す
る場合は、必ずしも上記被膜4の削除を行なわなくとも
、良好な溶融ナゲツトを得ることが可能である。板と電
極との接触面積が大きいため、該接触面における発熱が
電極に吸収されて、該接触面近傍の板部分が溶融するほ
ど温度が上昇するのが防止されるためと推測される。
When forming the anodic oxide film or chemical oxide film, as in the case of FIG.
, 1' are formed on both sides of at least the overlapping part 2 and the neighboring parts 1g+1'g, and then the coating 4 in the vicinity of the parts contacting the electrodes 3, 3' is removed by mechanical means (e.g. It may also be deleted using an IJ cutting cutter). Furthermore, as disclosed in Japanese Patent Application Laid-open No. 56-23389, when welding is performed using a set of a cooled vertically elongated electrode and a relatively large-diameter rotating electrode (via a wire electrode if necessary), However, it is possible to obtain a good melted nugget without necessarily removing the coating 4. It is assumed that this is because the contact area between the plate and the electrode is large, so that the heat generated at the contact surface is absorbed by the electrode, thereby preventing the temperature from rising to the point where the plate portion near the contact surface melts.

第6図は、アルミニウム(合金)板のブランク11の量
ね合せ部の対向する面となるべき部分(近傍部を含む)
11aのみに、局部的に陽極酸化被膜を形成させるため
の、方法と装置の例を示したものである。12および1
3はブランク11の支持体であって、支持体13に固設
されたシャフト13aQ、支持体12の透孔12a内を
挿通していて、支持体13は支持体12に蝶着されてお
シ、図示されない抑圧機構により、ブランク11は支持
体12と13の間に挾持される。支持体12および13
の下端部には、弾性ゴムのような弾性体よりなるシール
部材14および15が夫々貼着されており、シール部材
15の支持体12側の面には、ブランク11の板部分の
深さの段差部15aが形成されている。さらにシール部
材14は、ブランクの部分11aを露出しうるように、
その下面14mが配設されている。なお16は電解槽、
17は電解液、18は陰極である。
Figure 6 shows the portion of the aluminum (alloy) plate blank 11 that is to become the opposing surface of the mating portion (including the neighboring portion).
This figure shows an example of a method and apparatus for locally forming an anodic oxide film only on 11a. 12 and 1
Reference numeral 3 denotes a support for the blank 11, in which a shaft 13aQ fixed to the support 13 is inserted through the through hole 12a of the support 12, and the support 13 is hinged to the support 12 so that the , the blank 11 is held between supports 12 and 13 by a suppressing mechanism (not shown). Supports 12 and 13
Seal members 14 and 15 made of an elastic material such as elastic rubber are attached to the lower end portions of the blank 11, respectively. A stepped portion 15a is formed. Further, the sealing member 14 is configured such that the blank portion 11a can be exposed.
14 m of the lower surface is arranged. In addition, 16 is an electrolytic cell,
17 is an electrolytic solution, and 18 is a cathode.

支持体12.13に挾持されたブランク11を、少くと
も部分11aが電解液17中に浸漬されるように、かつ
部分tlaが陰極18に所定間隔で対向するように、電
解槽16中に装入する。次に支持体12(支持体13で
もよい)を正電圧源に接続して、公知の方法によシ陽極
酸化処理を行なうことによシ、部分11aの表面のみに
陽極酸化被膜(図示せず)を形成することができる。こ
の場合、シール部材14および15によってタイトにシ
ールされているため、部分11a以外のブランク11の
表面上に、電解液17が侵入することはない。
The blank 11 held between the supports 12.13 is placed in the electrolytic cell 16 such that at least the portion 11a is immersed in the electrolyte 17 and the portion tla faces the cathode 18 at a predetermined distance. Enter. Next, the support 12 (or the support 13) is connected to a positive voltage source and anodized by a known method, thereby forming an anodic oxide coating (not shown) only on the surface of the portion 11a. ) can be formed. In this case, since the sealing members 14 and 15 provide a tight seal, the electrolytic solution 17 will not penetrate onto the surface of the blank 11 other than the portion 11a.

第7図、第8図、第9図は、複数の(図では5枚である
が、数10枚も可能である)ブランク11の部分11a
上に、局部的に陽極酸化被膜を形成させるための方法と
装置の例を示したものである。20は治具であって、部
分11aの幅Wと等しい幅を有し、かつブランク11の
厚さtと等しい高さを有するブランク11の枚数と等し
い段数を有する階段部20aが形成されており、さらに
階段部20aの最下段に連接して、支持体21を挿入用
の凹部20bが形成されている。第8図に示すように、
複数のブランク11を、各々の部分11aが階段部20
aの水平部208′に接触するように、治具20および
支持体20b上に積重ねた後、支持体22を最上層のブ
ランク11上に、少なくとも当該ブランク11の部分1
1aの反対面を覆うようにして載置し、支持体22と支
持体21の両端部を?シト23によシ締着して、複数の
ブランク11よシなる積層ブランクIIAを支持体22
と21によシ挾持する。
FIG. 7, FIG. 8, and FIG. 9 show a portion 11a of a plurality of blanks 11 (five in the figure, but tens of blanks are also possible).
Above is an example of a method and apparatus for locally forming an anodic oxide film. Reference numeral 20 denotes a jig, on which a step portion 20a is formed, which has a width equal to the width W of the portion 11a, a height equal to the thickness t of the blank 11, and a number of steps equal to the number of blanks 11. Furthermore, a recess 20b for inserting the support 21 is formed in connection with the lowermost stage of the staircase 20a. As shown in Figure 8,
A plurality of blanks 11, each portion 11a having a staircase portion 20
After stacking the jig 20 and the support 20b so as to contact the horizontal part 208' of
1a so as to cover the opposite side, and both ends of the support body 22 and the support body 21. The laminated blank IIA consisting of a plurality of blanks 11 is fastened to the support member 23.
and hold it in place at 21.

次に積層ブランクIIAを支持体21.22(電気絶縁
体よシなる)と共に治具20から取出して、第9図に示
すように、電解槽24内の電解液25中に、各部分11
&が陰極26と所定間隔になるように(そのため図では
陰極26は斜に配設されている)浸漬し、積層ブランク
IIAを正電圧源に接続し、陽極酸化処理を行なう。こ
の場合部分11aのみならずブランクのカットエツジ1
1fにも陽極酸化被膜が形成されるが、カットエツジl
lfに形成された陽極酸化被膜はマツシュシーム抵抗溶
接に対しほとんど影響しない。この場合は第2図の界面
端部1 b’ 、 l’b’上に陽極酸化被膜が存在す
ることになるが、この部分はメタルの変形度が極めて大
きいので、従って陽極酸化被膜のクラック面積も非常に
大きくなるためと推測される。
The laminated blank IIA is then removed from the jig 20 together with the supports 21, 22 (consisting of electrical insulators) and placed into the electrolyte 25 in the electrolytic cell 24, as shown in FIG.
The laminated blank IIA is immersed so that it is at a predetermined distance from the cathode 26 (therefore, the cathode 26 is disposed diagonally in the figure), the laminated blank IIA is connected to a positive voltage source, and anodization is performed. In this case, not only the portion 11a but also the blank cut edge 1
An anodic oxide film is also formed on 1f, but the cut edge l
The anodic oxide film formed on lf has almost no effect on pine seam resistance welding. In this case, the anodic oxide film will exist on the interface edges 1b' and l'b' in Fig. 2, but since the degree of deformation of the metal is extremely large in this part, the crack area of the anodic oxide film will be small. It is presumed that this is because it also becomes very large.

上記の方法は化学的酸化被膜その他の電気絶縁性被膜の
部分11a上への形成に対しても準用しうるものである
ことはいうまでもない。
It goes without saying that the above method can also be applied to the formation of a chemical oxide film or other electrically insulating film on the portion 11a.

マツシュシーム抵抗溶接時の加圧力は、電極の構造や重
ね合せ部の幅によって異なるが、通常は約35〜150
に9の範囲内にあることが好ましい。
The pressure applied during matshu seam resistance welding varies depending on the electrode structure and the width of the overlapping part, but is usually about 35 to 150.
is preferably within the range of 9.

約35 kgより小さいと、マツシュ量が低下してスプ
ラッシュを発生し易く、一方約150−を超えると電極
の撓みや変形などのトラブルを生じ易いからである。マ
ツシュ量は、溶接部の厚さが1.0t〜t8t(t=ニ
アルミニウム合金)板の厚さ)となる範囲であることが
望ましい。
If the weight is less than about 35 kg, the amount of mush will decrease and splash will easily occur, while if it exceeds about 150 kg, troubles such as bending and deformation of the electrode will easily occur. The mating amount is preferably in a range such that the thickness of the welded portion is 1.0t to t8t (t=thickness of the aluminum alloy plate).

本発明によるアルミニウム(合金)板のマツシュシーム
抵抗溶接法は、重ね合せ部における対向する面の各々に
所定の性状を有する電気絶縁性被膜が密着形成されてい
るので、溶接部に悪影響を及ぼす程度のスプラッシュを
発生することなく、溶接強度と気密性の優れたマツシュ
シーム抵抗溶接部を得ることが可能であるという効果を
有する。
In the matshu seam resistance welding method of aluminum (alloy) plates according to the present invention, an electrically insulating film having predetermined properties is closely formed on each of the opposing surfaces of the overlapping part, so that the welding part is not adversely affected. It has the effect that it is possible to obtain a mash seam resistance welded part with excellent welding strength and airtightness without generating splash.

以下実施例について説明する。Examples will be described below.

実施例1 市販の板厚が0.30mのA3004p合金板(硬度H
19)を幅40m、長さ100■の大きさのクラックに
切断した。そのブランクの長さ方向の一方の端縁部から
幅5mに渡って、そのブランクの片面のみに、第6図に
示すような手段および装置A/dm%電圧19vの条件
にて、浴温度を20℃に保ちながら、3分間処理を行っ
たところ、膜厚が1μmの陽極酸化被膜がブランクの端
縁部から幅5簡にわたって片面のみに形成された。
Example 1 A commercially available A3004p alloy plate with a thickness of 0.30 m (hardness H
19) was cut into cracks with a width of 40 m and a length of 100 cm. The bath temperature was applied to only one side of the blank over a width of 5 m from one end edge in the length direction of the blank using the means and equipment shown in Fig. 6 under the conditions of A/dm% voltage of 19 V. When the treatment was carried out for 3 minutes while maintaining the temperature at 20° C., an anodic oxide film having a thickness of 1 μm was formed on only one side over a width of 5 cm from the edge of the blank.

その陽極酸化被膜を被覆したブ、7/りを2枚用意し、
その陽極酸化被膜面が互い向い合って接するようにその
2枚のブランクを重ね合せた。その重ね合せ幅は0.6
■であった。その重ね合せたブランクの重ね合せ部を、
対向する1対のロール電極とワイヤ電極を有する溶接装
置にてマツシュシーム抵抗溶接した。そのさい、使用し
たロール電極の直径は80mおよび200■であシ、ワ
イヤ電極としては直径が1.5 mの電気軟銅線を幅2
.10簡の偏平状に圧延したものを用いた。
Prepare two pieces of the anodic oxide coating,
The two blanks were stacked so that the anodized coating surfaces faced each other and were in contact. The overlap width is 0.6
■It was. The overlapping part of the overlapping blanks,
Matsushi seam resistance welding was performed using a welding device having a pair of opposing roll electrodes and wire electrodes. At that time, the diameters of the roll electrodes used were 80 m and 200 mm, and the wire electrodes were made of electrically soft copper wire with a diameter of 1.5 m and a width of 2 mm.
.. A piece rolled into 10 flat pieces was used.

溶接電源として50 Hzの交流電源を用い、溶接加圧
力65ゆ、溶接速度8m/minにて溶接を行った。
Welding was carried out using a 50 Hz AC power source as a welding power source, a welding force of 65 mm, and a welding speed of 8 m/min.

その結果、4.7〜5. OkAの溶接電流範囲にて、
良好な溶接が可能であシ、溶接強度および気密性に優れ
ており、かつ溶融スプラッシュの発生のない溶接部を得
ることができた。第1表に上記溶接部の状態を表示した
。溶接電流が5.OkAを越えると溶融金属のスプラッ
シュの発生または溶接部表面の損傷が生じやすくなり、
一方、4.6kAを下まわると、俗接部の強度および気
密性が実用上劣ってくる結果が得られた。
As a result, 4.7 to 5. In the welding current range of OkA,
Good welding was possible, and a welded part with excellent welding strength and airtightness and without molten splash could be obtained. Table 1 shows the conditions of the welded parts. Welding current is 5. Exceeding OkA will likely cause molten metal splash or damage to the weld surface.
On the other hand, when the current was less than 4.6 kA, the strength and airtightness of the common joint were found to be poor in practical terms.

得られた溶接部の溶接方向に垂直な断面の顕微鏡組織を
第3図に、また溶接部中央近傍で溶接方向に平行な断面
の顕微鏡組織を第4図に示した(倍率40.7.6%塩
酸−46,2チフツ酸水溶液にて腐食)、第3図の写真
から明らかなように、溶接部の重ね合せ面の中央部には
、その重ね合せ面に沿って溶融ナダ、ト5(比較的白く
見える部分)が形成されており、重ね合せ面の両端部お
よび溶接部表面にまではその溶融ナゲツトが到達してい
ないことがわかる。この場合の溶融ナゲツトの幅はブラ
ンク板厚の1.7倍である。さらに、第4図の写真から
明らかなように、溶融ナゲツトは溶接方向において連続
して形成されておシ、このような溶融すr、)の存在に
より、溶接部の強度および気密性が十分保たれているこ
とがわかる。
Figure 3 shows the microscopic structure of a cross section perpendicular to the welding direction of the obtained weld, and Figure 4 shows the microscopic structure of a cross section parallel to the welding direction near the center of the weld (magnification: 40.7.6 % hydrochloric acid - 46.2% thifutic acid aqueous solution), as is clear from the photograph in Figure 3, there is molten nada, T5 ( It can be seen that the molten nugget did not reach both ends of the overlapping surfaces and the surface of the welded part. The width of the molten nugget in this case is 1.7 times the blank plate thickness. Furthermore, as is clear from the photograph in Figure 4, molten nuggets are formed continuously in the welding direction, and the presence of such molten nuggets ensures that the strength and airtightness of the weld are sufficiently maintained. You can see that it is sagging.

実施例2 実施例1と同様のA3004p合金板および同様の陽極
酸化処理手段にて、処理時間を変えて陽極酸化被膜が3
μmおよび0.3μmの厚さとなるようなブランクを用
意した。そのブランクを実施例1と同様の溶接装置を使
用して、同様の溶接条件のもとてマツシュシーム抵抗溶
接した。
Example 2 Using the same A3004p alloy plate and the same anodizing treatment method as in Example 1, the anodic oxide film was formed by changing the treatment time.
Blanks having a thickness of μm and 0.3 μm were prepared. The blank was subjected to pine seam resistance welding using the same welding equipment as in Example 1 and under the same welding conditions.

その結果、陽極酸化被膜の厚さが0.3μmの場合、得
られた溶接部では若干溶融スプラッシュが発生している
ものの、溶接部の強度および気密性の点では十分なレベ
ルにあった。その場合の溶接可能な溶接電流範囲、は5
.5 kA〜5.9 kAであシ、溶接電流が5.5 
kAを下まわると、溶接強度の低下が著るしく、また5
、 9 kAを超えると著るしく溶融スプラッシュが発
生した。
As a result, when the thickness of the anodic oxide film was 0.3 μm, some molten splash occurred in the obtained weld, but the strength and airtightness of the weld were at a sufficient level. In that case, the welding current range that can be welded is 5
.. 5 kA to 5.9 kA, welding current 5.5
Below kA, the welding strength decreases significantly, and
, and when the temperature exceeded 9 kA, significant melt splash occurred.

陽極酸化被膜の厚さが3μmの場合、溶融スプラッシュ
が皆無で、かつ溶接強度および気密性の点で優れた齢接
部を得ることが可能であった。その溶接可能な溶接電流
範囲は4.6〜4.7 kAであシ、実施例1の場合に
比べて多少狭くなる傾向があった。
When the thickness of the anodic oxide film was 3 μm, it was possible to obtain aged joints with no melt splash and excellent welding strength and airtightness. The usable welding current range was 4.6 to 4.7 kA, which tended to be somewhat narrower than in Example 1.

結果を第1表に表示した。The results are shown in Table 1.

実施例3 板厚が0.30日のA3003p合金板(硬度H18)
から幅40−1長さ100■の大きさのブランクを作り
、実施例1と同様の方法にて膜厚が1μmの陽極酸化被
膜をブランクの端縁部から幅5露にわたって片面のみ形
成させた。
Example 3 A3003p alloy plate with a plate thickness of 0.30 days (hardness H18)
A blank with a width of 40 cm and a length of 100 cm was made from the blank, and an anodic oxide film with a thickness of 1 μm was formed on only one side over a width of 5 mm from the edge of the blank using the same method as in Example 1. .

そのブランクを実施例1と同様の装置および手段にて、
マツシュシーム抵抗溶接を行った。溶接条件としては溶
接加圧力が52kl?で、溶接速度が8 m/minで
あった。
The blank was processed using the same equipment and means as in Example 1.
Matsushi seam resistance welding was performed. As for the welding conditions, the welding force is 52kl? The welding speed was 8 m/min.

その結果、溶接電流4.9〜5.1 kAの範囲にて、
良好な溶接が可能であシ、溶接強度および気密性が十分
なレベルにあシ、かつ溶融スプラッシュの発生のない溶
接部を得ることができた。
As a result, in the welding current range of 4.9 to 5.1 kA,
It was possible to obtain a welded part in which good welding was possible, the welding strength and airtightness were at a sufficient level, and there was no occurrence of molten splash.

結果を第1表に表示した。The results are shown in Table 1.

実施例4 板厚が0.30m+のA3052p合金板(硬度H38
)および板厚が0.32+mのA30829合金板(硬
度H39)から幅40■、長さ100mの大きさのブラ
ンクを作シ、実施例1と同様の方法にて膜厚が1μmの
陽極酸化被膜をブランクの端縁部から幅5mmにわたっ
て片面のみ形成させた。
Example 4 A3052p alloy plate with a thickness of 0.30 m+ (hardness H38
) and A30829 alloy plate (hardness H39) with a thickness of 0.32+m to make a blank with a width of 40cm and a length of 100m, and an anodic oxide film with a thickness of 1μm was applied using the same method as in Example 1. was formed on only one side over a width of 5 mm from the edge of the blank.

そのブランクの重ね合せ幅を0.4 mとして、実施例
1と同様の装置および手段にて、マツシュシーム抵抗溶
接を行った。溶接条件としては溶接部も若干溶融スプラ
ッシュが発生するものの、溶接部の強度および気密性の
点では十分なレベルある溶接部が得られた。その場合、
溶接可能な溶接電流範囲はA3052p合金では4.4
〜4.7 kA、 A3082p合金では4.3〜4.
5 kAであった。その上限の電流量を越えると溶融ス
プラッシュの発生が著るしく、一方その下限の電流量を
下まわると溶接強度が著るしく低下した。
Matsushi seam resistance welding was performed using the same equipment and means as in Example 1, with the overlapping width of the blanks set to 0.4 m. Although some molten splash occurred in the weld under the welding conditions, a weld with sufficient strength and airtightness was obtained. In that case,
The welding current range that can be welded is 4.4 for A3052p alloy.
~4.7 kA, 4.3-4. for A3082p alloy.
It was 5 kA. When the upper limit of the current amount was exceeded, the occurrence of molten splash was significant, and on the other hand, when the current amount was below the lower limit, the welding strength was significantly reduced.

結果を第1表に表示した。The results are shown in Table 1.

実施例5 市販の板厚が0.39wのA3004p合金板(硬度H
19)を幅40■、長さ100簡の大きさのブランクに
切断した。そのブランクを6枚1組として、第8図に示
すような手段にて、おのおののブランクがブランクの端
縁部から2■づつ片面のみ露出するように固定し、その
ブランク群の露出面を0.54のアンモニアを含んだ1
00℃の熱水中に20分間浸したところ、膜厚が1μm
のアルミニウム酸化被膜(ベーマイト被膜)がブランク
の端縁部およびその端縁部から幅2mにわたってブラン
クの片面のみに形成された。
Example 5 A commercially available A3004p alloy plate with a thickness of 0.39W (hardness H
19) was cut into blanks with a width of 40 cm and a length of 100 cm. A set of 6 blanks was fixed using the means shown in Fig. 8 so that only one side of each blank was exposed by 2 cm from the edge of the blank, and the exposed surface of the group of blanks was set to 0. 1 containing .54 ammonia
When immersed in hot water at 00℃ for 20 minutes, the film thickness was 1μm.
An aluminum oxide film (boehmite film) was formed on only one side of the blank over an edge of the blank and a width of 2 m from the edge.

そのブランクを実施例1と同様の装置を使用して、同様
の溶接条件のもとてマツシーシーム抵抗溶接を行った。
The blank was subjected to pine seam resistance welding using the same equipment as in Example 1 and under the same welding conditions.

その結果、4.6〜5.0 kAの溶接電流範囲にて、
良好な溶接が可能であり、溶接強度および気密性に優れ
ておシ、かっスノラッシーの発生のない溶接部を得るこ
と炉できた。
As a result, in the welding current range of 4.6 to 5.0 kA,
This furnace enables good welding, and produces welded parts with excellent welding strength and airtightness, and without the occurrence of scorching.

第1表に上記溶接部の状態を表示した。Table 1 shows the conditions of the welded parts.

実施例6 市販の板厚が0.30■のA3004p合金板(硬度H
19)を幅40 tm、長さ100■の大きさのブラン
クに切断した。そのブランクの長さ方向の一方の端縁部
から幅約10諺にわたって、そのブランクの片面のみに
、粒径が0.5μm以下のアルミナ粉末を2%(重量)
含む5%(重量)ケイ酸ナトリウ中で10分加熱して乾
燥を行って、平均膜厚が1.5μmのアルミナ粉末入シ
のケイ酸ナトリウム被膜を形成させた。
Example 6 A commercially available A3004p alloy plate with a thickness of 0.30cm (hardness H
19) was cut into blanks with a width of 40 tm and a length of 100 cm. Spread 2% (by weight) of alumina powder with a particle size of 0.5 μm or less on only one side of the blank over a width of approximately 10 mm from one edge in the length direction of the blank.
The sample was dried by heating for 10 minutes in 5% (by weight) sodium silicate containing alumina powder to form a sodium silicate film containing alumina powder with an average thickness of 1.5 μm.

そのケイ酸ナトリウム被膜を被覆したブランクを2枚用
意し、その被膜面が互に向い合うように、その2枚のブ
ランクを重ね合せた。その重ね幅は0.6■であった。
Two blanks coated with the sodium silicate film were prepared, and the two blanks were stacked on top of each other so that the coated surfaces faced each other. The overlap width was 0.6 square meters.

その重ね合せたブランクの重ね合せ部を実施例1と同様
の装置にてマツシュシーム抵抗溶接した。
The overlapped portions of the stacked blanks were subjected to pine seam resistance welding using the same equipment as in Example 1.

溶接電源として50 Hzの交流電源を用い、溶接加圧
力52kg、溶接速度8 m/minにて溶接を行った
Welding was performed using a 50 Hz AC power source as a welding power source, a welding force of 52 kg, and a welding speed of 8 m/min.

その結果、僅かに溶融スプラッシュが発生しているもの
の、溶接部の強度および気密性の点そは十分なレベルに
ある溶接部を得ることができた。
As a result, although a slight amount of molten splash occurred, it was possible to obtain a welded part whose strength and airtightness were at a sufficient level.

その場合の溶接可能な溶接電流範囲は4.65 kA〜
4、8 kAであパ溶接電流が4.65 kAを下まわ
ると溶接強度の低下が著るしく、一方溶接電流が4.8
kAを越えると溶融スジラッシュの発生が著るしくなる
ため、溶接ができなかった。
In that case, the welding current range that can be welded is 4.65 kA ~
When the welding current is less than 4.65 kA at 4 or 8 kA, the welding strength decreases significantly;
If it exceeded kA, welding could not be performed because the occurrence of molten streak rush became significant.

得られた溶接部の溶接方向に垂直な断面の顕微鏡組織を
第10図に示した(倍率40.7.6%塩酸−46,2
%フッ酸水溶液にて腐食)。第10図の写真から明らか
なように、溶接部の重ね合せ面に沿って一様に溶融ナゲ
ツトが形成されており、その重ね合せ面の両端部よシ、
溶融スジラッシュが発生している。この場合、溶融スゾ
ラッシーが発生しているものの、ナゲツトの溶接強度お
よ、び気密性はその溶融ナゲツトの存在によシ十分なレ
ベルに保たれていることがわかる。
Figure 10 shows the microscopic structure of the obtained weld in a cross section perpendicular to the welding direction (magnification: 40.7.6% hydrochloric acid-46.2
% hydrofluoric acid aqueous solution). As is clear from the photograph in Figure 10, molten nuggets are uniformly formed along the overlapping surfaces of the welded parts, and molten nuggets are formed at both ends of the overlapping surfaces.
Melting streak rush is occurring. In this case, it can be seen that although molten scorch occurs, the welding strength and airtightness of the nuggets are maintained at a sufficient level due to the presence of the molten nuggets.

結果を第1表に表示した。The results are shown in Table 1.

比較例1 市販の板厚が0.30−のA3004p合金板(硬度H
19)を幅40m、長さ100mの大きさのブランクに
切断し、そのブランクを第6図に示すようン401/4
5)中に30秒間浸したところ(液温度ト被膜が形成さ
れた。
Comparative Example 1 Commercially available A3004p alloy plate with a thickness of 0.30 (hardness H
19) into a blank with a width of 40 m and a length of 100 m, and cut the blank into 401/4 as shown in Figure 6.
5) When immersed in the liquid for 30 seconds, a film was formed due to the temperature of the liquid.

そのブランクを2枚用意し、処理被膜面が互いに向い合
うように、その2枚のブランクを重ね合せた。その重ね
合せ幅は0.6 mであった。その重ね合せたブランク
の重ね合せ部を実施例1と同様の装置にてマツシュシー
ム抵抗溶接した。そのさい、溶接加圧力は64k19、
溶接速度は8 m/minであった。
Two blanks were prepared, and the two blanks were placed one on top of the other so that the treated coating surfaces faced each other. The overlapping width was 0.6 m. The overlapped portions of the stacked blanks were subjected to pine seam resistance welding using the same equipment as in Example 1. At that time, the welding pressure was 64k19,
The welding speed was 8 m/min.

その結果、溶接電流を増加させるにつれて溶融スジラッ
シュの発生が著るしくなるが、溶接強度あるいは溶接部
の気密性の点で十分なレベルに達せず、良好な溶接部を
得ることができなかった。
As a result, as the welding current was increased, the occurrence of molten streak rush became more significant, but the welding strength or airtightness of the weld did not reach a sufficient level, making it impossible to obtain a good weld. .

第11図に溶接電流が5.4 kAのときに得られた溶
接部の溶接方向に垂直な断面の顕微鏡組織を示す(倍率
40.7.6チ塩酸−46,2%フッ酸水溶液にて腐食
)。第11図の写真から明らかなように、溶接部の重ね
合せ面の両端部にて溶融ナゲツトが形成されており、そ
の溶融ナゲツトより溶融スプラッシュが発生している。
Figure 11 shows the microscopic structure of a cross-section perpendicular to the welding direction of the weld obtained when the welding current was 5.4 kA (magnification 40.7.6 dihydrochloric acid-46.2% hydrofluoric acid aqueous solution). corrosion). As is clear from the photograph in FIG. 11, molten nuggets are formed at both ends of the overlapping surfaces of the welded portion, and molten splash is generated from the molten nuggets.

一方、重ね合せ面の中接部の溶接強度および気密性が十
分なレベルにまで達していないことがわかる。
On the other hand, it can be seen that the welding strength and airtightness of the intermediate portion of the overlapping surfaces did not reach a sufficient level.

結果を第1表に表示した。The results are shown in Table 1.

比較例2 板厚が0.30鴫のA30049合金板(硬度H19)
を用意し、溶接する重ね合、せ面に電気絶縁性被膜を被
覆することなく、そのままの状態で、実施例1と同様の
溶接装置を使用して、マツシュシーム抵抗溶接を行った
Comparative Example 2 A30049 alloy plate with a plate thickness of 0.30 mm (hardness H19)
were prepared, and without coating the overlapping and facing surfaces to be welded with an electrically insulating film, matush seam resistance welding was performed using the same welding equipment as in Example 1.

このとき、重ね合せ幅を0.6■とじ、溶接加圧力を4
5時および65ゆとし、溶接速度を8rrV/minと
して溶接を行った。
At this time, the overlapping width is set to 0.6 cm, and the welding pressure is set to 4
Welding was carried out at 5 o'clock and 65 o'clock and at a welding speed of 8 rrV/min.

その結果、溶接加圧力が65kgの場合には、溶接を行
った重ね合せ部は著るしく押しつぶされるものの、その
重ね合せ面での温度上昇が低く、溶接電流を7.5 k
Aまで加えても全く接合しなかった。
As a result, when the welding force was 65 kg, the welded overlapping part was crushed considerably, but the temperature rise at the overlapping surface was low, and the welding current was reduced to 7.5 k.
Even if up to A was added, no bonding occurred at all.

溶接加圧力が45kgの場合には、溶接電流が6.0k
Aにて溶融スプラッシュの発生がみられたが、溶接強度
の点では著るしく劣っていた。この溶接部を引きはがし
て溶接部の一方の重ね合せ面を観察したところ、第11
図の写真の結果と同様に、溶接のさいに重ね合せ面での
発熱量は±の重ね合せ面の両燐部にて著るしく大きく、
中央部では著るしく小さくなっておシ、溶接部の強度お
よび気密性が著るしく劣っていた。
When the welding force is 45kg, the welding current is 6.0k.
Although molten splash occurred in sample A, the welding strength was significantly inferior. When this welded part was peeled off and one overlapping surface of the welded part was observed, the 11th
Similar to the result shown in the photograph in the figure, the amount of heat generated at the overlapping surfaces during welding is significantly large at both phosphorus parts of the overlapping surfaces of ±.
The center portion was significantly smaller, and the strength and airtightness of the welded portion were significantly inferior.

註:(1)うず電流式測定法(測定装置の商品名:ダー
ミトロン)による。
Note: (1) Based on eddy current measurement method (product name of measurement device: Dermitron).

(2)最適溶接条件で溶接した場合。(2) When welding under optimal welding conditions.

(3)溶接強度は、第12図に示すごとく、溶接部40
近傍の一方のブランク部分41を押え、溶接部40近傍
の他のブランク部分42をペンチで掴んで矢印方向に引
上げて、溶接部40を引き裂いたさいの切断の状態の評
価によって判定した。
(3) The welding strength is as shown in Fig. 12.
The judgment was made by holding down one blank part 41 in the vicinity, grasping the other blank part 42 in the vicinity of the welded part 40 with pliers, and pulling it up in the direction of the arrow to tear the welded part 40 and evaluating the cutting state.

◎・・・溶接部40側縁408に沿って切断したもの(
第12図(a)) ○・・・切断面43が僅かに溶接部界面44(溶接前の
重ね合せ面に対応)を含むもの (第12図(b)) Δ・・・切断面43がかなシの溶接部界面44を含むも
の(第12図(C)) X・・・溶接部界面44にて切断したもの(第12図(
d)) (4)気密性は市販の染色探傷剤(商品名RED−MA
RK )を使用して行った。
◎...Cut along the side edge 408 of the welded part 40 (
Fig. 12(a)) ○...The cut surface 43 slightly includes the weld interface 44 (corresponding to the overlapping surface before welding) (Fig. 12(b)) Δ...The cut surface 43 slightly includes the weld interface 44 (corresponding to the overlapping surface before welding) Includes a welded part interface 44 (Fig. 12(C)) X... Cutted at the welded part interface 44 (Fig.
d)) (4) For airtightness, use a commercially available dye tester (trade name: RED-MA).
RK) was used.

◎・・・探傷剤にて全く反応なし、 ○・・・探傷剤にて局部的に僅かに反応あシ、×・・・
探傷剤にて全面に反応あシ、 (5)◎・・・発生なし、○・・・若干発生、△・・・
僅かに発生、X・・・著るしく発生
◎...No reaction at all with the flaw detection agent, ○...Slight local reaction with the flaw detection agent, ×...
Reaction occurred on the entire surface with flaw detection agent, (5) ◎...No occurrence, ○...Slight occurrence, △...
Slight occurrence, X: Significant occurrence

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法による溶接前の重ね合せ部近傍の
例の説明用縦断面図、第2図は第1図の重ね合せ部をマ
ツシュシーム抵抗溶接した後の状態を示す説明用縦断面
図、第3図は本発明の方法による溶接部の1例の溶接線
に直角の方向からみた断面顕微鏡写真、第4図は本発明
の方法によ、る溶接部の1例の溶接線に平行な方向から
みた断面顕微鏡写真、第5図は本発明の方法による溶接
前の重ね合せ部近傍の他の例の説明用縦断面図、第6図
は電気絶縁性被膜を形成する装置の第1の例の一部切断
斜視図、第7図は電気絶縁性被膜を形成する装置の第2
の例に用いられる支持体等の平面図、第8図は第7図の
■−■線に沿う縦断面図、第9図は上記第2の例の装置
の縦断面図、第10図は本発明の方法による溶接部の他
の例の溶接線に直角の方向からみた断面顕微鏡写真、第
11図は従来の方法による溶接部の例の溶接線に直角の
方向からみた断面顕微鏡写真、第12図は溶接強度の試
験方法を示す斜視図であって、第12図(a)は溶接強
度が優秀なもの、第12図(b)は良好なもの、第゛1
2図(、)は不良のもの、第12図(d)は著るしく不
良のものを示す。 1.1′、・・・アルミニウム(合金)板、2・・・重
ね合せ部、3・・・上部ローラ電極、3′・・・下部ロ
ーラ電極、la、l’a・・・対向する面、4・・・電
気絶縁性被膜、7・・・クラック。 区           区 1寸 ■          振 区           四 〇              − 派          派 第5図 第6図 第7図 r■ 第8図 (C) (d) 手続補正書 (方式、) 昭和57年/月27日 特許庁長官   島田春樹殿 /、事件の表示 昭和j乙年特許願第123022号 2、発明の名称 抵抗溶接法 3、補正をする者 事件との関係    特許出願人 ヨコハマシカナザνり力マリャチョウ 住所 〒236 神奈川県横浜市金沢区釜利谷町1ll
13り番地の2乙 久代  理  人     〒10S 住所 東京都港区芝大門二丁目1番j号 I10’1電
話 03−1137−/11r9 乙補正の対象 明細書の1図面の簡単な説明」の欄および図面7、補正
の内容 (1)明細書第37頁第72行の「た」の次に、「金属
組織を示す」を加入する。 (2)同第37頁第73行の「・・・方向からみた」の
次に、「金属組織を示す」を加入する。 (3)同第32頁第2行の「・・・方向からみた」の次
に、「金属組織を示す」を加入する。 (4)同第32頁第q行の「・・・方向からみた」の次
に「金属組織を示す」を加入する。 (5)第7.2図(Q)、(d)を別紙の通り補正する
。 # 12圓 (C) (d)
FIG. 1 is an explanatory longitudinal cross-sectional view of the vicinity of the overlapped portion before welding by the method of the present invention, and FIG. 2 is an explanatory longitudinal cross-section showing the state of the overlapped portion of FIG. 1 after matush seam resistance welding. Figure 3 is a cross-sectional micrograph of an example of a welded area obtained by the method of the present invention, viewed from a direction perpendicular to the weld line, and Figure 4 is a cross-sectional micrograph of an example of a welded area obtained by the method of the present invention. A cross-sectional micrograph viewed from a parallel direction, FIG. 5 is an explanatory longitudinal cross-sectional view of another example of the vicinity of the overlapping portion before welding by the method of the present invention, and FIG. 6 is a diagram of an apparatus for forming an electrically insulating film. FIG. 7 is a partially cutaway perspective view of Example 1, and FIG.
FIG. 8 is a vertical sectional view taken along the line ■-■ in FIG. 7, FIG. 9 is a vertical sectional view of the device of the second example, and FIG. FIG. 11 is a cross-sectional micrograph of another example of a welded part made by the method of the present invention, viewed from a direction perpendicular to the weld line; FIG. Fig. 12 is a perspective view showing the welding strength test method, Fig. 12(a) shows the welding strength is excellent, Fig. 12(b) shows the welding strength is good, and Fig. 12(b) shows the welding strength test method.
Figure 2 (,) shows a defective one, and Figure 12 (d) shows a significantly defective one. 1.1'... Aluminum (alloy) plate, 2... Overlapping portion, 3... Upper roller electrode, 3'... Lower roller electrode, la, l'a... Opposing surface , 4... Electrical insulating film, 7... Cracks. Ward Ward 1 sun ■ Shinku Ward 40 - School Section Figure 5 Figure 6 Figure 7 r ■ Figure 8 (C) (d) Procedural amendment (method,) Month 27, 1980 Commissioner of the Patent Office Shimada Haruki-dono / Case indication Showa J Otsu year patent application No. 123022 2 Name of the invention Resistance welding method 3 Person making the amendment Relationship to the case Patent applicant Yokohama Shikanaza ν Ririkiki Mariacho Address 236 Yokohama, Kanagawa Prefecture 1ll Kamaritani-cho, Kanazawa-ku, City
No. 13-2 Osamu Otohisa 10S Address 2-1-j Shibadaimon, Minato-ku, Tokyo I10'1 Telephone 03-1137-/11r9 "Brief explanation of one drawing of the specification subject to amendment B" column and Drawing 7, contents of amendment (1) "Indicates metallographic structure" is added next to "ta" on page 37, line 72 of the specification. (2) On page 37, line 73, add ``indicates metal structure'' next to ``viewed from...''. (3) In the second line of page 32, next to "viewed from... direction", add "indicates metal structure". (4) Add "indicates metallographic structure" next to "viewed from... direction" on page 32, line q. (5) Correct Figure 7.2 (Q) and (d) as shown in the attached sheet. #12 circles (C) (d)

Claims (3)

【特許請求の範囲】[Claims] (1)  アルミニウム板またはアルミニウム合金板の
重ね合せ部を対向する電−極の間でマツシュシーム抵抗
溶接する方法において、該アルミニウム板又はアルミニ
ウム合金板の該重ね合せ部における対向する面の各々に
は、マツシュシーム抵抗溶接時におけるメタルの変形に
伴ない微細なりラックを発生するごく薄い電気絶縁性被
膜が密着形成されていることを特徴とするアルミニウム
板ま九はアルミニウム合金板のマツシュシーム抵抗溶接
法。
(1) In a method of mating seam resistance welding of the overlapping portion of aluminum plates or aluminum alloy plates between opposing electrodes, each of the opposing surfaces of the overlapping portion of the aluminum plate or aluminum alloy plate includes: Matushu seam resistance welding is a method of welding aluminum alloy plates with a very thin electrically insulating film that produces minute cracks due to the deformation of the metal during welding.
(2)ごく薄い電気絶縁性被膜が、厚さO11〜5.0
μmのアルミニウム酸化物を主体とする陽極酸化被膜で
ある特許請求の範囲第1項記載のアルミニウム板マたは
アルミニウム合金板のマツシュシーム抵抗溶接法。
(2) The extremely thin electrically insulating film has a thickness of O11 to 5.0
2. The method for welding an aluminum plate or an aluminum alloy plate according to claim 1, wherein the anodized coating is mainly composed of aluminum oxide.
(3)  ごく薄い電気絶縁性被膜が、厚さ0.1〜5
.0−のアルミニウム酸化物を主体とする化学的酸化被
膜である特許請求の範囲第1項記載のアルミニウム板ま
たはアルミニウム合金板のマツシュシーム抵抗溶接法。
(3) The extremely thin electrically insulating film has a thickness of 0.1 to 5
.. 2. The method of matshu seam resistance welding of an aluminum plate or aluminum alloy plate according to claim 1, wherein the chemical oxide film is a chemical oxide film mainly composed of 0- aluminum oxide.
JP12302281A 1981-08-07 1981-08-07 Resistance welding method Pending JPS5825881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12302281A JPS5825881A (en) 1981-08-07 1981-08-07 Resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12302281A JPS5825881A (en) 1981-08-07 1981-08-07 Resistance welding method

Publications (1)

Publication Number Publication Date
JPS5825881A true JPS5825881A (en) 1983-02-16

Family

ID=14850278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12302281A Pending JPS5825881A (en) 1981-08-07 1981-08-07 Resistance welding method

Country Status (1)

Country Link
JP (1) JPS5825881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187483A (en) * 1984-02-15 1985-09-24 アルカン・インターナシヨナル・リミテツド Pre-treatment of metal for resistance spot welding of aluminum
JPH051400A (en) * 1991-06-19 1993-01-08 Sumitomo Metal Ind Ltd Production of al or al alloy plate
US5435491A (en) * 1993-04-21 1995-07-25 Alloy Kohki Co., Ltd. Air mixed type spray apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187483A (en) * 1984-02-15 1985-09-24 アルカン・インターナシヨナル・リミテツド Pre-treatment of metal for resistance spot welding of aluminum
JPH051400A (en) * 1991-06-19 1993-01-08 Sumitomo Metal Ind Ltd Production of al or al alloy plate
US5435491A (en) * 1993-04-21 1995-07-25 Alloy Kohki Co., Ltd. Air mixed type spray apparatus

Similar Documents

Publication Publication Date Title
US10052710B2 (en) Resistance spot welding steel and aluminum workpieces using electrode weld face cover
CA1266513A (en) Resistance welding of aluminium
KR20150100925A (en) Welded can body, welded can, method for manufacturing welded can body, and method for manufacturing welded can
JPS5825881A (en) Resistance welding method
US4240894A (en) Drum for electrodeposited copper foil production
US4546229A (en) Metal pretreatment for resistance spot welding of aluminum
JP3378447B2 (en) Metal plate coating adhesion method
EP0181168B1 (en) A method of fabricating structures from aluminium sheet and structures comprising aluminium components
JP2817562B2 (en) Laminated steel sheet for cans
JPS61135486A (en) Production of welding can body
JPS5847576A (en) Production of welded can body
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
CA2842910C (en) Three-piece resealable can
JPS6135280B2 (en)
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JPH072998B2 (en) Welding can body
JP4280174B2 (en) Steel plate for welding can and method for producing the same
KR850001367B1 (en) Method of welding tin-free steel can
EP1507624B1 (en) Method of welding aluminium alloy strip products
JPH10330982A (en) Metallic foil electrodeposition drum
JPS6120396B2 (en)
JPS63190196A (en) Aluminum and aluminum alloy sheet having superior resistance weldability
JPH02191149A (en) Welded can body
JP3008696B2 (en) Electroplating method and apparatus
JPH0425350B2 (en)