JPS5825732B2 - Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing - Google Patents

Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing

Info

Publication number
JPS5825732B2
JPS5825732B2 JP10317579A JP10317579A JPS5825732B2 JP S5825732 B2 JPS5825732 B2 JP S5825732B2 JP 10317579 A JP10317579 A JP 10317579A JP 10317579 A JP10317579 A JP 10317579A JP S5825732 B2 JPS5825732 B2 JP S5825732B2
Authority
JP
Japan
Prior art keywords
temperature
less
yield ratio
winding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10317579A
Other languages
Japanese (ja)
Other versions
JPS5629624A (en
Inventor
道雄 遠藤
敬 古川
長靖 竹本
國男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10317579A priority Critical patent/JPS5825732B2/en
Priority to AU54401/80A priority patent/AU527097B2/en
Priority to FR8000561A priority patent/FR2446323A1/en
Priority to DE19803000910 priority patent/DE3000910A1/en
Priority to GB8001116A priority patent/GB2046786B/en
Publication of JPS5629624A publication Critical patent/JPS5629624A/en
Publication of JPS5825732B2 publication Critical patent/JPS5825732B2/en
Priority to US06/740,352 priority patent/US4614551A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、熱延ままで複合組織を有し、且つ加工後の人
工時効硬化性のすぐれた低降伏比高強度の熱延鋼板の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hot-rolled steel sheet with a low yield ratio and high strength, which has a composite structure as hot-rolled and has excellent artificial age hardenability after processing.

ここに複合組織とは、フェライト相とマルテンサイト相
および少量の残留オーステナイト相を主要な組織構成要
素とするものであり、低降伏比とは、熱延・捲取ままに
おける降伏強度/引張強度の比(降伏比)が0.6以下
である場合を指し、高強度とは引張強度が概ね40 K
f/m’f/を以上の場合を指す。
Here, a composite structure is one in which the main structure components are a ferrite phase, a martensitic phase, and a small amount of retained austenite phase, and a low yield ratio refers to the ratio of yield strength/tensile strength in the as-hot-rolled/rolled state. The ratio (yield ratio) is 0.6 or less, and high strength refers to the case where the tensile strength is approximately 40 K.
f/m'f/ refers to the above case.

また加工後の人工時効硬化性とは、鋼板に加工歪を付与
した後の降伏強度が、170〜200℃程度の温度での
加熱により更に増大するその増量を指す。
Further, the term "artificial age hardenability after processing" refers to an increase in the yield strength of a steel sheet after applying processing strain, which is further increased by heating at a temperature of about 170 to 200C.

これがすぐれる事は、この増加量が犬で且つコイル部位
によるばらつきが少ないという内容を持つ。
The reason why this is excellent is that the amount of increase varies from dog to dog and has little variation depending on the coil location.

近年、自動車産業界では、燃費低減を主目的として車輛
の軽量化が鋭意指向されている。
In recent years, the automobile industry has been actively trying to reduce the weight of vehicles with the main purpose of reducing fuel consumption.

軽量化のために材料の板厚を減らしても尚且つ充分な車
体強度を確保するためには、高強度鋼板の使用が是非と
も必要である。
In order to ensure sufficient vehicle body strength even when the thickness of the material is reduced to reduce weight, it is absolutely necessary to use high-strength steel plates.

しかしながら従来の高強度鋼板は一般に降伏比が高すぎ
るのでプレス加工においてスプリングバックを生じるこ
と、また加工硬化能が低いので変形加工に際して局所歪
が集中して割れてしまう傾向が大きいこと等のために、
必要性は認められ乍ら広汎な普及が困難であった。
However, conventional high-strength steel plates generally have too high a yield ratio, which causes springback during press forming, and low work hardening ability, which tends to cause local strain to concentrate and crack during deformation. ,
Although the necessity was recognized, widespread dissemination was difficult.

そこで鋼板使用者は、最近降伏比0.6程度以下で且つ
引張強度が40 Ky /mr7!以上の低降伏比(す
なわち加工硬化能の高い)高強度鋼板を要求する趨勢に
ある。
Therefore, recently, steel plate users have a yield ratio of about 0.6 or less and a tensile strength of 40 Ky/mr7! There is a trend to demand high-strength steel sheets with a lower yield ratio (that is, higher work hardening ability).

また(の種の鋼板は、加工硬化能が高いため成形加工後
にかなり高い降伏強度を示すが、その後更に塗装乾燥ラ
イン(170〜2000C)を通すことにより生ずる人
工時効硬化を利用して、完成品の降伏強度を一段と高め
ると、W(期待される。
In addition, steel sheets of the type (type of steel) have a high work hardening ability, so they exhibit a fairly high yield strength after forming. Further increasing the yield strength of W (is expected).

低降伏比高強度熱延鋼板を経済的に製造する技術として
、本発明者の一人は、低炭素鋼をフェライト・オーステ
ナイト2相共存域での熱延仕上げに引続き350°C以
下の温度まで急冷する方法(特開昭51−79628号
公報)およびCr添加鋼を2相共存域で熱延仕上げし5
00℃以下で捲取る方法(特願昭53−39163号)
を発明した。
As a technology for economically producing high-strength hot-rolled steel sheets with a low yield ratio, one of the inventors of the present invention has developed a method of hot-rolling low-carbon steel in a ferrite-austenite two-phase coexistence region, followed by rapid cooling to a temperature of 350°C or less. (Japanese Unexamined Patent Publication No. 51-79628) and hot rolling finishing of Cr-added steel in the two-phase coexistence region 5
Method for rolling up at temperatures below 00℃ (Japanese Patent Application No. 53-39163)
invented.

かくして低降伏比高強度熱延鋼板の製造は可能となり、
成形加工においてスプリングバックの少ない、また加工
硬化能の高い鋼板が得られるようになったが、なお以下
の如き問題点がある。
In this way, it became possible to manufacture high-strength hot-rolled steel sheets with a low yield ratio.
Although it has become possible to obtain steel sheets with less springback and high work hardenability during forming, the following problems still remain.

すなわち、上記先願発明による鋼板は、成形後の人工時
効硬化性が必ずしも充分でなく、鋼板コイル部位による
ばらつきが多く且つ低水準である。
That is, the steel plate according to the prior invention does not necessarily have sufficient artificial age hardenability after forming, and has a low level of variation with many variations depending on the steel plate coil portion.

たとえば3%引張変形後180°C30分間の人工時効
を施した場合、降伏強度上昇は、引張変形による加工硬
化分を除いて約3〜4 Ky /mrft程度であって
、コイル部位によっては1〜2 KP/7716度の低
値を示す。
For example, when artificial aging is performed at 180°C for 30 minutes after 3% tensile deformation, the increase in yield strength is about 3 to 4 Ky/mrft, excluding work hardening due to tensile deformation, and depending on the coil part, the increase is about 1 to 4 Ky/mrft. It shows a low value of 2 KP/7716 degrees.

人工時効硬化性を改善し且つコイル部位によるばらつき
を解消することは工業上極めて重要であって、本発明は
叙上の問題を有利に解決することを一つの目的とするも
のである。
It is extremely important industrially to improve the artificial age hardenability and to eliminate variations depending on coil parts, and one object of the present invention is to advantageously solve the above-mentioned problems.

他の一つの目的は、鋼板の延性を大巾に改善することで
あって、鋼成分としてS i f 1 %以上2多以下
含有せしめることによって達成される。
Another objective is to greatly improve the ductility of the steel sheet, which can be achieved by containing S i f 1% or more and 2 or less as a steel component.

本発明の特徴とするところはC:0.03〜0.13係
、Mn : 0.8〜1.7%、Alo、1%以下、S
i1.0〜2.0φ(但し10%は含まず)、必要に応
じてCr0.5%以下を含み、残部鉄および不可避的不
純物から成る鋼を熱間圧延して780℃以上890℃以
下の仕上温度に至らしめ、30℃/S以上500’C/
s未満の平均冷却速度で急冷し230℃以下の温度に至
らしめて捲取り、且つ捲取温度のばらつきの上限・下限
が100 deg Cの温度巾以内に入り且つ捲取温度
のばらつきの上限が230 ’Cを超えない如くに調整
することによる、加工後人工時効硬化性のすぐれた低降
伏比高強度複合組織鋼板の製造方法を要旨とする。
The characteristics of the present invention are C: 0.03 to 0.13%, Mn: 0.8 to 1.7%, Alo, 1% or less, S
i1.0 to 2.0φ (excluding 10%), containing 0.5% or less of Cr as needed, and the balance consisting of iron and unavoidable impurities, is hot-rolled to a temperature of 780°C or more and 890°C or less. Reach finishing temperature, 30℃/S or more 500'C/
It is rapidly cooled at an average cooling rate of less than 230°C and rolled up, and the upper and lower limits of the variation in the winding temperature are within a temperature range of 100 deg C, and the upper limit of the variation in the winding temperature is 230 deg C. The gist of this invention is a method for producing a low yield ratio, high-strength composite steel sheet with excellent post-working artificial age hardenability by adjusting the temperature so as not to exceed 'C.

本発明の技術思想および構成要件の限定理由は次の如く
である。
The technical idea and reasons for limiting the constituent elements of the present invention are as follows.

鋼板の熱延仕上温度(仕上出側温度を指す。Hot-rolling finishing temperature of steel plate (refers to finishing exit temperature).

以下同様)を、通常の場合よりも低下せしめて、仕上げ
直後に、圧延にともなう加工誘起変態により初析フェラ
イト(ψ相ヲ急速に析出せしめるか、あるいは熱延仕上
温度自体をフェライト(C4とオーステナイト(γ)と
の2相共存温度域に至らしめることにより、微細な初析
αと未変態γの混合した組織状態とし、急冷して、未変
態γをマルテンサイト(αl)および若干の残留γとす
る。
The same applies below), and immediately after finishing, the pro-eutectoid ferrite (ψ phase) is rapidly precipitated due to the deformation-induced transformation accompanying rolling, or the hot rolling finishing temperature itself is lowered to reduce the ferrite (C4 and austenite) phase. By bringing the temperature to a two-phase coexistence temperature range with (γ), a microstructure containing a mixture of fine pro-eutectoid α and untransformed γ is obtained, and by rapid cooling, the untransformed γ becomes martensite (αl) and some residual γ shall be.

このような複合組織を形成させるために必須の元素はC
,Mnである。
The essential element for forming such a composite structure is C.
, Mn.

C0,03%未満、Mn0.8%未満では所望の複合組
織が得られず、引張強度も不充分となる。
If the CO content is less than 0.03% and the Mn content is less than 0.8%, the desired composite structure cannot be obtained and the tensile strength will be insufficient.

一方C量が0.13%を超え、また動量が1.7%を超
えると、Ar3温度が著しく低下する結果、充分な量の
初析αを含む組織状態を得べき熱延仕上温度が著しく低
下し、初析α中の加工組織が充分に回復しないまま残存
して延性を害する結果となる。
On the other hand, when the C content exceeds 0.13% and the dynamic amount exceeds 1.7%, the Ar3 temperature decreases significantly, and as a result, the hot rolling finishing temperature at which a microstructure containing a sufficient amount of pro-eutectoid α should be obtained becomes significantly lower. As a result, the processed structure in the pro-eutectoid α remains without being sufficiently recovered, impairing ductility.

したがってC量として0.03%以上0.13φ以下、
Mn量として0.8%以上1.7饅以下とする。
Therefore, the amount of C is 0.03% or more and 0.13φ or less,
The amount of Mn is 0.8% or more and 1.7% or less.

Siは、好適な複合組織を与え降伏比を低下せしめ得る
熱延仕上温度域を拡大し、熱延作業条件を緩和するので
実際製造上極めて効果的な元素である。
Si is an extremely effective element in actual manufacturing because it provides a suitable composite structure, expands the hot rolling finishing temperature range in which the yield ratio can be lowered, and eases the hot rolling working conditions.

Siに更に重要な効果は、鋼板の延性を大巾に改善する
点に認められる。
A more important effect of Si is that it greatly improves the ductility of steel sheets.

第1図は本発明方法および既出願発明方法(%願昭54
−1229、以降光発明と称する)による表1に示す各
種組成鋼の引張り強度と延性との関係を示すものであり
、先発間による鋼組成であるSi量1φ以下の場合に比
較して、Si1%以上(但し1%を含ます)を含む鋼に
おいて、引張り強度に対比した延性の水準が著しく優れ
ていることがわかる。
Figure 1 shows the method of the present invention and the method of the previously applied invention (%
-1229, hereinafter referred to as Hikari Invention), shows the relationship between tensile strength and ductility of various composition steels shown in Table 1. % or more (including 1%), it can be seen that the level of ductility compared to tensile strength is significantly superior.

Si量増大は、熱延スケール疵の増大、製品の塗装性の
劣化等を或程度招くが、鋼板の延性が極めて重要なプレ
ス成形品にして且つ鋼板表面品質への要求がさほど厳格
なることを要しない如き場合たとえば自動車用ホイール
・ディスクやサスペンション・アーム、あるいはアクス
ル・バウシング、さらにフレーム部材等に対しては、敢
てSi量を或程度増大せしめた鋼が極めて有利に適用さ
れる。
An increase in the amount of Si causes an increase in hot-rolling scale flaws and a deterioration in the paintability of the product to some extent, but it is important to note that the ductility of the steel sheet is extremely important for press-formed products and the requirements for the surface quality of the steel sheet are very strict. In cases where Si is not required, for example, for automobile wheel discs, suspension arms, axle bouncing, frame members, etc., steel in which the amount of Si is intentionally increased to a certain extent is extremely advantageously applied.

しかしSi量が2%程度以上に達すると、上述表面性状
の難点が更に増大するほか、鋼板仕上温度として好適な
範囲が著しく高温となり、仕上後の急冷により本発明指
定の如き著しい低温での捲取りを達成するのが実操業上
困難になるので、Si量の上限を2%とする。
However, when the Si content reaches about 2% or more, the above-mentioned problems with the surface properties further increase, and the suitable finishing temperature for the steel sheet becomes extremely high, and rapid cooling after finishing makes it difficult to wind at extremely low temperatures as specified in the present invention. Since it is difficult to achieve this amount in actual operation, the upper limit of the amount of Si is set at 2%.

一方Crは、微量の添加にまり熱延仕上の好適な温度範
囲を拡大するが、Mn量との関連で、Mn量 + Cr
%≧1.7饅程度に達すると、仕上温度の好適な範囲を
却って狭める傾向を示し、Mn%+Cr%=1.3〜1
.5%程度において最も望ましい効果を発揮する。
On the other hand, Cr is added in a small amount and expands the suitable temperature range for hot rolling finishing, but in relation to the amount of Mn, the amount of Mn + Cr
%≧1.7, the suitable range of finishing temperature tends to be narrowed, and Mn%+Cr%=1.3 to 1
.. The most desirable effect is exhibited at about 5%.

したがって本発明におけるMn量の限定範囲からみて、
Cr量は概ね0.5%以下**とすれば充分である。
Therefore, in view of the limited range of Mn amount in the present invention,
It is sufficient that the Cr content is approximately 0.5% or less**.

Mn量、Cr量およびSi量が、仕上捲取後の鋼板の引
張強度および降伏比に及ぼす影響を、仕上温度に関連づ
けて第2図に示す。
FIG. 2 shows the influence of the Mn content, Cr content, and Si content on the tensile strength and yield ratio of the steel plate after final rolling in relation to the finishing temperature.

第2図は表2に示す本発明鋼および比較先発明鋼におけ
る好適な仕上温度域(初期厚30#。
Figure 2 shows the preferred finishing temperature range (initial thickness 30#) for the invention steel and the comparative invention steel shown in Table 2.

1150℃加熱、4パスにて仕上温度に至らしめ3顯厚
、50’C/sにて冷却;捲取温度100 ’C)を示
すものであって、同図より明らかに、本発明によるSi
量1%超2多以下を含む鋼においては、満足すべき低降
伏比を得る範囲として780℃以上890℃以下に限定
される。
Heating at 1150°C, reaching the finishing temperature in 4 passes, cooling at 50'C/s for 3 layers; winding temperature 100'C), and it is clear from the figure that the Si according to the present invention
In steel containing more than 1% and less than 2%, the range for obtaining a satisfactory low yield ratio is limited to 780°C or more and 890°C or less.

すなわち、先発明におけるSi量1%以下の鋼での好適
な仕上温度範囲750℃以上860℃以下と比較して、
本発明でのSi量1φ超2φ以下の鋼では、好適な仕上
温度範囲がやや高温側に移行する。
That is, compared to the preferred finishing temperature range of 750°C or more and 860°C or less for steel with a Si content of 1% or less in the previous invention,
In the steel according to the present invention with a Si content of more than 1φ and less than 2φ, the suitable finishing temperature range shifts to a slightly higher temperature side.

また本発明における高Si鋼では、Cr添加は、好適な
仕上温度範囲を拡大することよりも、むしろ到達し得る
降伏比を充分に低下せしめることに効果がある。
Furthermore, in the high-Si steel of the present invention, the addition of Cr is effective in sufficiently lowering the yield ratio that can be reached, rather than expanding the suitable finishing temperature range.

なおAlは脱酸元素として必要であるが、0.1φを超
えるとアルミナ系介在物が増し延性を阻害するおそれが
あるのでA10.1 %以下とする。
Note that Al is necessary as a deoxidizing element, but if it exceeds 0.1φ, alumina-based inclusions may increase and ductility may be inhibited, so Al should be kept at 10.1% or less.

鋼板を熱延仕上終了後急冷し、初析αに混在する未変態
γをαIおよび残留γとする。
After finishing the hot rolling, the steel plate is rapidly cooled, and the untransformed γ mixed in the pro-eutectoid α is treated as αI and residual γ.

この冷却速度が30℃/S未満であると上記未変態γが
パーライト変態してしまい、α7gよび残留γとなる傾
向が著しく低減する。
If this cooling rate is less than 30° C./S, the untransformed γ is transformed into pearlite, and the tendency to become α7g and residual γ is significantly reduced.

一方、冷却速度が500℃/S以上であると、初析α中
の固溶炭素が未変態γ中へと拡散移行する余裕がないこ
と、仕上圧延による初析α中の加工組織(好適な仕上温
度範囲における比較的低温の場合)が充分に恢復する余
裕がないこと等のために、伸びが著しく劣化する。
On the other hand, if the cooling rate is 500°C/S or more, there is no room for the solid solution carbon in the pro-eutectoid α to diffuse into untransformed γ, and the processed structure in the pro-eutectoid α due to finish rolling (favorable In the case of relatively low temperatures in the finishing temperature range), elongation deteriorates significantly because there is not enough room for recovery.

したがって冷却速度を30℃/S以上500℃/S未満
に限定する。
Therefore, the cooling rate is limited to 30°C/S or more and less than 500°C/S.

捲取温度を230℃以下と限定する理由は、230℃を
超える温度で捲取られた場合は既述未変態γがベイナイ
ト変態してしまう分率が増し、σおよび残留γとなる傾
向が低減されて、最終的に充分な低降伏比が得られ難く
なることによる。
The reason why the winding temperature is limited to 230°C or less is that if the winding is carried out at a temperature exceeding 230°C, the fraction of untransformed γ that has already been transformed into bainite will increase, and the tendency to become σ and residual γ will be reduced. This is because, in the end, it becomes difficult to obtain a sufficiently low yield ratio.

以上は基本的に低降伏比高強度複合組織鋼を製造する技
術であるが、得られる鋼板の加工後人工時効硬化性を著
しく改善するには、次の要件が限定されねばならない。
The above is basically a technique for producing a low yield ratio, high strength composite structure steel, but in order to significantly improve the post-processing artificial age hardenability of the resulting steel plate, the following requirements must be met.

すなわち、捲取温度のばらつきの上限・下限が1010
0deの温度中以内に入り、且つ捲取温度のばらつきの
上限が230℃**を超えない如くに調整することであ
る。
In other words, the upper and lower limits of the variation in winding temperature are 1010
The temperature should be adjusted so that the temperature is within 0 de and the upper limit of the variation in winding temperature does not exceed 230° C.**.

この限定要件を、実施例について詳述すれば次の如くで
ある。
This limiting requirement will be explained in detail with reference to the embodiments as follows.

実施例 1 本発明による限定成分鋼(0,085%C、1,10%
Si 、 1.15%Mn 、 0.014%P 、
0.003%S、0.023φAl)を生産用熱延ライ
ンにて熱延仕上(粗圧延後、7パスにて仕上温度800
〜840℃j2.5fi厚)後、急冷(平均40℃/S
)し、一連のコイルにおいて捲取温度をばらつかせて捲
取り、コイルを室温まで放冷した後、コイル各部位から
引張試験片を採取して降伏比および加工後人工時効硬化
性(3多引張歪を付与し、更に180℃30分加熱した
後、室温にて附伏強度を測定、3多引張応力と比較した
増分を求む)を求めた。
Example 1 Limited composition steel according to the invention (0,085% C, 1,10%
Si, 1.15%Mn, 0.014%P,
0.003%S, 0.023φAl) was hot-rolled and finished on a production hot-rolling line (after rough rolling, the finishing temperature was 800 in 7 passes).
~840℃j2.5fi thickness), then rapidly cooled (average 40℃/S
), then a series of coils were wound at varying winding temperatures, the coils were allowed to cool to room temperature, and tensile test pieces were taken from each part of the coils to determine the yield ratio and the artificial age hardening properties after processing (3). After applying tensile strain and further heating at 180° C. for 30 minutes, the deformation strength was measured at room temperature, and the increment compared with the tensile stress was determined.

その結果の二・三の例を表3に示す。表3に記載したコ
イル番号1の場合は、捲取温度が本発明限定範囲である
230℃を超過した部分を含み、得られたコイルの降伏
比は高く、加工後人工時効硬化性は低水準である。
A few examples of the results are shown in Table 3. In the case of coil number 1 listed in Table 3, the coiling temperature includes a portion exceeding 230°C, which is the limited range of the present invention, and the yield ratio of the obtained coil is high, and the artificial age hardenability after processing is at a low level. It is.

コイル番号2は捲取温度が230℃以下の場合であるが
、降伏比および加工後人工時効硬化性は尚ばらつきが大
きく、不充分な特性である。
Coil No. 2 is obtained when the winding temperature is 230° C. or lower, but the yield ratio and post-processing artificial age hardenability still vary widely and are insufficient characteristics.

ここで、当業者の常識に全く反する傾向がみられる。Here, there is a tendency that is completely contrary to the common sense of those skilled in the art.

すなわち、捲取温度が低い部分の降伏比および加工後人
工時効硬化性が、捲取温度の高い部分に比較して却って
劣化している点である。
That is, the yield ratio and post-processing artificial age hardenability of the portion where the winding temperature is low are rather deteriorated compared to the portion where the winding temperature is high.

当業者の常識によれば、捲取温度が低いはどσ形成が充
分に達成され好適な複合組織となるので降伏比は低下す
る筈であり、また捲取温度が低いほど、初析α中の、析
出硬化Iこ必要充分な炭素固溶量が確保され易いので加
工後人工時効硬化性は増大する筈である。
According to the common sense of those skilled in the art, the lower the winding temperature is, the more σ formation will be achieved and a suitable composite structure will be formed, so the yield ratio should be lower. Since it is easy to secure a sufficient amount of solid solution of carbon during precipitation hardening, the artificial age hardenability after processing should increase.

表2記載のコイル番号1および2はこれに反する結果を
示している。
Coil numbers 1 and 2 listed in Table 2 show results contrary to this.

本発明における、捲取温度のばらつきの巾を調整すると
いう技術要件はこのような理解困難な現象に対する考察
にもとづくものであって、その考察については後に詳述
する。
The technical requirement of adjusting the range of variation in winding temperature in the present invention is based on consideration of such a phenomenon that is difficult to understand, and this consideration will be described in detail later.

表2コイル番号3は捲取温度水準が200℃前後で、捲
取温度のばらつきが10100deの温度巾以内の場合
であり、コイル番号4は捲取温度水準が更に低い場合で
ある。
Coil number 3 in Table 2 is a case where the winding temperature level is around 200° C. and the variation in winding temperature is within a temperature range of 10100 de, and coil number 4 is a case where the winding temperature level is even lower.

低降伏比、加工後人工時効硬化性いずれも、これらの場
合に、安定した良好な結果を示している。
Both low yield ratio and post-processing artificial age hardening properties show stable and good results in these cases.

実施例 2 実施例1にて示した如き理解困難な現象は、以下の実験
および考察により説明することができる。
Example 2 The difficult-to-understand phenomenon shown in Example 1 can be explained by the following experiments and considerations.

第3図aの如き捲取温度の分布を呈した鋼板を捲取ると
、低温部位Xと高温部位Yとが密接した層状に捲かれる
結果、捲取られたコイルにおいてX部位、Y部位はそれ
ぞれ第3図すに示す如き温度履歴を経る。
When a steel plate with a winding temperature distribution as shown in Fig. 3a is rolled up, the low-temperature region The temperature history is as shown in Figure 3.

すなわち低温部位Xは、高温部位Yからの熱伝導により
かなりの程度まで復熱される。
That is, the low temperature region X is recuperated to a considerable extent by heat conduction from the high temperature region Y.

これらの熱履歴を経た場合に降伏比および加工後人工時
効硬化性(3饅引張後、180℃30分加熱した後、室
温にて降伏強度を測定、3%引張応力との差異を求む)
が受ける影響を、実験室的(供試鋼(0,055多C,
1,69多Si、1.28%Mn 、 0.010’%
P、 0.005%S、0.12%Cr、0.025%
AAり;1100℃加熱、3パスニテ仕上温度850’
C、2,5M厚、平均50’C/s冷却、冷却途中より
捲取温度に設定した炉に装入)に検討した結果を第4図
に示す。
After undergoing these thermal histories, yield ratio and artificial age hardening after processing (after 3 tensile cycles, heating at 180°C for 30 minutes, yield strength is measured at room temperature, and the difference from 3% tensile stress is determined)
The influence of
1,69 polySi, 1.28%Mn, 0.010'%
P, 0.005%S, 0.12%Cr, 0.025%
AA heating: 1100℃ heating, 3 passes finishing temperature 850'
Fig. 4 shows the results of an investigation into the following conditions: C, 2.5M thickness, average cooling of 50'C/s, and charging into a furnace set at the winding temperature during cooling.

過度に低温となった部位が復熱した場合を想定した捲取
条件4において、低降伏比が達成されず、加工後人工時
効硬化性にも乏しい。
In winding condition 4, which assumes a case where a portion that has become excessively low temperature recuperates, a low yield ratio is not achieved and the artificial age hardenability after working is poor.

捲取条件2,3,5および6においてはいずれも同程度
に良好な特性を示している。
Under winding conditions 2, 3, 5, and 6, all exhibited equally good characteristics.

このうちたとえば捲取条件6は、鋼板部位による捲取温
度のばらつきが30’C〜1308Cである場合に低温
部位が復熱し得る限度の温度履歴を与えるものであって
(現実には高温部位も捲取後逐次温度低下をきたすため
、復熱の限度ハ130℃よりも低下するので実際のコイ
ルにおける熱履歴としては有利になる。
Among these, for example, winding condition 6 provides a temperature history that is the limit at which low-temperature regions can recuperate when the variation in winding temperature depending on the steel plate region is 30'C to 1308C (in reality, high-temperature regions also occur). Since the temperature gradually decreases after winding, the limit of heat recovery is lower than 130° C., which is advantageous for the thermal history of the actual coil.

)、この程度のばらつき、すなわち10100deの温
度巾以内ならば特性に悪影響のないことを物語る。
), it is clear that variations of this degree, that is, within a temperature range of 10100 de, do not adversely affect the characteristics.

捲取条件3についても同様なことが言える。The same can be said about winding condition 3.

一方捲取条件4は、捲取温度のばらつきが500C〜2
20℃の場合の低温部位の復熱限度を再現するものであ
り、平均捲取温度の観点では捲取条件3の場合よりも低
いに拘らず特性は著しく劣化する。
On the other hand, winding condition 4 has a variation in winding temperature of 500C to 2
This reproduces the recuperation limit of the low temperature region at 20° C., and even though the average winding temperature is lower than that under winding condition 3, the characteristics are significantly deteriorated.

これは、捲取温度のばらつきが温度差にして170 d
eg Cにも及べば著しい劣化を招くことを示している
This means that the variation in winding temperature is equivalent to a temperature difference of 170 d.
This shows that if it reaches eg C, it will cause significant deterioration.

また捲取条件1は、降伏比も高く、加工後人工時効硬化
性にも乏しくなるので、270℃では捲取温度として高
すぎることを示している。
Further, winding condition 1 has a high yield ratio and poor artificial age hardening properties after working, so 270°C is shown to be too high as a winding temperature.

以上の如き実施例から、捲取工程に関する本発明の要件
が既述の如くに限定されるのである。
From the above embodiments, the requirements of the present invention regarding the winding process are limited as described above.

捲取工程に関する冶金学的現象については、概ね以下の
如くに考察される。
The metallurgical phenomena related to the winding process are generally considered as follows.

捲取温度(CT)が高すぎれば、それ以降の徐冷におい
てび変態が不可能になり、γ相はベイナイト変態してし
まうので、複合組織形成による低降伏比化がそもそも困
難になる(たとえば第4図捲取条件1)が、γ相がベイ
ナイト変態でなくマルテンサイト変態を生ずるような或
程度以下のCTの範囲に対して次のように考えられる。
If the winding temperature (CT) is too high, it will become impossible to transform during the subsequent slow cooling, and the γ phase will undergo bainite transformation, making it difficult to achieve a low yield ratio through the formation of a composite structure (for example, Winding conditions 1) in FIG. 4 are considered as follows for a CT range below a certain level where the γ phase undergoes martensitic transformation rather than bainitic transformation.

捲取後徐冷されて室温(RT)に到達した後の複合組織
鋼板には、αおよびα′と共に常に若干量の残留γが認
められる。
After being slowly cooled and reaching room temperature (RT) after being rolled up, a small amount of residual γ is always observed in the composite structure steel sheet along with α and α'.

したがって、第5図に示す如く、鋼板が仕上温度FTな
る熱延仕上を終え冷却されて捲取温度CTに到達した時
点において、鋼板の組織は、α相と残留γ相、そして恐
らくは若干のび相から成ると考えられる。
Therefore, as shown in Fig. 5, when the steel plate finishes hot-rolling at the finishing temperature FT and is cooled to reach the winding temperature CT, the structure of the steel plate consists of an α phase, a residual γ phase, and perhaps a slightly extended phase. It is thought to consist of

すなわち、熱延仕上後冷却されて捲取温度CTに至る途
中で存在するγ相のマルテンサイト変態開始温度Ms点
およびマルテンサイト変態終了温度Mf点は、次の如き
温度序列であると推測される。
That is, the martensitic transformation start temperature Ms point and the martensitic transformation end temperature Mf point of the γ phase, which exists on the way to the winding temperature CT after being cooled after hot rolling finishing, are estimated to have the following temperature order. .

Ms>CT(230℃)> RT > M foさて、
γ相がMs > T>Mfなる如き温度Tに急冷される
と、γ相はTにより定まる特定の割合f(1)だけぴに
変態する。
Ms > CT (230℃) > RT > M fo Now,
When the γ phase is rapidly cooled to a temperature T such that Ms > T > Mf, the γ phase undergoes a perfect transformation by a specific rate f(1) determined by T.

このf(T)は、Tがこの範囲内で低下するほど増加す
る(たとえばW、Hume−Rotheryy The
Structure of A11oys of fr
on;AnElementary Introduct
ionjl 966 。
This f(T) increases as T decreases within this range (e.g. W, Hume-Rotheryy The
Structure of A11oys of fr
on; An Elementary Introduct
ionjl 966.

Pergamon Pressy England)Q
つまりf(T)は、温度Tに応じて殆どo%から殆ど1
00%まで変化し得る。
Pergamon Pressy England)Q
In other words, f(T) varies from almost o% to almost 1 depending on the temperature T.
It can vary up to 00%.

一方、複合組織鋼の降伏比が低い理由として、γ相のα
l変態に伴う体積膨張の結果、周辺のα相が弾性的に歪
みを受けること、α相とび相との境界付近のα相内に可
動転位が多発することによる(森用、古川、佐原、遠藤
;鉄と鋼、v□l 。
On the other hand, the reason why the yield ratio of composite structure steel is low is that α of the γ phase
As a result of the volume expansion associated with the l-transformation, the surrounding α phase is elastically strained, and mobile dislocations occur frequently within the α phase near the boundary with the α phase and the α phase (Moriyo, Furukawa, Sahara, Endo; Tetsu to Hagane, v□l.

64(1978)All、8.740)と考えられる。64 (1978) All, 8.740).

ところで、CTがかなり低く、したがってかなり大きな
割合のf (T)でびが一旦形成された複合組織鋼が、
コイル復熱により充分に高い温度まで再加熱されると(
たとえば第4図捲取条件4)、上述のα相内の可動転位
が固溶炭素原子により固着され、またα相も若干焼戻さ
れてα相と炭化物に分解する傾向となって上述の弾性歪
みも緩和されてしまう結果、降伏比は増大し、低降伏比
という複合組織鋼の特質を失うと共に、加工後人工時効
の際に転位を拘束して効果を発揮すべき固溶炭素原子が
、この復熱時点で可動転位固着のために既に消費されて
しまうことになる。
By the way, a composite structure steel with a fairly low CT and therefore with a fairly large proportion of f(T) elongation,
When reheated to a sufficiently high temperature by coil recuperation (
For example, under winding conditions 4) in Figure 4, the mobile dislocations in the α phase described above are fixed by solid solution carbon atoms, and the α phase also tends to be slightly tempered and decomposed into the α phase and carbides, resulting in the above elasticity. As a result of the strain being relaxed, the yield ratio increases and the characteristic of composite structure steel, which is a low yield ratio, is lost. At the same time, the solute carbon atoms, which should be effective by restraining dislocations during artificial aging after processing, At this point of recuperation, the heat is already consumed due to the fixation of mobile dislocations.

したがってこのような場合には、加工後人工時効硬化性
に乏しいことになる。
Therefore, in such a case, the artificial age hardenability after processing is poor.

CTがさほど低くなく、したがってf (T)が小さい
割合でαlが形成された場合、若干復熱されても、上述
の理由で無効となるような固溶炭素原子の量もdの量も
少いので、上述の如き悪影響が当然低減される(たとえ
ば第4図捲取条件3)。
If αl is formed at a rate where CT is not very low and therefore f (T) is small, the amount of solute carbon atoms and the amount of d will be small, which will be ineffective for the reasons mentioned above, even if some reheating is performed. Therefore, the above-mentioned adverse effects are naturally reduced (for example, winding condition 3 in FIG. 4).

復熱されることなく次第に冷却されれば、既述のTの低
下と共にf (T)が順次増大し、それに応じてα中に
可動転位を生じて行くが、α′の主要量が形成される如
きTは、そのときの可動転位に固溶炭素が急速に析出す
るには低すぎる如き温度となるので、最終的には可動転
位のままで存在することを許すような条件となる(たと
えば第4図捲取条件2)ので結果には支障がない。
If it is gradually cooled without being reheated, f (T) will increase sequentially as T decreases as mentioned above, and mobile dislocations will occur in α accordingly, but the main amount of α' will be formed. At T, the temperature is too low for solid solution carbon to rapidly precipitate at the mobile dislocations, and eventually the conditions will be such that the mobile dislocations will remain as they are (for example, 4) Winding condition 2), so there is no problem with the results.

またCTがかなり低く、f (T)が犬なる割合でdが
形成されたまま復熱されることがない(たとえば第4図
捲取条件5)か、あるいは復熱されても温度到達値水準
が低く固溶炭素による可動転位の固着が速かには生じ難
いような場合(たとえば第4図捲取条件6)には、全く
支障がない事は言うまでもない。
In addition, CT is quite low, and f (T) is at a small rate so that d is formed and is not reheated (for example, winding condition 5 in Figure 4), or even if it is reheated, the temperature reached level is low. Needless to say, there is no problem at all when the fixation of mobile dislocations due to low solid solution carbon is difficult to occur quickly (for example, winding condition 6 in FIG. 4).

以上の考察から、加工後人工時効硬化性を改善するには
、捲取温度の変動を抑制することが極めて重要であると
結論され、既述実施例はそのことを示している。
From the above considerations, it was concluded that in order to improve the artificial age hardenability after processing, it is extremely important to suppress fluctuations in the winding temperature, and the examples described above demonstrate this.

本発明の技術要件につき、若干の注意事項を補足すれば
次の通りである。
Some additional notes regarding the technical requirements of the present invention are as follows.

本発明においては、通常の熱延の場合よりも仕上温度が
低いため、初析α相中に仕上圧延による加工組織が残存
する傾向があるが、冷却開始まで1〜2秒の時間を置く
ことにより、加工組織は充分に回復し、延性に対する悪
影響の懸念はなくなる。
In the present invention, since the finishing temperature is lower than in the case of normal hot rolling, the processed structure due to finish rolling tends to remain in the pro-eutectoid α phase, but it is necessary to wait 1 to 2 seconds before cooling starts. As a result, the processed structure is sufficiently recovered, and there is no concern that it will have an adverse effect on ductility.

この要件は通常のホット・ストリップ・□ルの設備にて
殆ど自動的に達成されることであるので、特に限定する
必要はないと考えられる。
Since this requirement is almost automatically achieved in conventional hot strip equipment, no particular limitation is considered necessary.

また捲取温度の制限は本発明の骨子をなすものであるが
、実操業上、コイル先端部あるいは末尾部は限定範囲を
若干高温側に逸脱せしめると作業が容易となることもあ
る。
Furthermore, although limiting the winding temperature is the gist of the present invention, in actual operation, the work may be facilitated by slightly deviating from the limited range to a higher temperature at the tip or tail of the coil.

先端部および末尾部は、コイル捲取り後の冷却が急速に
なるので、先端・末尾それぞれコイル全長の5φ以内が
限定範囲を逸脱する程度ならば実際的な結果としてさし
たる不都合は生じない。
Since the tip and tail portions are rapidly cooled after winding the coil, as long as within 5φ of the total length of the coil, respectively, deviate from the limited range, no major inconvenience will occur as a practical result.

本発明の鋼には、非金属介在物の形状を制御して伸びフ
ランジ性等を一段と改善するために、希土類元素(RE
M)あるいはCa等を添加することが出来る。
The steel of the present invention contains rare earth elements (RE
M) or Ca or the like can be added.

添加量は、不純物Sの含有量に応じ、重量饅数値におい
てREM/S<5 、Ca/S<3程度が推奨される。
The amount added depends on the content of impurity S, and it is recommended that REM/S < 5 and Ca/S < 3 in terms of weight ratio.

また本発明の鋼に点溶接・フラッシュバット溶接・アー
ク溶接などの溶接を施した際に生じ得る溶接部近傍の軟
化を抑制するため、各々0.2 %以下のNb5LTt
tW、および0.5φ以下のM。
In addition, in order to suppress softening near the weld that may occur when the steel of the present invention is subjected to spot welding, flash butt welding, arc welding, etc., Nb5LTt of 0.2% or less each is added.
tW, and M of 0.5φ or less.

のいずれか1種または2種以上を本発明の鋼に添加して
もよい。
Any one or two or more of these may be added to the steel of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種成分鋼板の引張強度と伸びの関係を示す図
表、第2図は各種成分鋼板において好適な低降伏比を与
える熱延仕上温度範囲を示す図表、第3図は捲取温度分
布と捲取られた後のコイル部位による温度履歴の差を示
す図表、第4図は捲取シミュレーション実験条件と降伏
比および加工後人工時効硬化性を示す図表、第5図は本
発明における熱延仕上・冷却・捲取・徐冷工程に伴なう
鋼組織変化に対する考察を説明する図表である。
Figure 1 is a chart showing the relationship between tensile strength and elongation of various component steel sheets, Figure 2 is a chart showing the hot rolling finishing temperature range that provides a suitable low yield ratio for various component steel sheets, and Figure 3 is the winding temperature distribution. Fig. 4 is a chart showing the winding simulation experimental conditions, yield ratio, and post-processing artificial age hardenability; It is a chart explaining consideration of changes in steel structure accompanying finishing, cooling, rolling, and slow cooling processes.

Claims (1)

【特許請求の範囲】 I C0,03〜0.13%、Mn0.8〜1.7%
、A10.1%以下、Si1.O〜2.0%(但し1.
0%は含まず)残部鉄および不可避的不純物から成る鋼
を熱間圧延して780℃以上890℃以下の仕上温度に
至らしめ、30°C/s以上500°C/s未満の平均
冷却速度で急冷し230℃以下の温度に至らしめて捲取
り、且つ捲取り温度のばらつきの上限・下限が100
deg Cの温度巾以内に入り且つ捲取温度のばらつき
の上限が230℃を超えない如くに調整することを特徴
とする、加工後人工時効硬化性のすく狙た低降伏比高強
度複合組織鋼板の製造方法。 2 CO,03〜0.13% 、 Mn0.8〜1.
7%、A[0,1%以下、Si1.O〜2−0饅(但し
1.0%は含まず)、Cr0.5%以下、残部鉄および
不可避的不純物から成る鋼を熱間圧延して780℃以上
890℃以下の仕上温度に至らしめ、30℃/S以上5
00℃/S未満の平均冷却速度で急冷し230℃以下の
温度に至らしめて捲取り、且つ捲取り温度のばらつきの
上限・下限が10100deの温度巾以内に入り且つ捲
取温度のばらつきの上限が230℃を超えない如くに調
整することを特徴とする、加工後人工時効硬化性のすぐ
れた低降伏比高強度複合組織鋼板の製造方法。
[Claims] I C0.03-0.13%, Mn0.8-1.7%
, A10.1% or less, Si1. O~2.0% (However, 1.
(excluding 0%) steel consisting of balance iron and unavoidable impurities is hot-rolled to a finishing temperature of 780°C or more and 890°C or less, and an average cooling rate of 30°C/s or more and less than 500°C/s. It is rapidly cooled to a temperature of 230℃ or less and then rolled up, and the upper and lower limits of the variation in the winding temperature are 100°C.
A low yield ratio high strength composite structure steel sheet aiming at artificial age hardenability after working, characterized by adjusting the temperature so that it falls within the temperature range of deg C and the upper limit of variation in the winding temperature does not exceed 230°C. manufacturing method. 2 CO, 03-0.13%, Mn 0.8-1.
7%, A[0.1% or less, Si1. A steel consisting of O ~ 2-0 rice (excluding 1.0%), Cr 0.5% or less, the balance iron and unavoidable impurities is hot rolled to a finishing temperature of 780°C or higher and 890°C or lower. , 30℃/S or more5
It is rapidly cooled at an average cooling rate of less than 00°C/S to a temperature of 230°C or less and then rolled up, and the upper and lower limits of the variation in the winding temperature are within a temperature range of 10100 de, and the upper limit of the variation in the winding temperature is A method for producing a low yield ratio, high-strength composite steel sheet with excellent post-working artificial age hardenability, the method comprising adjusting the temperature so as not to exceed 230°C.
JP10317579A 1979-01-12 1979-08-15 Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing Expired JPS5825732B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10317579A JPS5825732B2 (en) 1979-08-15 1979-08-15 Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing
AU54401/80A AU527097B2 (en) 1979-01-12 1980-01-07 Artifically aged low yield to tensile strength ratio high strength steel sheet
FR8000561A FR2446323A1 (en) 1979-01-12 1980-01-11 PROCESS FOR THE MANUFACTURE OF TWO-PHASE STEEL SHEETS HAVING HIGH TENSILE STRENGTH AND A LOW-ELASTIC LIMIT / TENSILE STRENGTH AS WELL AS EXCELLENT AGING PROPERTIES AFTER WORK, AND THE PRODUCT THUS OBTAINED
DE19803000910 DE3000910A1 (en) 1979-01-12 1980-01-11 STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
GB8001116A GB2046786B (en) 1979-01-12 1980-01-14 Two-phase high strength hot rolled steel sheet
US06/740,352 US4614551A (en) 1979-01-12 1985-06-03 Process for producing low yield ratio, high strength two-phase steel sheet having excellent artificial ageing property after working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10317579A JPS5825732B2 (en) 1979-08-15 1979-08-15 Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing

Publications (2)

Publication Number Publication Date
JPS5629624A JPS5629624A (en) 1981-03-25
JPS5825732B2 true JPS5825732B2 (en) 1983-05-30

Family

ID=14347165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10317579A Expired JPS5825732B2 (en) 1979-01-12 1979-08-15 Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing

Country Status (1)

Country Link
JP (1) JPS5825732B2 (en)

Also Published As

Publication number Publication date
JPS5629624A (en) 1981-03-25

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
EP1512762B1 (en) Method for producing cold rolled steel plate of super high strength
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
US4614551A (en) Process for producing low yield ratio, high strength two-phase steel sheet having excellent artificial ageing property after working
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JP3965708B2 (en) Manufacturing method of high strength seamless steel pipe with excellent toughness
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
JPS5825732B2 (en) Method for producing a low yield ratio, high strength composite structure steel sheet with excellent artificial age hardenability after processing
JP3292619B2 (en) Manufacturing method of hot rolled steel sheet with excellent stretch flangeability
JP2001192736A (en) Method for producing high strength hot rolled steel sheet excellent in sheet shape and workability
KR100435461B1 (en) A method for manufacturing steel material for cold forging with low property deviation
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
GB2076425A (en) Dual-phase steel sheet
JPH0665685A (en) Cold rolled sheet of ultrahigh tensile strength steel and its production
US20240141454A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
JP2919642B2 (en) Manufacturing method of high carbon steel for tempering with excellent toughness and fatigue resistance
JPS5922774B2 (en) Manufacturing method for high-tensile hot-rolled wire rods and steel bars with excellent weldability and workability
JP2790730B2 (en) Manufacturing method of high carbon steel sheet with excellent material uniformity
JP2951411B2 (en) Method of manufacturing hot-rolled high-tensile steel sheet with excellent workability and excellent material uniformity
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JPH10265847A (en) Production of high strength high toughness hot rolled steel plate
JPH10237551A (en) Production of hot rolled steel sheet excellent in fatigue characteristic and stretch-flanging property
JPS6148518A (en) Manufacture of hot rolled steel plate