JPS5825561A - Low weight magnetic field treatment unit for providing magnetic field to fluid in piping - Google Patents
Low weight magnetic field treatment unit for providing magnetic field to fluid in pipingInfo
- Publication number
- JPS5825561A JPS5825561A JP6225582A JP6225582A JPS5825561A JP S5825561 A JPS5825561 A JP S5825561A JP 6225582 A JP6225582 A JP 6225582A JP 6225582 A JP6225582 A JP 6225582A JP S5825561 A JPS5825561 A JP S5825561A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetic
- pipe
- flux density
- gauss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/02—Liquid fuel
- F23K5/08—Preparation of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M27/00—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
- F02M27/04—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
- F02M27/045—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism by permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Feeding And Controlling Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は配管内流体に物性をかえる目的で磁場(工業的
!こは磁界という)を与えるための磁界処理装置の新規
な構造に関し、小型軽量を特徴とするものであるが、配
管内に4組込むことにより、大型配管にも利用出来るも
のである。[Detailed Description of the Invention] The present invention relates to a novel structure of a magnetic field treatment device for applying a magnetic field (industrial! This is referred to as a magnetic field) for the purpose of changing the physical properties of fluid in piping, and is characterized by being small and lightweight. However, it can also be used for large-scale piping by incorporating four of them into the piping.
従来よりボイラ、火炉用の移送配管内の液体燃料に18
00ガウス附近の磁場を与えることにより燃焼効果を高
めて燃料の節減をはかる方法が知られているが、液体燃
料を使用しているエンジンMlこつい又も同様な方法で
効果があることが判った。しかし従来のものは重量嵩共
に大きいため、エンジンルームには使用出来なかった。Conventionally, 18% of the liquid fuel in transfer piping for boilers and furnaces has been used.
There is a known method of applying a magnetic field around 0.00 Gauss to enhance the combustion effect and save fuel, but it has been found that the same method is also effective for engines using liquid fuel. Ta. However, the conventional type was large in both weight and bulk, so it could not be used in the engine room.
こ\において従来の管内流体に磁場を与える磁界処理装
置又は磁界発生装置を図によって説明する。Here, a conventional magnetic field processing device or magnetic field generating device for applying a magnetic field to a fluid in a pipe will be explained with reference to the drawings.
第1図の型式はNSの極コア2に接して永久磁石1をお
いて、これを連結する連結片3とから構成されるもので
ある。また、上側の連結片3を除き永久磁石1を下側の
永久磁石1と対称において、極コア2の上部より出る漏
洩磁束を防ぐように構成されたものもある。この方式は
非磁性管4を通じて管内に磁界を与える方式にとられて
いる。The type shown in FIG. 1 consists of a permanent magnet 1 placed in contact with an NS polar core 2, and a connecting piece 3 that connects the permanent magnet 1. In addition, there is also a structure in which the permanent magnet 1 except for the upper connecting piece 3 is arranged symmetrically with the lower permanent magnet 1 so as to prevent magnetic flux leakage from the upper part of the pole core 2. This method applies a magnetic field to the inside of the tube through the non-magnetic tube 4.
第2図の型式は、特願昭和5l−64353(昭和56
−5439公報)に示めされた方式で半円形の永久磁石
1の端に極コア2を吸着させそれを鋼管3に吸着させ、
鋼管を通じ管内流体に磁場を与える方式であるが、磁力
線は鋼管の厚み部分を通りNよりSの方向に流れるため
、管内磁場はかなり減磁され、管内磁場の強さは管の外
径、厚み、長さ等に大きく左右されるので、後述の適正
磁場にすることが困難な致命的な欠陥がある。また、こ
の方式により1800ガウスの磁場を与えることは小径
で厚みの少い上爪外は出来ないので当発明とは関係のな
い構造である。The model shown in Figure 2 is the patent application Showa 5l-64353 (Showa 56
The pole core 2 is attracted to the end of the semicircular permanent magnet 1 by the method shown in Japanese Patent Publication No. 5439), and the polar core 2 is attracted to the steel pipe 3.
This method applies a magnetic field to the fluid inside the pipe through a steel pipe, but since the magnetic lines of force pass through the thick part of the steel pipe and flow in the direction of S from N, the magnetic field inside the pipe is considerably demagnetized, and the strength of the magnetic field inside the pipe depends on the outside diameter and thickness of the pipe. , there is a fatal flaw that makes it difficult to obtain an appropriate magnetic field, which will be described later, since it is greatly affected by the length and other factors. Furthermore, it is not possible to apply a magnetic field of 1800 Gauss using this method to the outside of the upper claw, which has a small diameter and little thickness, so this structure is not relevant to the present invention.
第3図の型式は実開昭48−850134こ示めされた
方式で永久磁石1を極面としその背面にコア2を連結せ
しめて極間に配管3を挾む方式である。管が鋼管の場合
と非磁性管とでは管内磁場の強さが異なるが後述のよう
に管内磁場の強さの分布が均一にならない欠陥がある。The type shown in FIG. 3 is the method shown in Japanese Utility Model Application No. 48-850134, in which a permanent magnet 1 is used as a pole face, a core 2 is connected to the back face of the permanent magnet 1, and a pipe 3 is sandwiched between the poles. When the pipe is a steel pipe and a non-magnetic pipe, the strength of the magnetic field inside the pipe is different, but as will be described later, there is a defect that the distribution of the strength of the magnetic field inside the pipe is not uniform.
磁界処理装置は後述の現象より管内が均一な磁束密度で
分布されていることが必要条件から上記第2図第3図の
方式はそのまNでは使用出来ない。The method shown in FIGS. 2 and 3 cannot be used as is in N because the magnetic field processing device requires a uniform magnetic flux density distribution within the tube due to the phenomenon described later.
次に燃焼反応を促進させるに必要な適正磁場について説
明す4第4図は財団法人電力中央研究所が昭和53年3
月研究報告277025にて発表したものでC重油につ
いての磁場の強さとばいじんの関係である。Next, we will explain the appropriate magnetic field necessary to promote the combustion reaction.4 Figure 4 was created by the Central Research Institute of Electric Power Industry in March 1978.
This was published in the Monthly Research Report 277025, and is about the relationship between magnetic field strength and soot and dust for C heavy oil.
ばいじんは燃焼状態の指標となるもので、同じ燃料でば
いじんが少いことはよく燃えることを意味し、増えるこ
とは燃えにくいことを意味する。Soot and dust are indicators of combustion conditions; less soot and dust for the same fuel means that it burns better, and more soot and dust means that it burns less.
第4図に於−(、Dは燃焼排ガス中のばいじんV冒を示
し、Bは磁場中央における磁束密度ガウスを示す。Nは
無磁場、Mは磁場を与えた場合を示す。In FIG. 4, D shows the soot and dust V in the combustion exhaust gas, B shows the Gaussian magnetic flux density at the center of the magnetic field, N shows the case without a magnetic field, and M shows the case where a magnetic field is applied.
また図において無磁場のときに曲線が上下しているのは
空気量の変動があるためで、図の見方としては磁束密度
を基準として、無磁場と磁場を与えたときのばいじんの
差が大きいことが反応が大きいこと番こなる。図よりみ
ると1800.2500ガウスは燃焼をよくする適正磁
場、2300ガウスは熱焼を悪くする不適正磁場である
。高い磁界は装置が大きくなるので2000ガウス以下
について述べる。In addition, in the diagram, the curve rises and falls when there is no magnetic field because there is a change in the amount of air, and the way to look at the diagram is that there is a large difference in soot and dust when there is no magnetic field and when a magnetic field is applied, based on the magnetic flux density. It turns out that there is a big reaction. From the figure, 1800.2500 gauss is an appropriate magnetic field that improves combustion, and 2300 gauss is an inappropriate magnetic field that worsens thermal sintering. Since a high magnetic field requires a large device, we will discuss below 2000 Gauss.
第4図によると磁場1400〜1600ガウス間は試験
がされてないが、実際に使用しても安定した効果が得ら
れず不安定な磁場である。従って工業的に使用出来るの
は1600〜1800ガウスの間で許容の範囲は200
ガウスで確実性のためをこは150ガウスをしたいとこ
ろである。According to FIG. 4, a magnetic field between 1,400 and 1,600 Gauss has not been tested, but even if it is actually used, a stable effect cannot be obtained and the magnetic field is unstable. Therefore, the range that can be used industrially is between 1600 and 1800 Gauss, and the acceptable range is 200 Gauss.
For the sake of certainty with Gauss, I would like to use 150 Gauss.
次に永久磁石を使用した磁界処理装置では磁石の性質を
考えに入れねばならない。磁界処理装置を使カ\゛
用している途中で磁場の強さが下る場合法る。この原因
としては、磁石背面と磁力線回路をつくっている軟鋼製
コアとの摩擦、温度上昇、振動、ショy 9゜経年等が
あるが、フェライト磁石は温度以外の減磁要因に強いの
で自動車のような振動の多いものには最適である。欠点
として温度±1℃毎にはゾ壬4ガウス変る(可変性)。Next, in a magnetic field processing device using permanent magnets, the properties of the magnets must be taken into consideration. This may occur if the strength of the magnetic field decreases while using the magnetic field processing device. Causes of this include friction between the back of the magnet and the mild steel core that makes up the magnetic field line circuit, temperature rise, vibration, and aging, but ferrite magnets are resistant to demagnetization factors other than temperature, so they are used in automobiles. It is ideal for things that vibrate a lot. The drawback is that the temperature changes by 4 Gauss for every ±1°C (variability).
ボイラや火炉では年間の弯動巾は最高35℃位になる。In boilers and furnaces, the annual swing width reaches a maximum of around 35 degrees Celsius.
夏場の自動車のエンジン室の温度は50℃を超えており
、冬場は20℃に達せぬことがある。従って上記の差3
5℃として140ガウスの差が出る。即ち±70ガウス
・の許容差を必要とする。これに磁界処理装置組立時の
測定及び調整誤差±3%とすると1600〜1800ガ
ウ・スの平均1700ガウスの±3%は±51ガウス、
従って総合で±12υカウスの許容差242ガウスが必
要となる。この値は適正磁界の範囲200ガウスを上回
るので磁界処理装置は磁界分布が均一であることが絶対
の条件となる。The temperature in the engine compartment of a car in summer exceeds 50 degrees Celsius, and in winter it may not reach 20 degrees Celsius. Therefore, the above difference 3
At 5°C, there is a difference of 140 Gauss. That is, a tolerance of ±70 Gauss is required. If we assume a measurement and adjustment error of ±3% when assembling the magnetic field processing device, ±3% of the average 1700 Gauss of 1600 to 1800 Gauss is ±51 Gauss.
Therefore, a total tolerance of 242 gauss of ±12υ gauss is required. Since this value exceeds the appropriate magnetic field range of 200 Gauss, it is an absolute requirement for the magnetic field processing device that the magnetic field distribution be uniform.
以上のことから当発明に関する磁界処理装置は非磁性管
に設置することも・条件としている。From the above, it is also a condition that the magnetic field processing device according to the present invention be installed in a non-magnetic tube.
次に第5図に於て管内の流体に均一磁場を与えるために
は少くとも管の内径d(こ相当するだけ均一なすもので
あるが、一般に磁極間での均一な磁束密度分布中すは極
7ア厚みTよりはるかに小さくなる。Next, in Fig. 5, in order to give a uniform magnetic field to the fluid inside the tube, the inner diameter of the tube must be made uniform by at least the same amount (d), but in general, the uniform magnetic flux density distribution between the magnetic poles is It is much smaller than the thickness T of pole 7A.
永久磁石には小型で強力な磁場を生じる高級な磁石もあ
るが、それほど強力でないが安価で原料の豊富なフェラ
イト磁石が通常用いられるので、これも考えに入れて磁
場1800ガウス附近を対象にして説明する。Although there are high-quality permanent magnets that are small and produce a strong magnetic field, ferrite magnets, which are not so strong but are inexpensive and have abundant raw materials, are usually used, so take this into consideration and target a magnetic field of around 1800 Gauss. explain.
例えば、第1図の型のもので異方性フェライト磁石(D
iscnI′Xl= 54xl:、≦t〜を用いた場合
に磁場の磁束密度分布で上下差50ガウス(±25ガウ
ス)以内の場合を均一磁束密度分布を示すとみなすと、
極コアの厚みTと均−磁束密度分布中との関係は、第6
図に示すようになる。For example, an anisotropic ferrite magnet (D
iscn I'
The relationship between the thickness T of the polar core and the uniform magnetic flux density distribution is expressed by the sixth
The result will be as shown in the figure.
第6図■図は上下方同極コア中央をこおける均−磁束密
度中すと極コア厚みTIIMとの関係[有])図は極コ
ア厚みTと磁界処理装置の重量GKp図は同高容積V口
との関係を示す。しかし極コアの厚みを大きくすると、
均−磁束密度中が大きくなるが、磁場での磁束密度の低
下を来すので、磁石を強くしなければならない。そのた
めに第1図の方式では永久磁石の筒数を増やして磁束密
度を高める方法をとる。具体的な例をとってみると、磁
場を与えるべき管の外径14φのゴム管の場合管の厚み
3mmとして、内径は8φとなる。第6図にこの値を入
れると磁極コアの厚みは18咽が必要となる。Figure 6 (■) shows the relationship between the uniform magnetic flux density at the center of the upper and lower homopolar cores and the polar core thickness TIIM. The relationship with the volume V port is shown. However, if the thickness of the polar core is increased,
Although the uniform magnetic flux density increases, the magnetic flux density in the magnetic field decreases, so the magnet must be made stronger. To this end, the method shown in FIG. 1 uses a method of increasing the number of permanent magnet cylinders to increase the magnetic flux density. To take a specific example, in the case of a rubber tube with an outer diameter of 14φ to which a magnetic field is to be applied, the thickness of the tube is 3 mm, and the inner diameter is 8φ. If this value is entered in Figure 6, the thickness of the magnetic pole core will need to be 18 mm.
第6[より前記極コアの厚み1f3tnHの場合は重量
が4.2Ky容積は600eeとなるので、このような
大きい磁界処理装置は、自動車のエンジンルーム等には
、実際には使用出来ない。小型ボイラーには支え台等必
要とし日常の保全にも邪魔になる存在となる。このよう
に第1図の方式をとるとかなりの重量が増加する。6. If the thickness of the pole core is 1f3tnH, the weight will be 4.2Ky and the volume will be 600ee, so such a large magnetic field processing device cannot actually be used in the engine room of an automobile. A small boiler requires a support stand, etc., which can get in the way of daily maintenance. If the method shown in FIG. 1 is adopted as described above, the weight will increase considerably.
二りで軽量化するには第3図方式が望ましいのでこれを
少し変形して第7図のように第3図のコアを側板2、底
板3に分離し1側板の内側にN−8極が相対するように
例えば異方性ストロンチェームフエライト永久磁石lを
配する。例として70 X 50 X 12t(fi)
の磁石2枚づ蔦を両極におき上下、左右紙面直角方向の
磁場分布の中心即ち磁芯0において例えば1800ガウ
ス(20℃)に設定したとき磁極間隔は9.6Q−程度
となるので外径22φX2tのステンレス管4を通して
管内流体に磁場を与える場合を考える。図Mは上下方向
、・図促田方右方向の磁束密度分布の測定結果であるが
、このまへでは管内分布差が240・ガウスもあるので
磁界処理装置としては使用出来ない。The method shown in Figure 3 is preferable in order to reduce weight by using two parts, so we modified it a little and separated the core shown in Figure 3 into side plates 2 and bottom plate 3 as shown in Figure 7, and placed an N-8 pole inside the first side plate. For example, anisotropic strontium ferrite permanent magnets 1 are arranged so that they face each other. For example 70 x 50 x 12t(fi)
When two magnets are placed at both poles and set at the center of the magnetic field distribution in the vertical, left and right directions perpendicular to the plane of the paper, i.e. the magnetic core 0, at 1800 Gauss (20°C), the magnetic pole spacing will be approximately 9.6Q-, so the outer diameter Consider the case where a magnetic field is applied to the fluid inside the tube through the stainless steel tube 4 of 22φ×2t. Figure M shows the measurement results of the magnetic flux density distribution in the vertical direction and the right direction of the figure, but as of now, the difference in distribution within the tube is 240 Gauss, so it cannot be used as a magnetic field processing device.
次ζこ一般の吸引磁石や、極部的強磁場発生のため接極
子を磁石の極面につけるが株式会社アグネ発行永久磁石
74頁図3.20(1975年8月25日発行)による
と接極子は3.゛p−以上のとき吸引力が最高で一定と
なっている。それ以下では接極子の厚みに比例して小さ
くなっている。ところが磁場の強さは接極子の厚みを厚
くすると低下することが判った。そこで第7図の構造の
もとに35 X 50 el→の薄い軟鋼板4を磁極面
中央に張りつけこの厚みを、変えた関係を求めたのが第
8図。この図において(ロ)図は磁場中央でMH’方向
で磁極面よりの距離Cqngにおける磁束密度と中央0
における値の差を龜ガウスで示し、tは極面に張付けた
軟鋼板の厚h#を示す■■図は中央における上下方向v
−v’方向での磁束分布を示し、bは均等になった部分
の長さmmを示す。Next ζThis is a general attraction magnet, and an armature is attached to the pole face of the magnet to generate a strong magnetic field at the pole. The armature is 3. At ゛p- or more, the suction force is the highest and constant. Below that, it becomes smaller in proportion to the thickness of the armature. However, it was found that the strength of the magnetic field decreases as the thickness of the armature increases. Therefore, based on the structure shown in Fig. 7, a thin mild steel plate 4 of 35 x 50 el was attached to the center of the magnetic pole face, and the relationship was obtained by changing this thickness, as shown in Fig. 8. In this figure, (b) shows the magnetic flux density at the center of the magnetic field in the MH' direction at a distance Cqng from the magnetic pole face and the center 0
The difference between the values is shown in Gauss, and t is the thickness h# of the mild steel plate attached to the pole surface.
The magnetic flux distribution in the -v' direction is shown, and b represents the length (mm) of the uniform portion.
図よりみて上下方向はt −0,2mmでb=23mm
と十分な均一磁場となり、左右方向では0.4tで実用
出来る磁束分布番こなっている。From the figure, the vertical direction is t -0.2mm and b = 23mm.
This results in a sufficiently uniform magnetic field, and the magnetic flux distribution in the left and right directions is at a level that can be used for practical purposes at 0.4 t.
これより磁極コアーを用いず磁極面によって、非磁性管
を通して管内流体に正確に適正磁界を与えられるように
なり且つ軽量化することが出来ることになった。以後こ
の軟鋼板を調整板とよぶ。さて第1図方式と第8図方式
を比較すると、第1図方式では第6図より均等磁束密度
中b −29mtnの場合では重量7、3 K9、嵩1
000cq竜るも第8図方式では重量′2.62Kf嵩
370(cと重量では1/4.5嵩で約凶とかなりの小
形、軽量化することが出来た。第9図は第8図の磁極間
W ! 23m病を一定とし35X50調整板の板厚を
恭を変えたときの磁場内の中央での磁束密度Boガウス
を瀘定した。もクヤ竪歩これより調整板は磁場内を均等
な磁束密度にするのみならずその強さを調整することか
ら第8図の側板、底板を一つのコアとしてU型にプレス
加工で成形し、磁石を配してから[6の製作むらによる
強弱を調整板の厚みで調整し大量生産向にすることが出
来る。例えば自動車エンジン向の磁界処理装置として磁
極間隔14m”hして50X30x12t (myのス
トロンチュームフエライトを用い4002程度のものが
製作出来る。これによりエンジンルーム内でサポートも
必要とせず使用が可能となったまた第10図(4)、(
B)のように強力な板磁石を用いてコアを[コ型又はU
型として小径向の磁界処理装置が可能となった。いづれ
も磁石むらや磁場型は調製板によりなくし磁束密度も調
整出来て大量生産がB:来る。This has made it possible to accurately apply an appropriate magnetic field to the fluid inside the tube through the non-magnetic tube by using the magnetic pole surface without using a magnetic pole core, and it has become possible to reduce the weight. Hereinafter, this mild steel plate will be referred to as an adjustment plate. Now, when comparing the method in Figure 1 and the method in Figure 8, in the case of uniform magnetic flux density b -29mtn in the method in Figure 1 as shown in Figure 6, the weight is 7.3 K9 and the bulk is 1.
000 cq Ryuuru was able to be made considerably smaller and lighter with the Figure 8 method, weight '2.62Kf bulk 370 (c and weight, 1/4.5 volume, which is about 1/4.5. Figure 9 is Figure 8. The magnetic flux density Bo Gauss at the center of the magnetic field when the thickness of the 35X50 adjustment plate is changed with the magnetic pole distance W!23m constant is determined. In order not only to make the magnetic flux density uniform but also to adjust its strength, the side plates and bottom plate shown in Fig. 8 are formed into a U-shape by pressing as one core, and after placing the magnets [Due to manufacturing irregularities in 6] The strength can be adjusted by adjusting the thickness of the adjustment plate, making it suitable for mass production. For example, as a magnetic field processing device for automobile engines, a magnetic pole spacing of 14 m"h and a 50 x 30 x 12 t (about 4002 can be manufactured using my strontium ferrite) As a result, it can be used in the engine room without the need for support.
B) Use a strong plate magnet to attach the core [U-shaped or U-shaped]
It has become possible to create a magnetic field processing device with a small diameter mold. In both cases, magnet unevenness and magnetic field type can be eliminated by adjusting plates, and the magnetic flux density can be adjusted, making mass production possible.
以上の軽量磁界処理装置はボイラ、火炉関係では小は石
油ファンヒーターから大はボイラに至る迄巾広く使用さ
れ、特に今迄取付台や支えを必要としたものカ、鰐配管
にでも支えなしでホースバンドで取付出来る簡便さがあ
る。自動車エンジン向には、10モード燃費11.5
&/j’1600ccNの自動車でキャブレター人口の
燃料管のゴム管部に取付けた場合実績1q5舅4の燃費
が12.5 K、/iに上昇した。The above-mentioned lightweight magnetic field treatment equipment is widely used in boilers and furnaces, from small oil fan heaters to large boilers.In particular, it is used for equipment that until now required mounting stands and supports, and even for alligator piping without support. It is easy to install with a hose band. For automobile engines, 10 mode fuel efficiency is 11.5
&/j' When installed on the rubber pipe of the carburetor's fuel pipe in a 1600ccN car, the actual fuel consumption of 1q5 4 increased to 12.5 K, /i.
第10図において、1は永久磁石、2はコアー、3調整
板、4管支え、5油輸送管を示す。In FIG. 10, 1 is a permanent magnet, 2 is a core, 3 is an adjustment plate, 4 is a pipe support, and 5 is an oil transport pipe.
次に本発明の装置を大口径管に利用する場合について説
明する。第11図はその応用例で(A)は横断面図(B
)は、従断面図である。大口径管6に円方異径管5をと
りつけ、軟鋼連結片2,3.3<とで外枠をつくった磁
界処理装置部を連結する。この部分では軟鋼板2を中心
に両側に格子状をこ並べられた多数枚の異方性永久磁石
を、サンドイッチ式に組合せたものを並列にしてその上
に調整板4をおき磁力調整を行って為
磁極間を適正な磁束密度に調整し流体通路の両側の不適
正磁場部分を邪魔板7で塞いでこの極間を流体 4゜が
通るようにすると大口径管を通る流体に適正な磁場を与
えることが出来る。この方式は特開昭4)七、−51−
8!’224号公報に示めされた図のケーシングに似て
いるが、全々異なるもので、あくまでも磁力回路と調整
板の組合せで適正な磁場を流体に与える軽量磁界処理装
置を目的としたものである。Next, the case where the device of the present invention is applied to a large diameter pipe will be explained. Figure 11 is an example of its application, and (A) is a cross-sectional view (B
) is a secondary sectional view. A circular pipe with different diameters 5 is attached to a large diameter pipe 6, and a magnetic field processing device section whose outer frame is made of mild steel connecting pieces 2, 3.3 is connected. In this part, a large number of anisotropic permanent magnets arranged in a lattice pattern on both sides of the mild steel plate 2 are arranged in parallel in a sandwich style, and an adjustment plate 4 is placed on top of the magnets to adjust the magnetic force. Therefore, by adjusting the magnetic flux density between the magnetic poles to an appropriate value and blocking the inappropriate magnetic field portions on both sides of the fluid passage with baffle plates 7 so that 4° of fluid passes between these poles, an appropriate magnetic field will be created for the fluid passing through the large diameter pipe. can be given. This method was published in Japanese Unexamined Patent Publication No. 4)7, -51-
8! Although it resembles the casing shown in the '224 publication, it is completely different, and is intended to be a lightweight magnetic field processing device that applies an appropriate magnetic field to a fluid using a combination of a magnetic circuit and an adjusting plate. be.
特にフェライト磁石等はせいぜい100咽角程度の大き
さしか出来ないので格子状に磁石を並べる場合隣同志で
互に反撲し合うので磁石間に間隙が出来てそのために磁
場の強さくこむらが出来るが調整板をこよりこのむらが
緩和されほとんど平均化する効果があり、大型磁界処理
装置には欠かせないものである。In particular, ferrite magnets can only have a size of about 100 degrees of angle at most, so when magnets are arranged in a grid, adjacent magnets push each other against each other, creating gaps between the magnets, which causes the magnetic field to become strong and uneven. The adjustment plate has the effect of alleviating and almost evening out the unevenness, making it indispensable for large-scale magnetic field processing equipment.
以上は焼結又は金属の永久磁石の使用例を説明したが、
磁場の強さによってはプラスチック板やフィルム状の帯
状永久磁石を同様の方法で使用出来る。The above example describes the use of sintered or metal permanent magnets, but
Depending on the strength of the magnetic field, plastic plate or film-like strip permanent magnets can be used in a similar manner.
ボイラ、火炉の燃焼用空気を磁化させると、燃焼が促進
されてすすの発生を抑え、熱効率を向上させるが、この
ように空気やガスを磁化させる場合にも用いられる。Magnetizing the combustion air of boilers and furnaces promotes combustion, suppresses soot generation, and improves thermal efficiency, but it is also used to magnetize air or gas in this way.
第1図、第2図及び第3図は従来の磁界発生装置の構造
を示す立面図。
第4図は配管内流体に磁場を与える場合の磁束密度とば
いえんの関係を示す財団法人電力中央研究所の実験の一
例。第5図は第1図の型式の磁界処理装置の磁束密度、
分布中の傾向を示すモデル図。
第6図は第1開方式の磁界処理装置の一例における極コ
アの厚みと(A)図は均一磁束密度の分布中すとの関係
、(B)図は同じく磁界処理装置の重量との関係、(C
)図は同じく嵩容榎との関係を示す。
第7図は磁石の背面をこコアーをもち磁極面間で磁場を
つくる方式で70x50x12t0苅)のストロンチュ
ームフエライト磁石2枚を各極面にもつ場合の磁界発生
装置の立面図と磁場内の中央における上下、左右の磁束
密度分布図。
第8図は第7図のものに調整板をとりつけた磁界処理装
置の立面図と調整板の厚みの効果を示す測定値。
第9図は調整板の厚みと磁場中央における磁束密度との
関係。
第10図は小型磁界処理装置の実例2ケの立面図と側面
図。
第11図は大型配管に用いた軽量磁界処理装置の一例を
示す断面図。
!#1 図 第 2図
(A) (B)竿フ
0 図
弔 11 fflFIGS. 1, 2, and 3 are elevational views showing the structure of a conventional magnetic field generator. Figure 4 is an example of an experiment conducted by the Central Research Institute of Electric Power Industry that shows the relationship between magnetic flux density and air flow when a magnetic field is applied to fluid in piping. Figure 5 shows the magnetic flux density of the magnetic field processing device of the type shown in Figure 1.
A model diagram showing trends in distribution. Figure 6 shows the relationship between the thickness of the polar core in an example of the first open type magnetic field processing device, (A) shows the relationship between the distribution of uniform magnetic flux density, and (B) shows the relationship with the weight of the magnetic field processing device. , (C
) The figure also shows the relationship with Enoki Kaoru. Figure 7 shows an elevational view of the magnetic field generator when each pole surface has two strontium ferrite magnets of 70 x 50 Magnetic flux density distribution diagram in the upper, lower, left and right directions at the center. FIG. 8 is an elevational view of a magnetic field processing device with an adjusting plate attached to the one shown in FIG. 7, and measured values showing the effect of the adjusting plate's thickness. Figure 9 shows the relationship between the thickness of the adjusting plate and the magnetic flux density at the center of the magnetic field. FIG. 10 is an elevational view and a side view of two practical examples of a small magnetic field processing device. FIG. 11 is a sectional view showing an example of a lightweight magnetic field treatment device used for large-sized piping. ! #1 Figure Figure 2 (A) (B) Rod f0 Diagram 11 ffl
Claims (1)
両極の極面に軟鋼板を張り合せてなる磁界処理装置 12)軟鋼板を介し複数個の永久磁石を重ね合せてグる
特許請求の範囲■記載の装置[Claims] 1) A permanent magnet is used as both poles and a magnetic circuit is combined on the back side of the permanent magnet,
12) A device according to claim (1) in which a plurality of permanent magnets are stacked on top of each other through mild steel plates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225582A JPS5825561A (en) | 1982-04-13 | 1982-04-13 | Low weight magnetic field treatment unit for providing magnetic field to fluid in piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225582A JPS5825561A (en) | 1982-04-13 | 1982-04-13 | Low weight magnetic field treatment unit for providing magnetic field to fluid in piping |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5825561A true JPS5825561A (en) | 1983-02-15 |
Family
ID=13194846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6225582A Pending JPS5825561A (en) | 1982-04-13 | 1982-04-13 | Low weight magnetic field treatment unit for providing magnetic field to fluid in piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825561A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6190215U (en) * | 1984-11-19 | 1986-06-12 | ||
JP3023699U (en) * | 1995-10-12 | 1996-04-23 | 英明 牧田 | Harmful exhaust gas reduction device for internal combustion engine or boiler |
JP3023698U (en) * | 1995-10-12 | 1996-04-23 | 英明 牧田 | Boiler toxic emission reduction device |
WO1996041100A1 (en) * | 1995-06-07 | 1996-12-19 | Hideaki Makita | Harmful exhaust gas reduction device for an internal combustion engine or a boiler |
WO1998030796A1 (en) * | 1997-01-06 | 1998-07-16 | Big Bang Co., Ltd. | Engine combustion improvement device and engine combustion improvement method using magnetism |
WO1998039564A1 (en) * | 1997-03-07 | 1998-09-11 | CENTRUM BADAWCZO-PRODUKCYJNE SORBENTÓW I CZYSTYCH TECHNOLOGII WEGLA 'EKOCENTRUM' SPÓ$m(C)KA Z O.O. | A method and a device for the magnetic activation of solid, liquid and gas media, especially coal dust and other hydrocarbon fuels |
EP0976682A2 (en) * | 1998-07-28 | 2000-02-02 | MITech UK Ltd. | Magnetic treatment of fluids |
JP2007512494A (en) * | 2003-11-28 | 2007-05-17 | マクシス リミテッド | Improvements for fuel combustion |
JP2008180226A (en) * | 1994-10-25 | 2008-08-07 | Wenhao Wang | Highly efficient and environment protective fuel economizer |
JP2012097734A (en) * | 2010-10-08 | 2012-05-24 | Akio Shigeta | Method and tool for improving fuel consumption of combustion engine |
WO2014062148A1 (en) * | 2012-10-15 | 2014-04-24 | Sydorenko Sergiy Petrovich | Flow-through magnetic cell and device for magnetic treatment of fluid media based thereon |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5343771U (en) * | 1976-09-20 | 1978-04-14 | ||
JPS543930A (en) * | 1977-06-13 | 1979-01-12 | Miwako Kurikaraku | Method of and apparatus for atomizing fluid |
-
1982
- 1982-04-13 JP JP6225582A patent/JPS5825561A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5343771U (en) * | 1976-09-20 | 1978-04-14 | ||
JPS543930A (en) * | 1977-06-13 | 1979-01-12 | Miwako Kurikaraku | Method of and apparatus for atomizing fluid |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6190215U (en) * | 1984-11-19 | 1986-06-12 | ||
JP2008180226A (en) * | 1994-10-25 | 2008-08-07 | Wenhao Wang | Highly efficient and environment protective fuel economizer |
WO1996041100A1 (en) * | 1995-06-07 | 1996-12-19 | Hideaki Makita | Harmful exhaust gas reduction device for an internal combustion engine or a boiler |
JP3023699U (en) * | 1995-10-12 | 1996-04-23 | 英明 牧田 | Harmful exhaust gas reduction device for internal combustion engine or boiler |
JP3023698U (en) * | 1995-10-12 | 1996-04-23 | 英明 牧田 | Boiler toxic emission reduction device |
US6220231B1 (en) | 1997-01-06 | 2001-04-24 | Big Bang Co., Ltd. | Device and method for improving engine combustion by use of magnetism |
WO1998030796A1 (en) * | 1997-01-06 | 1998-07-16 | Big Bang Co., Ltd. | Engine combustion improvement device and engine combustion improvement method using magnetism |
US6143045A (en) * | 1997-03-07 | 2000-11-07 | Centrum Badawczo-Produkcyjne Sorbentowi Czystychtechnologii Wegla "Ekocentrum" Spolka ZO.O. | Method and a device for the magnetic activation of solid, liquid and gas media, especially coal dust and other hydrocarbon fuels |
WO1998039564A1 (en) * | 1997-03-07 | 1998-09-11 | CENTRUM BADAWCZO-PRODUKCYJNE SORBENTÓW I CZYSTYCH TECHNOLOGII WEGLA 'EKOCENTRUM' SPÓ$m(C)KA Z O.O. | A method and a device for the magnetic activation of solid, liquid and gas media, especially coal dust and other hydrocarbon fuels |
EP0976682A2 (en) * | 1998-07-28 | 2000-02-02 | MITech UK Ltd. | Magnetic treatment of fluids |
EP0976682A3 (en) * | 1998-07-28 | 2000-07-05 | McClenaghan, Brent | Magnetic treatment of fluids |
JP2007512494A (en) * | 2003-11-28 | 2007-05-17 | マクシス リミテッド | Improvements for fuel combustion |
JP2012097734A (en) * | 2010-10-08 | 2012-05-24 | Akio Shigeta | Method and tool for improving fuel consumption of combustion engine |
WO2014062148A1 (en) * | 2012-10-15 | 2014-04-24 | Sydorenko Sergiy Petrovich | Flow-through magnetic cell and device for magnetic treatment of fluid media based thereon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5825561A (en) | Low weight magnetic field treatment unit for providing magnetic field to fluid in piping | |
CN202246742U (en) | Induction coil used for quenching splined shaft | |
CN103310055B (en) | A kind of method for designing of high-frequency high-voltage transformer for electrostatic dust collection | |
US9254493B2 (en) | Oxygen-enriched air producing device and oxygen-enriched air producing method | |
CN105622111B (en) | A kind of sintering process of high-performance permanent-magnet ferrite | |
CN103212357A (en) | Magnetic energy oil-saving environment-friendly device | |
JP5342921B2 (en) | Metal plate induction heating device | |
CN202117801U (en) | Magnetic treatment device | |
US20140055222A1 (en) | Ionization by Magnetic Induction for Natural Gas | |
CN210343543U (en) | Gasoline pipe magnetizer | |
WO2016034989A1 (en) | Anti-harmful emissions internal combustion engine | |
CN106286004B (en) | Thermo-acoustic driven multiphase alternating current thermomagnetic power generation system | |
JP2016023550A (en) | Corrugated fin heat exchanger | |
CN202007724U (en) | Magnetized oil economizing device | |
CN102619652B (en) | Energy-saving emission-reducing device for internal combustion engine | |
CN102720605B (en) | Magnetization oil-saving apparatus | |
CN104863761A (en) | Device for improving efficiency of hydrocarbon fuel | |
Karande et al. | Experimental Study the Effect of Electromagnetic Field on Performance & Emission of IC Engine | |
CN203285575U (en) | Magnetizing fuel economizer | |
CN208652612U (en) | A kind of ESA fuel gas magnetization energy-saving device | |
CN102720604B (en) | Magnetization oil-saving apparatus | |
CN102720606B (en) | Magnetic treatment device | |
CN2157990Y (en) | Magnetizing fuel-economizing purifier | |
CN205881644U (en) | Low-noise CD-type iron core and high-voltage transformer using same | |
JP4778046B2 (en) | Equipment for saving fuel and reducing emissions |