JPS582509A - Combustion method of pulverized coal - Google Patents

Combustion method of pulverized coal

Info

Publication number
JPS582509A
JPS582509A JP56098419A JP9841981A JPS582509A JP S582509 A JPS582509 A JP S582509A JP 56098419 A JP56098419 A JP 56098419A JP 9841981 A JP9841981 A JP 9841981A JP S582509 A JPS582509 A JP S582509A
Authority
JP
Japan
Prior art keywords
combustion
pulverized coal
air
coal
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56098419A
Other languages
Japanese (ja)
Inventor
Shigeru Azuhata
茂 小豆畑
Norio Arashi
紀夫 嵐
Takao Hishinuma
孝夫 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP56098419A priority Critical patent/JPS582509A/en
Publication of JPS582509A publication Critical patent/JPS582509A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce NOx, by transporting pulverized coal to a combustion nozzle from a crusher and by reducing the concn. of oxygen in the waste combustion gas to be jetted out of a combustion nozzle to below the concn. of oxygen in the air. CONSTITUTION:Combustion air 11 is supplied to a pulverized coal combustion burner 17 as secondary and tertiary air. Fuel coal is transported to the pulverized coal combustion burner 17 through the inside of a pulverized coal supply duct 24 using combustion primary air afger the coal have been pulverized by stock coal crusher 21. A part of combustion gas 10 extracted by a primary air blower 22 is used as the primary air for the combustion of the pulverized coal. Thus, the concn. of oxygen in the primary air can be reduced to below the oxygen concn. of the atmospheric air, because the waste combustion gas is used as the primary air, and reduction of quantity of NOx to be generated at the combustion of the pulverized coal can be attained.

Description

【発明の詳細な説明】 本発明に微粉炭の燃焼法に係り、特に微粉炭の゛燃焼時
に発生する窒素酸化物(以下NOXと称する)t−低減
するのに好”適な燃焼法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion method for pulverized coal, and particularly to a combustion method suitable for reducing nitrogen oxides (hereinafter referred to as NOX) generated during combustion of pulverized coal.

化石燃料中には、C,!(等の燃料成分の他にN分が含
まれ、特に石炭の場合、ガス燃料や液体燃料に比較して
N分含有量が多い。従って、石炭の燃焼時に発生するN
0XFi、気体及び液体燃料の燃焼時に発生するNOX
よ°りも多くなり、これ奢極力低減することが要望され
ている。
In fossil fuels, C,! (In addition to fuel components such as
0XFi, NOX generated during combustion of gas and liquid fuels
There is a desire to reduce this as much as possible.

種々な燃料の燃焼時に発生するN0xFi、その発生形
態により、サーマ/I/NOXとフューエルNOXの2
種類に分類される。サーマルN0Xe−!、燃焼用空気
中の窒素が酸素によって酸化され、生成するものであり
、フユーエ、4NOXは、燃料中のN分の酸素酸化によ
り生成するものである。これらのN9X発生を抑制する
ための燃焼法として、従来、燃焼用空気を多段に分割し
て注入する多段燃焼法、低酸素濃度の燃焼排ガスを燃焼
領域に混入する排ガス再循環法等がある。これらの低N
OX燃焼法に共通の原理は、燃焼火炎の温it低下させ
ることにより、窒素と酸素との反応を抑制することにあ
る。前記の2種類のNOXの中で、燃焼温度の低下によ
って発生量の低減するのはサーマルNOXであり、フュ
ーエルNOXの発生は燃焼II!度に対する依存性が低
い。従って、4火炎瀉度の低下を目的とする燃虜法は、
N分含有量の少ない燃誉からのNOX低減には有効であ
るが、発生す石NOXの80%近くが、フューエルNO
Xである微粉炭燃焼に対しては効果が薄い。
NOxFi is generated when various fuels are combusted, and depending on its generation form, there are two types of NOx: thermal/I/NOX and fuel NOX.
classified into types. Thermal NOXe-! , is produced when nitrogen in the combustion air is oxidized by oxygen, and fueue and 4NOx are produced when the N content of fuel is oxidized with oxygen. Conventional combustion methods for suppressing the generation of N9X include a multistage combustion method in which combustion air is divided into multiple stages and injected, and an exhaust gas recirculation method in which combustion exhaust gas with a low oxygen concentration is mixed into the combustion region. These low N
The common principle of the OX combustion method is to suppress the reaction between nitrogen and oxygen by lowering the temperature of the combustion flame. Among the two types of NOX mentioned above, thermal NOX is the one whose generation amount is reduced by lowering the combustion temperature, and fuel NOX is generated in Combustion II! less dependent on degree. Therefore, the 4th Flame Control Law, which aims to reduce the flame temperature, is as follows:
Although it is effective in reducing NOx from Mehoku, which has a low N content, nearly 80% of the NOx generated is from fuel NOx.
It has little effect on pulverized coal combustion, which is X.

本発明の目的はζ微粉炭特有の燃焼時の性質を考慮し、
前記の従来開発されてきた燃焼法を更に改良することに
より、微粉炭燃焼時に発生するNOXを低減する燃焼法
を提供する−ことにある。
The purpose of the present invention is to take into account the unique combustion properties of ζ pulverized coal,
The object of the present invention is to provide a combustion method that reduces NOx generated during pulverized coal combustion by further improving the conventionally developed combustion method.

石炭中の可燃成分は、大別すると揮発成分と固体成分と
に大別できる。この石炭固有の性状に従い、微粉炭の燃
焼機構は揮発成分が放出される微粉炭の熱分解過程、放
出された揮発成分の燃焼過程、更に熱分解後の可燃性固
体成分(以下チャーと称する)の燃焼過程から成る。揮
発成分の燃焼速度は固体成分の燃焼速度より高く、揮発
成分は燃焼の初期過程で燃焼する。また、熱分解過程で
に、石炭中に含有されるN分も、可燃分と同様に、揮二
放出されるものとチャー中に残るものとに分かれる。従
らてJ微粉炭燃焼時に発生するツー−エルN0XH1揮
発性N分からのNOXとチャー中のN分からのNO’X
とに4かれる。この2種類の7ユーエルNOXの中で、
チャーからのフューエルN OXi、還元剤である固体
燃料とNOXの反応がチャー内で進行す為ため、発生量
が少なく、揮発成分からのNOXがフューエルNOXの
大半を占める。故に、微粉炭燃焼時に発生するフューエ
ルNOX抑制法としては、揮発成分から発生する7ユー
エルNOXの抑制に効果のある燃焼法が熾も効果の高い
方法になる。
The combustible components in coal can be broadly classified into volatile components and solid components. According to the unique properties of this coal, the combustion mechanism of pulverized coal consists of a thermal decomposition process of the pulverized coal in which volatile components are released, a combustion process of the released volatile components, and a combustible solid component (hereinafter referred to as char) after the thermal decomposition. It consists of the combustion process. The combustion rate of volatile components is higher than that of solid components, and volatile components are burned in the initial process of combustion. Further, during the thermal decomposition process, the N content in the coal is divided into those that are released as volatiles and those that remain in the char, similar to the combustible components. Therefore, NOX from the volatile N fraction of 2-L NOXH1 generated during J pulverized coal combustion and NO'X from the N fraction in the char.
It's 4 years old. Among these two types of 7UEL NOX,
Since the reaction between the fuel NOXi from the char, the solid fuel as a reducing agent, and NOX progresses within the char, the amount generated is small, and NOX from volatile components accounts for most of the fuel NOX. Therefore, as a method for suppressing fuel NOx generated during combustion of pulverized coal, a combustion method that is effective in suppressing 7UEL NOx generated from volatile components is the most effective method.

揮発性N分は、燃焼時にはCN、NH等の含窒素ラジカ
ル(反応中間体)になることが知られている。これらの
ラジカルは、酸素と反応してNOXになる他に、発生し
たNOXと反応して、N−0Xを窒素に分解する還元剤
にもなり得る。この含窒素ラジカルのNOX還元の作用
は、低酸素濃度下で顕著になる。
It is known that volatile N becomes nitrogen-containing radicals (reaction intermediates) such as CN and NH during combustion. In addition to reacting with oxygen to become NOX, these radicals can also react with generated NOX to become a reducing agent that decomposes N-0X into nitrogen. This NOX reduction effect of nitrogen-containing radicals becomes significant under low oxygen concentrations.

一以上の説明で明らかなように、微粉炭燃焼時のNOX
低減法としては、揮発成分の燃焼領域を低酸素濃度雰囲
気にする。燃焼゛法が最も有効である。
As is clear from the above explanation, NOx during pulverized coal combustion
As a reduction method, the combustion area of volatile components is made to have a low oxygen concentration atmosphere. The combustion method is the most effective.

即ち・微粉炭の熱分!過程′t″↑含5た燃焼0初期領
域を低酸素濃度雰囲気にする燃焼法が効果的になる。
In other words, the heat content of pulverized coal! A combustion method that creates a low oxygen concentration atmosphere in the combustion zero initial region including the process 't''↑ becomes effective.

一般的な微粉炭バーナは、第1図に示すように、1次空
気管1.2次空気管2.3次空気管3、着火装置4から
構成される。1次空気管1内は微粉炭と、これを微粉炭
供給装置からバーナまで搬送するための1次空気が流れ
る。゛乏次空気管2.3次空気管3内は、それぞれに設
置され象ダンパ5゜6に゛よって流量調節された燃焼用
空気が流れる。
A typical pulverized coal burner is comprised of a primary air pipe 1, a secondary air pipe 2, a tertiary air pipe 3, and an ignition device 4, as shown in FIG. Inside the primary air pipe 1, pulverized coal and primary air for transporting the pulverized coal from the pulverized coal supply device to the burner flow. Combustion air flows through the depleted air pipe 2 and the tertiary air pipe 3, the flow rate of which is regulated by elephant dampers 5 and 6 installed respectively.

従来の排ガス再循環法は、上記バーナにおいて、1次空
気、2次空気、3次空気それぞれ罠燃焼排、ガスヲ混入
し、燃焼用空気中の酸素濃度を一様に低下させるか、も
しくは新たに1次空気管1と2次空気管2との間等に燃
焼排ガス供給管を設置する方式が採られていた。しかし
ながら、燃焼用空気中の酸素濃度を一様に低下、させる
方式では、燃焼速度が低くなり、火炎が長くなる為、4
燃焼炉が大きくなる。また新九に燃焼排ガス供給管を設
置する方式では、燃焼排ガスと微粉炭の混合が悪くなり
、NOx低減の効果が薄れる等の問題がある。
In the conventional exhaust gas recirculation method, primary air, secondary air, and tertiary air are mixed in with the combustion exhaust gas and gas in the burner, and the oxygen concentration in the combustion air is uniformly lowered, or new air is added to the combustion air. A method has been adopted in which a combustion exhaust gas supply pipe is installed between the primary air pipe 1 and the secondary air pipe 2. However, with the method of uniformly lowering the oxygen concentration in the combustion air, the combustion speed becomes lower and the flame becomes longer.
The combustion furnace becomes larger. In addition, the method of installing a flue gas supply pipe in Shinku has problems such as poor mixing of flue gas and pulverized coal, which reduces the effect of reducing NOx.

本発明は上記の問題t−解決するためになされたもので
その特徴とするところは、燃料ノズルから噴出させる気
体を空気よりも酸素濃度の低い燃焼排ガスとする微粉炭
燃焼法に志る。
The present invention has been made to solve the above-mentioned problem, and is characterized by a pulverized coal combustion method in which the gas ejected from a fuel nozzle is a combustion exhaust gas having a lower oxygen concentration than air.

以下本発明の一実施例を第2回によって説明す第2図は
本発明を微粉炭燃焼用ボイラ25に適用した場合の例で
あり、撫勅炭は、燃焼室7内で燃゛焼し、その燃焼ガス
lOは水蒸気を発生する九めの熱交換器群8内を通過後
、空気予熱器i内↑燃焼用空気11と熱交換し、燃焼用
空気11t−加熱した後大気中へ放出される。
Embodiment 2 of the present invention will be explained in the second part. Fig. 2 shows an example in which the present invention is applied to a pulverized coal combustion boiler 25, in which pulverized coal is burned in the combustion chamber 7. After the combustion gas lO passes through the ninth heat exchanger group 8 that generates water vapor, it exchanges heat with the combustion air 11 in the air preheater i, heats the combustion air 11t, and then releases it into the atmosphere. be done.

燃焼用空気11けζ送風機13によって、空気予熱器9
内で加熱された後、燃焼用空気供給管12内を通過し、
風箱16内へ供給され−る。更に、燃焼用空気11′は
、風箱16内に設置された微粉′炭燃焼用バーナ17内
へ2次空気及び3次空気として、2次空気用ダン六14
及び3次、空気用ダンパ15によって適正な流量に配分
された後2次空気管及び3次空気管より噴出される。
Air preheater 9
After being heated within, it passes through the combustion air supply pipe 12,
The air is supplied into the wind box 16. Furthermore, the combustion air 11' is fed into the pulverized coal combustion burner 17 installed in the wind box 16 as secondary air and tertiary air.
After being distributed to an appropriate flow rate by the tertiary air damper 15, it is ejected from the secondary air pipe and the tertiary air pipe.

燃料石炭は、原料炭貯蔵庫1−8内に貯蔵され、原料炭
供給装置20により、原料炭供給管19内を通過し原料
炭粉飾装置21へと導かれる。燃料石炭は、原料炭粉砕
装置21により、燃焼に適正、な粒径に粉砕された後、
燃焼用の1次空気により微粉炭供給管24内を通り、先
端にノズルを有する微粉炭燃焼用バーナ17内へ搬蓬i
れる。燃料石炭は、微粉炭燃用バーナ17によって燃焼
室7°内へ噴出され、1次空気、2次空気、3次空気に
よって燃焼される。
The fuel coal is stored in the coking coal storage 1 - 8 , and guided by the coking coal supply device 20 to the coking coal dressing device 21 through the coking coal supply pipe 19 . After the fuel coal is pulverized by the coking coal pulverizer 21 to a particle size suitable for combustion,
The primary air for combustion passes through the pulverized coal supply pipe 24 and is transported into the pulverized coal combustion burner 17 having a nozzle at the tip.
It will be done. The fuel coal is injected into the combustion chamber 7° by the pulverized coal combustion burner 17, and is combusted by primary air, secondary air, and tertiary air.

燃焼ガスlOの一部は、−次空気送風機22によって抽
気され、抽気された燃焼ガスは1次空気供給管23によ
って他の燃焼ガスから分離され、原料炭粉砕装置21で
作られる微粉炭を微粉炭燃焼用バーナ17へ搬送すると
同時に、微粉炭燃焼用の1次空気として使用される。こ
のようにして得られる1次空気、即ち燃焼排ガス中の酸
素濃度は通常10体積%以下であり・、大気中の空気を
1次空気として利用する場合よりも、微粉炭燃焼の初期
領域を低酸素濃度雰囲気とすることが可能である。即ち
微粉炭の熱分解及び揮鵬分の燃焼を低酸素濃度下で進行
させることができるため、微粉炭燃焼時に発生するNO
’Xの低減に有効である。
A part of the combustion gas lO is extracted by the secondary air blower 22, and the extracted combustion gas is separated from other combustion gases by the primary air supply pipe 23, and the pulverized coal produced by the coking coal pulverizer 21 is pulverized. At the same time as being transported to the coal combustion burner 17, it is used as primary air for pulverized coal combustion. The oxygen concentration in the primary air, that is, the combustion exhaust gas, obtained in this way is usually 10% by volume or less, and the initial region of pulverized coal combustion is lower than when atmospheric air is used as the primary air. It is possible to create an oxygen concentration atmosphere. In other words, since the thermal decomposition of pulverized coal and the combustion of volatile components can proceed under low oxygen concentration, NO generated during pulverized coal combustion can be reduced.
'It is effective in reducing X.

炭燃焼の初期領域を低酸素濃度雰囲気にすることが可能
であるため、微粉炭燃焼時に発生するNOXを低減する
ことができる。
Since it is possible to create a low oxygen concentration atmosphere in the initial region of charcoal combustion, NOx generated during pulverized coal combustion can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微粉炭燃焼に使用される代表的なバーナの縦断
面図、第2図は本発明の一実施となる微粉炭燃焼用ボイ
ラに適用した場合の説明図である。
FIG. 1 is a vertical cross-sectional view of a typical burner used for pulverized coal combustion, and FIG. 2 is an explanatory diagram of the present invention when applied to a pulverized coal combustion boiler.

Claims (1)

【特許請求の範囲】[Claims] 1、微粉炭を搬送する気体と、この微粉体と気体の混合
気流を噴出する燃料ノズルと、微粉炭を燃焼する空気を
噴出する空気ノズルと、燃料石炭を粉砕する粉砕装置を
有する燃焼装置の燃焼方法において、微粉炭を粉砕装置
から燃料ノズル搬送し、しかもこの燃料ノズルから噴出
させる気体を空気よりも酸素濃度の低い燃焼mガスとす
ること′fr特徴とする微粉炭燃焼法。
1. A combustion device having a gas for transporting pulverized coal, a fuel nozzle for ejecting a mixed airflow of the pulverized coal and gas, an air nozzle for ejecting air for burning the pulverized coal, and a pulverizer for pulverizing the fuel coal. A pulverized coal combustion method characterized in that pulverized coal is conveyed from a pulverizer to a fuel nozzle, and the gas ejected from the fuel nozzle is a combustion gas having a lower oxygen concentration than air.
JP56098419A 1981-06-26 1981-06-26 Combustion method of pulverized coal Pending JPS582509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098419A JPS582509A (en) 1981-06-26 1981-06-26 Combustion method of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098419A JPS582509A (en) 1981-06-26 1981-06-26 Combustion method of pulverized coal

Publications (1)

Publication Number Publication Date
JPS582509A true JPS582509A (en) 1983-01-08

Family

ID=14219295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098419A Pending JPS582509A (en) 1981-06-26 1981-06-26 Combustion method of pulverized coal

Country Status (1)

Country Link
JP (1) JPS582509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654283A (en) * 2012-02-15 2012-09-05 广东工业大学 Cyclone combustion system for coal slag powder
JP2020186846A (en) * 2019-05-14 2020-11-19 川崎重工業株式会社 Dust coal burner device, and burning method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654283A (en) * 2012-02-15 2012-09-05 广东工业大学 Cyclone combustion system for coal slag powder
CN102654283B (en) * 2012-02-15 2014-09-24 广东工业大学 Cyclone combustion system for coal slag powder
JP2020186846A (en) * 2019-05-14 2020-11-19 川崎重工業株式会社 Dust coal burner device, and burning method therefor

Similar Documents

Publication Publication Date Title
US4329932A (en) Method of burning fuel with lowered nitrogen-oxides emission
KR920001094B1 (en) Method of buring solid fuel by means of a fluidized bed
US4335660A (en) Apparatus and method for flue gas recirculation in a solid fuel boiler
US4246853A (en) Fuel firing method
CN107355776A (en) Combustion System of Boiler Burning Fine, method and the application of ultra-low NOx emission
CN206112904U (en) Biomass boiler low -nitrogen combustion system
JPH05505021A (en) Method for reducing nitrous oxide emissions when burning nitrogen-containing fuels in fluidized bed reactors
CA1092897A (en) Fuel firing method
US4986199A (en) Method for recovering waste gases from coal partial combustor
JPH0126447B2 (en)
US5141726A (en) Process for reducng Nox emissions from combustion devices
JPS624606B2 (en)
CN106318515A (en) In-furnace denitrification method and device
CN104089279B (en) Low nitrogen burning system
CN104089299B (en) Low nitrogen burning method
JPS582509A (en) Combustion method of pulverized coal
JPS6017611A (en) Combustion of solid fuel and device therefor
JPS6138961B2 (en)
JPS5834025A (en) Removal of nitrogen oxides in exhaust gas
JPS62169907A (en) Pulverized coal combustion boiler
JPS5986809A (en) Pulverized coal burner for forming reducing flame
JPS58102008A (en) Starting of fluidized bed boiler
CN105782958A (en) Combustion equipment and combustion method
JPH0262768B2 (en)
JPS6176814A (en) Low nox combustion