JP2020186846A - Dust coal burner device, and burning method therefor - Google Patents

Dust coal burner device, and burning method therefor Download PDF

Info

Publication number
JP2020186846A
JP2020186846A JP2019091157A JP2019091157A JP2020186846A JP 2020186846 A JP2020186846 A JP 2020186846A JP 2019091157 A JP2019091157 A JP 2019091157A JP 2019091157 A JP2019091157 A JP 2019091157A JP 2020186846 A JP2020186846 A JP 2020186846A
Authority
JP
Japan
Prior art keywords
pulverized coal
nozzle
outside air
burner
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019091157A
Other languages
Japanese (ja)
Other versions
JP7284630B2 (en
Inventor
正也 清水
Masaya Shimizu
正也 清水
尚人 横路
Naoto Yokomichi
尚人 横路
史樹 福永
Fumiki Fukunaga
史樹 福永
雄司 今田
Yuji Imada
雄司 今田
伸宏 宇山
Nobuhiro Uyama
伸宏 宇山
格章 福田
Masaaki Fukuda
格章 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Kawasaki Heavy Industries Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Kawasaki Heavy Industries Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Kawasaki Heavy Industries Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2019091157A priority Critical patent/JP7284630B2/en
Publication of JP2020186846A publication Critical patent/JP2020186846A/en
Application granted granted Critical
Publication of JP7284630B2 publication Critical patent/JP7284630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To stably burn wet dust coal prepared by desalting a carbonized material obtained by carbonizing general waste, by a dust coal burner.SOLUTION: A dust coal burner 2 ejecting dust coal as burner fuel from a dust coal nozzle 5, is characterized in that a pair of outside air introduction nozzles 11 are connected to the dust coal nozzle 5 of a straight tube shape to generate a swirl flow in the vicinity of the ejection port of the dust coal nozzle 5, and outside air from the outside air introduction nozzles 11 is introduced in such a manner that its flow velocity can be adjusted, to inject a dust-coal/air mixture in the dust coal nozzle 5 into flame in a form of a prescribed swirl flow in a dispersed state to burn the dust coal.SELECTED DRAWING: Figure 1

Description

本発明は、都市ごみ等の一般廃棄物の炭化処理物の微粉炭を燃料とする微粉炭バーナ装置およびその燃焼方法に関するものである。 The present invention relates to a pulverized coal burner device using pulverized coal as a fuel for carbonized products of general waste such as municipal waste, and a combustion method thereof.

従来、焼却処理していた一般廃棄物(都市ゴミ等)を低酸素、あるいは無酸素下で炭化処理して炭化物を得て、該炭化物を化石燃料の一部と代替させることで化石燃料の使用量を減らし、環境負荷の低減を図るといったことが行われている。 Use of fossil fuels by carbonizing general waste (city waste, etc.) that has been incinerated in the past under low oxygen or anoxic conditions to obtain carbides, and replacing the carbides with a part of fossil fuels. The amount is reduced and the environmental load is reduced.

しかし、一般廃棄物を原料とする前記炭化物中には塩素が含有しており、燃料として燃焼させる際にはダイオキシンを発生させる懸念があるため、例えば、生成した炭化物を水槽内に投入し、流水にて水洗して塩素分を洗い出すといった脱塩処理が行われる。そして、脱水機(フィルタープレス等)にてある程度(例えば、含水率で約30%程度)まで脱水した後、乾燥機にて絶乾状態まで乾燥処理される。 However, chlorine is contained in the carbides made from general waste as a raw material, and there is a concern that dioxin may be generated when burning as fuel. Therefore, for example, the generated carbides are put into a water tank and run water. Desalting treatment such as washing with water to wash out chlorine is performed. Then, it is dehydrated to a certain extent (for example, about 30% in terms of water content) with a dehydrator (filter press or the like), and then dried to an absolutely dry state with a dryer.

そして、前記脱塩処理を経た炭化物は、例えばペレット状にして焼却炉等に投入して補助燃料として使用したり、粉砕機(ミル等)にて微粉炭化してバーナ燃料として使用したりする。なお、前記脱塩処理後、脱水した後に、敢えて乾燥処理せず、ある程度水分を残した湿潤状態に保てば、粉塵爆発や自然発火等の不具合を防げてハンドリング性を高められる可能性がある。 Then, the carbonized material that has undergone the desalting treatment is, for example, pelletized and put into an incinerator or the like for use as an auxiliary fuel, or finely carbonized by a crusher (mill or the like) and used as a burner fuel. It should be noted that, after the desalting treatment, after dehydration, if the product is kept in a moist state with a certain amount of moisture remaining without being dried, problems such as dust explosion and spontaneous combustion may be prevented and the handleability may be improved. ..

微粉炭バーナとしては、例えば特許文献1、2のように重油ノズルの周囲に複数の微粉炭ノズルを配置し、前記重油ノズルの前方に形成される火炎中に、各微粉炭ノズルからの微粉炭と圧送空気との混合気を噴射投入することにより、混合気中の微粉炭をガス化して燃焼させる構成のものがある。 As the pulverized coal burner, for example, as in Patent Documents 1 and 2, a plurality of pulverized coal nozzles are arranged around the heavy oil nozzles, and the pulverized coal from each pulverized coal nozzle is placed in a flame formed in front of the heavy oil nozzles. There is a configuration in which pulverized coal in the air-fuel mixture is gasified and burned by injecting and injecting an air-fuel mixture of the air-fuel mixture.

また、特許文献3のように微粉炭ノズルに微粉炭と圧送空気との混合気を供給する供給ダクトを直交方向に連結し、混合気が旋回流を形成するようにして重油ノズル前方に形成される火炎と効果的に混合させてガス化・燃焼させる構成のものがある。 Further, as in Patent Document 3, a supply duct for supplying an air-fuel mixture of pulverized coal and pumped air is connected to the pulverized coal nozzle in the orthogonal direction, and the air-fuel mixture is formed in front of the heavy oil nozzle so as to form a swirling flow. There is a structure that effectively mixes with the flame and gasifies and burns it.

特開2019−27647号公報JP-A-2019-27647 特開2019−27648号公報Japanese Unexamined Patent Publication No. 2019-27648 特開2017−15305号公報JP-A-2017-15305

しかしながら、湿潤状態の炭化物を微粉炭化してバーナに供給しようとすると、特許文献1、2のものでは、微粉炭ノズル途中の曲管部にて付着、閉塞を生じ、失火する可能性がある。 However, when attempting to pulverize and supply the wet carbide to the burner, in Patent Documents 1 and 2, adhesion and blockage occur at the curved tube portion in the middle of the pulverized coal nozzle, and there is a possibility of misfire.

また、特許文献3のものでは、供給ダクトと微粉炭ノズルとが直交方向に連結されているため、直交部分にてやはり付着、閉塞を生じやすい。 Further, in Patent Document 3, since the supply duct and the pulverized coal nozzle are connected in the orthogonal direction, adhesion and blockage are likely to occur at the orthogonal portion.

さらに、微粉炭が約30%程度もの湿潤状態であれば、微粉炭の粒子同士が(表面張力によって)互いに引っ付きやすく、大粒径化する結果、ノズル先端部からの噴射時の分散性が低下して火炎中に適正に吹き込めず、ガス化・燃焼効率が低下する可能性がある。そのため、脱塩処理によって水洗した炭化物をハンドリングを高めるためにも湿潤状態に保ちながらも、微粉炭バーナにて適正に燃焼可能にするのが課題であった。 Further, when the pulverized coal is in a wet state of about 30%, the particles of the pulverized coal are easily attracted to each other (due to surface tension), and as a result of increasing the particle size, the dispersibility at the time of injection from the nozzle tip is lowered. Therefore, it may not be properly blown into the flame, and the gasification / combustion efficiency may decrease. Therefore, it has been a problem to make the carbides washed with water by desalting treatment properly combustible with a pulverized coal burner while keeping them in a wet state in order to improve handling.

本発明は、上記の点に鑑み、上記の課題を解決するために、請求項1に記載のように微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭ノズルを直管状としてこの微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を旋回流として分散状態に火炎中に吹き込むようにしたことを特徴とする微粉炭バーナ装置を提供するにある。 In view of the above points, the present invention is a pulverized coal burner in which pulverized coal is injected from a pulverized coal nozzle to be used as a burner fuel as described in claim 1 in order to solve the above-mentioned problems. The charcoal nozzle is a straight tube, and an outside air introduction nozzle that generates a swirling flow is connected near the injection port of the pulverized coal nozzle, and the flow velocity of the outside air from the outside air introduction nozzle is tunably introduced to introduce the air-fuel mixture in the pulverized coal nozzle. It is an object of the present invention to provide a pulverized coal burner device characterized in that the pulverized coal burner is blown into a flame in a dispersed state as a swirling flow.

また、請求項2に記載のように外気導入ノズルを微粉炭ノズルの両側に対してそれぞれ接線方向から連結し、外気導入ノズルに外気の流速を調整自在に外気流速調整装置を設け、バーナ燃焼量に応じて導入外気の流速を増減調整して微粉炭を安定燃焼するようにしたことを特徴とする微粉炭バーナ装置を提供するにある。 Further, as described in claim 2, the outside air introduction nozzles are connected to both sides of the pulverized coal nozzle from the tangential direction, and the outside air flow velocity adjusting device is provided in the outside air introduction nozzle so that the flow velocity of the outside air can be adjusted, and the burner combustion amount. It is an object of the present invention to provide a pulverized coal burner apparatus characterized in that the pulverized coal is stably combusted by adjusting the flow velocity of the introduced outside air in accordance with the above.

また、請求項3に記載のように湿潤状態の微粉炭を微粉炭ノズルから微粉炭バーナに供給するもので、微粉炭バーナから排出される高温ガスを前記微粉炭ノズルの基端部に導入するように連結して微粉炭を加熱するようにしたことを特徴とする微粉炭バーナ装置を提供するにある。 Further, as described in claim 3, the wet pulverized coal is supplied from the pulverized coal nozzle to the pulverized coal burner, and the high temperature gas discharged from the pulverized coal burner is introduced into the base end portion of the pulverized coal nozzle. It is an object of the present invention to provide a pulverized coal burner device, which is characterized in that the pulverized coal is heated in such a manner.

さらに、請求項4に記載のように一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナ燃焼方法であって、直管状の微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結して、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を旋回流として分散状態に火炎中に吹き込むことを特徴とする微粉炭バーナ燃焼方法を提供するにある。 Further, as described in claim 4, after desalting the charcoal obtained by carbonizing general waste, undried wet pulverized coal is injected from the pulverized coal nozzle to be used as a burner fuel. It is a combustion method, in which an outside air introduction nozzle that generates a swirling flow is connected near the injection port of a straight tubular pulverized coal nozzle, and the flow velocity of the outside air from the outside air introduction nozzle is adjustablely introduced into the pulverized coal nozzle. It is an object of the present invention to provide a pulverized coal burner combustion method, which comprises blowing an air-fuel mixture of the above into a flame in a dispersed state as a swirling flow.

本発明に係る微粉炭バーナ装置は、請求項1に記載のように微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭ノズルを直管状としてこの微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を旋回流として分散状態に火炎中に吹き込むようにしたことによって、特に一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭であっても、微粉炭が微粉炭ノズルに付着したり、閉塞することなく、所要の外気の流速を調整して重油ノズルの前方に形成される火炎中に分散状態で適正に吹き込められて微粉炭バーナで適正に燃焼することができる。また、微粉炭が湿潤状態であれば、粉塵爆発や自然発火等の微粉炭特有の問題を解消できるとともにハンドリング性を高められ、上記のように燃焼処理することができる。 The pulverized coal burner device according to the present invention is a pulverized coal burner in which pulverized coal is injected from a pulverized coal nozzle to be used as burner fuel as described in claim 1, and the pulverized coal nozzle is a straight tube. An outside air introduction nozzle that generates a swirling flow is connected near the injection port of the nozzle, and the flow velocity of the outside air from the outside air introduction nozzle is adjustablely introduced so that the air-fuel mixture in the pulverized coal nozzle is swirled and is in a dispersed state. By blowing into the pulverized coal, the pulverized coal may adhere to the pulverized coal nozzle even if it is undried and wet pulverized coal, especially after desalting the carbide obtained by carbonizing the general waste. Without clogging, the required flow rate of the outside air can be adjusted so that the flame is properly blown into the flame formed in front of the heavy oil nozzle in a dispersed state and can be properly burned by the pulverized coal burner. Further, when the pulverized coal is in a wet state, problems peculiar to pulverized coal such as dust explosion and spontaneous combustion can be solved, handleability is improved, and combustion treatment can be performed as described above.

また、微粉炭バーナ装置は、請求項2に記載のように外気導入ノズルを微粉炭ノズルの両側に対してそれぞれ接線方向から連結し、外気導入ノズルに外気の流速を調整自在に外気流速調整装置を設け、バーナ燃焼量に応じて導入外気の流速を増減調整して微粉炭を安定燃焼するようにしたことによって、微粉炭ノズルの両側の接線方向から外気導入ノズルで外気の流速を調整自在に導入して、微粉炭ノズル内の混合気を旋回流として微粉炭噴射角度を適正に調整できてバーナ燃焼量に応じて火炎中に適正に吹き込められて、微粉炭を安定して燃焼することができる。 Further, in the pulverized coal burner device, as described in claim 2, the outside air introduction nozzles are connected to both sides of the pulverized coal nozzle from the tangential direction, respectively, and the flow velocity of the outside air can be adjusted freely to the outside air introduction nozzle. By adjusting the flow velocity of the introduced outside air according to the amount of burner combustion so that the pulverized coal is stably burned, the flow velocity of the outside air can be freely adjusted by the outside air introduction nozzle from the tangential direction on both sides of the pulverized coal nozzle. By introducing it, the air-fuel mixture in the pulverized coal nozzle can be used as a swirling flow to properly adjust the pulverized coal injection angle, and it can be properly blown into the flame according to the amount of burner combustion, and the pulverized coal can be burned stably. it can.

また、微粉炭バーナ装置は、請求項3に記載のように湿潤状態の微粉炭を微粉炭ノズルから微粉炭バーナに供給するもので、微粉炭バーナから排出される高温ガスを前記微粉炭ノズルの基端部に導入するように連結して微粉炭を加熱するようにしたことによって、微粉炭バーナから排出される高温ガスで微粉炭ノズルに供給される湿潤状態の微粉炭を加熱して乾燥させることができ、微粉炭が微粉炭ノズルに付着したり、閉塞するのを抑制できて、上記のように噴射時の分散性の向上を図れて微粉炭バーナで適正に燃焼することができる。 Further, the pulverized coal burner device supplies the pulverized coal in a wet state from the pulverized coal nozzle to the pulverized coal burner as described in claim 3, and the high temperature gas discharged from the pulverized coal burner is supplied to the pulverized coal nozzle. By connecting so as to be introduced into the base end to heat the pulverized coal, the wet pulverized coal supplied to the pulverized coal nozzle is heated and dried by the high temperature gas discharged from the pulverized coal burner. It is possible to prevent the pulverized coal from adhering to or blocking the pulverized coal nozzle, and as described above, the dispersibility at the time of injection can be improved and the pulverized coal burner can be properly burned.

またさらに、微粉炭バーナ燃焼方法は、請求項4に記載のように一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナ燃焼方法であって、直管状の微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結して、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を旋回流として分散状態に火炎中に吹き込むことによって、一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭であっても、微粉炭が微粉炭ノズルに付着したり、閉塞することなく、所要の外気の流速を調整して重油ノズルの前方に形成される火炎中に分散状態で適正に吹き込められて微粉炭バーナで適正に燃焼することができる。また、微粉炭が湿潤状態であれば、粉塵爆発や自然発火等の微粉炭特有の問題を解消できるとともにハンドリング性を高められ、上記のように燃焼処理することができる。 Furthermore, in the pulverized coal burner combustion method, as described in claim 4, after carbonizing the carbonized material obtained by carbonizing general waste, undried and wet pulverized coal is injected from the pulverized coal nozzle. It is a pulverized coal burner combustion method using a burner fuel, and the flow velocity of the outside air from the outside air introduction nozzle can be adjusted by connecting an outside air introduction nozzle that generates a swirling flow near the injection port of the straight tubular pulverized coal nozzle. By blowing the air-fuel mixture in the pulverized coal nozzle into a flame in a dispersed state as a swirling flow, the carbonized material obtained by carbonizing general waste is desalted and then undried and wet pulverized coal. Even so, the pulverized coal does not adhere to or block the pulverized coal nozzle, and the required outside air flow velocity is adjusted so that the pulverized coal is properly blown into the flame formed in front of the heavy oil nozzle in a dispersed state. It can be burned properly with a charcoal burner. Further, when the pulverized coal is in a wet state, problems peculiar to pulverized coal such as dust explosion and spontaneous combustion can be solved, handleability is improved, and combustion treatment can be performed as described above.

本発明の一実施例の概略系統図、Schematic diagram of an embodiment of the present invention, 同上のバーナ本体部の拡大断面図、Enlarged sectional view of the burner body as above, 同上の微粉炭バーナ部のA−A断面図、AA cross-sectional view of the pulverized coal burner part as above, 同上のスロート部のB−B断面図、BB sectional view of the throat portion of the same as above, 同上の試験設備の概略説明図、Schematic diagram of the same test facility, 同上の噴射角度測定説明図、Illustration of injection angle measurement as above, 同上の導入外気の流速と噴射角度の関連図、The relationship between the flow velocity of the introduced outside air and the injection angle as above, 同上の微粉炭ノズルの管内付着状態説明図(a)、(b)Explanatory drawing of adhesion state in pipe of pulverized coal nozzle of the same as above (a), (b) 同上の微粉炭噴射後の粒径分布図。Same as above, particle size distribution chart after pulverized coal injection.

本発明の微粉炭バーナ装置およびその燃焼方法は、微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭ノズルを直管状としてこの微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を旋回流として分散状態に火炎中に吹き込むことを特徴としている。 The pulverized coal burner device and its combustion method of the present invention are pulverized coal burners that inject pulverized coal from a pulverized coal nozzle to be used as burner fuel, and the pulverized coal nozzle is a straight tube in the vicinity of the injection port of the pulverized coal nozzle. The outside air introduction nozzle that generates a swirling flow is connected to the outside air introduction nozzle, and the flow velocity of the outside air from the outside air introduction nozzle is adjustablely introduced to blow the air-fuel mixture in the pulverized coal nozzle into the flame in a dispersed state as a swirling flow. It is supposed to be.

微粉炭バーナ装置1は、図1のように微粉炭バーナ2の円筒状のバーナ本体3の先端部に切頭円錐形状のスロート4を接続し、その中心部に微粉炭を噴射する所定径の微粉炭ノズル5を直管状として配設し、その両側部等に重油ノズル6を設けて所要の火力で燃焼できるようにしている。 As shown in FIG. 1, the pulverized coal burner device 1 connects a truncated cone-shaped throat 4 to the tip of a cylindrical burner main body 3 of the pulverized coal burner 2, and injects pulverized coal into the center thereof. The pulverized coal nozzle 5 is arranged as a straight cylinder, and heavy oil nozzles 6 are provided on both sides thereof so that the pulverized coal nozzle 5 can be burned with a required thermal power.

これらのノズル5、6の前方のスロート4内には、バーナ本体3の内径より若干大径で環状の保炎板7を備え、前記の各ノズル5、6から保炎板7の前方のスロート4内に形成される火炎領域に吹き込めるようにしている。 Inside the throat 4 in front of these nozzles 5 and 6, a flame-retaining plate 7 having an annular diameter slightly larger than the inner diameter of the burner body 3 is provided, and the throat in front of the flame-retaining plate 7 from each of the nozzles 5 and 6 described above. It is designed to blow into the flame region formed in 4.

前記微粉炭ノズル5の後端部には、図1のように微粉炭を貯蔵する微粉炭貯蔵ビン8から微粉炭を切り出し可能にロータリーバルブ9を接続するとともに微粉炭圧送用の微粉炭送風機10を配設し、ロータリーバルブ9で切り出す微粉炭を前記微粉炭送風機10の送風によって微粉炭ノズル5に圧送して供給するようにしている。 As shown in FIG. 1, a rotary valve 9 is connected to the rear end of the pulverized coal nozzle 5 so that pulverized coal can be cut out from the pulverized coal storage bin 8 for storing the pulverized coal, and a pulverized coal blower 10 for pumping the pulverized coal. Is arranged, and the pulverized coal cut out by the rotary valve 9 is pressure-fed to the pulverized coal nozzle 5 by the air blown by the pulverized coal blower 10 to be supplied.

このような先端を逆テーパ形状とした微粉炭ノズル5の前方部の噴射口付近には、微粉炭ノズル5の両側の接線方向から左右または上下対称状に旋回流を発生させるために外気導入ノズル11をそれぞれ連結し、外気の導入によって微粉炭ノズル5内の混合気を旋回状態として噴射時に分散状態で火炎に吹き込めるようにしている。12はインバータの送風量調整装置で、前記微粉炭貯蔵ビン8からの微粉炭の切り出し量に応じて前記微粉炭送風機10の送風量を調整可能にしている。 An outside air introduction nozzle is provided near the injection port at the front portion of the pulverized coal nozzle 5 having an inverted tapered tip in order to generate a swirling flow horizontally or vertically symmetrically from the tangential direction on both sides of the pulverized coal nozzle 5. 11 are connected to each other, and the air-fuel mixture in the pulverized coal nozzle 5 is swirled by introducing outside air so that the air-fuel mixture can be blown into the flame in a dispersed state at the time of injection. Reference numeral 12 denotes a blower amount adjusting device for the inverter, which makes it possible to adjust the blower amount of the pulverized coal blower 10 according to the amount of pulverized coal cut out from the pulverized coal storage bottle 8.

なお、外気導入ノズル11の接続位置は、ノズル先端からの距離が遠くなると旋回力が減衰してしまい、逆に近すぎても十分な旋回効果が得られず、ノズル先端から100〜200mm程度の位置が好ましい。また、外気導入ノズル11からは70〜120m/s程度の外気流入速度として、微粉炭ノズル5内の混合気の流速を10〜20m/s程度として旋回状態で火炎中に吹き込めるようにしている。 The connection position of the outside air introduction nozzle 11 is such that the turning force is attenuated when the distance from the nozzle tip becomes long, and conversely, a sufficient turning effect cannot be obtained even if the distance is too close, and the connection position is about 100 to 200 mm from the nozzle tip. The position is preferable. Further, the outside air inflow velocity from the outside air introduction nozzle 11 is about 70 to 120 m / s, and the flow velocity of the air-fuel mixture in the pulverized coal nozzle 5 is about 10 to 20 m / s so that the mixture can be blown into the flame in a swirling state. ..

微粉炭ノズル5には、外気導入ノズル11をその接線方向からこれらの内周面に段差がなく接続できるようにして連結すると、図3のように外気が微粉炭ノズル5内をその内壁面にそってスムーズに旋回し、圧送される微粉炭を旋回流として噴射時に効果的に分散状態として噴射でき、適正な火炎にできて好ましい。なお、外気導入ノズル11は、微粉炭ノズル5の長手方向に対し、図1、2に示すように、略直交状態に連結することで混合気に最も効率よく旋回力を付与できて好ましいが、旋回流を生じさせられる範囲で前後方向に数十度程度傾斜状態に連結することもできる。 When the outside air introduction nozzle 11 is connected to the pulverized coal nozzle 5 so that it can be connected to the inner peripheral surfaces thereof from the tangential direction without a step, the outside air is connected to the inner wall surface of the pulverized coal nozzle 5 as shown in FIG. It swirls smoothly along the line, and the pulverized coal that is pumped can be effectively injected as a swirling flow in a dispersed state at the time of injection, which is preferable because an appropriate flame can be obtained. As shown in FIGS. 1 and 2, the outside air introduction nozzle 11 is preferably connected in a substantially orthogonal state with respect to the longitudinal direction of the pulverized coal nozzle 5 so that the air-fuel mixture can be most efficiently provided with a turning force. It can also be connected in a state of inclination of about several tens of degrees in the front-rear direction within a range in which a swirling flow can be generated.

図4のように前記微粉炭ノズル5の両側に備えた重油ノズル6には、それぞれ重油タンクから供給される重油燃料を重油供給ポンプ13と流量調整バルブ14とで所要量を供給自在とし、上記のように各重油ノズル6前方に形成される火炎領域に前記微粉炭ノズル5から噴射する微粉炭を吹き込んでガス化して着火燃焼できるようにしている。 As shown in FIG. 4, the heavy oil fuel supplied from the heavy oil tank can be freely supplied to the heavy oil nozzles 6 provided on both sides of the pulverized coal nozzle 5 by the heavy oil supply pump 13 and the flow rate adjusting valve 14, respectively. The pulverized coal injected from the pulverized coal nozzle 5 is blown into the flame region formed in front of each heavy oil nozzle 6 to gasify and ignite and burn.

前記バーナ本体3の後端部には、図1のように送風ダクト15を介して燃焼用空気供給用の燃焼用空気送風機16を配設し、インバータの風量調整装置17を介して前記燃焼用空気送風機16の送風量を調整してバーナ燃焼量に見合った燃焼用空気量をバーナ本体3に供給できるようにしている。また、18は前記外気導入ノズル11に外気を供給する外気送風機、19はそのインバータの風量調整装置である。 As shown in FIG. 1, a combustion air blower 16 for supplying combustion air is disposed at the rear end of the burner main body 3 via a ventilation duct 15, and the combustion air blower 16 is provided via an inverter air volume adjusting device 17. The amount of air blown by the air blower 16 is adjusted so that the amount of combustion air corresponding to the amount of burner combustion can be supplied to the burner main body 3. Reference numeral 18 denotes an outside air blower that supplies outside air to the outside air introduction nozzle 11, and reference numeral 19 denotes an air volume adjusting device for the inverter.

なお、バーナ燃焼量の全開時では、前記燃焼用空気送風機16からの送風量が増加して保炎板7裏面の背圧が高くなる結果、重油ノズル6の前方に形成される火炎は保炎板7側に強く吸い寄せられ、保炎板7に近接する(図2中のf1)。一方、バーナ燃焼量が落ちると、前記燃焼用空気送風機16からの送風量が減少して保炎板7裏面の背圧が低下する結果、重油ノズル6の前方の火炎の位置が保炎板7から離間する(図2中のf2)。 When the burner combustion amount is fully opened, the amount of air blown from the combustion air blower 16 increases and the back pressure on the back surface of the flame holding plate 7 increases, and as a result, the flame formed in front of the heavy oil nozzle 6 holds the flame. It is strongly attracted to the plate 7 side and is close to the flame holding plate 7 (f1 in FIG. 2). On the other hand, when the burner combustion amount decreases, the amount of air blown from the combustion air blower 16 decreases and the back pressure on the back surface of the flame holding plate 7 decreases, and as a result, the position of the flame in front of the heavy oil nozzle 6 is the flame holding plate 7. (F2 in FIG. 2).

また、外気流速が速い程微粉炭ノズル5内の混合気に旋回力が付与され、分散性が増して微粉炭噴射時の噴射角度が広がる(図2中のα1)。逆に、外気流速が遅いと分散力が低下し、微粉炭噴射時の噴射角度が狭くなる(図2中のα2)。このように外気流速と微粉炭噴射角度とには相関性があり、バーナ燃焼量に応じてスロート4内を前後(図2中では左右)に移動する火炎に対し、外気導入ノズル11からの導入外気の流速を増減調整して微粉炭噴射角度を調整することで常に微粉炭を火炎中に適正に吹き込められて、微粉炭を未燃分なく安定してガス化燃焼することができる。なお、本実施例では、微粉炭噴射角度を約45〜75度程度の範囲で調整可能としている。 Further, as the outside air flow velocity is faster, a turning force is applied to the air-fuel mixture in the pulverized coal nozzle 5, the dispersibility is increased, and the injection angle at the time of pulverized coal injection is widened (α1 in FIG. 2). On the contrary, when the outside air flow velocity is slow, the dispersion force decreases, and the injection angle at the time of pulverized coal injection becomes narrow (α2 in FIG. 2). In this way, there is a correlation between the outside air flow velocity and the pulverized coal injection angle, and the flame that moves back and forth (left and right in FIG. 2) in the throat 4 according to the burner combustion amount is introduced from the outside air introduction nozzle 11. By adjusting the flow velocity of the outside air to adjust the injection angle of the pulverized coal, the pulverized coal can always be properly blown into the flame, and the pulverized coal can be stably gasified and burned without any unburned content. In this embodiment, the pulverized coal injection angle can be adjusted in the range of about 45 to 75 degrees.

また、上記微粉炭バーナ装置1は、燃焼制御器20等を設けて、前記したロータリーバルブ9、微粉炭送風機10、重油供給ポンプ13、燃焼用空気送風機16、外気送風機18等の稼働及び出力を装置の運転に際して所要のバーナ燃焼に対応し、増減等を適正に調整制御可能としている。 Further, the pulverized coal burner device 1 is provided with a combustion controller 20 and the like to operate and output the rotary valve 9, the pulverized coal blower 10, the heavy oil supply pump 13, the combustion air blower 16, the outside air blower 18, and the like. It corresponds to the burner combustion required when operating the device, and it is possible to properly adjust and control the increase and decrease.

なお、微粉炭バーナ2から排出される高温ガスを微粉炭ノズル5の基端部に導入するようにして微粉炭を加熱するようにし、排出される高温ガスで湿潤状態の微粉炭を加熱して乾燥させることもできる。 The high temperature gas discharged from the pulverized coal burner 2 is introduced into the base end of the pulverized coal nozzle 5 to heat the pulverized coal, and the discharged high temperature gas heats the wet pulverized coal. It can also be dried.

本発明では、特に、都市ごみ等の一般廃棄物を炭化処理した炭化物を脱塩処理し、脱水後、未乾燥の湿潤状態(例えば、含水率30%程度)の微粉炭を対象とすることができる。脱塩処理後、乾燥処理せずに、30%程度の含水状態に維持することで、粉塵爆発や自然発火等の問題が生じなく、かつハンドリング性を向上でき、その上でバーナ燃料として支障なく利用できて用途を広げられて有効である。なお、本発明は、付着しやすい湿潤状態の微粉炭に好適に適用できるが、乾燥状態の各種微粉炭に対しても適用することができる。 In the present invention, in particular, pulverized coal in an undried wet state (for example, a water content of about 30%) after desalting and dehydrating a carbide obtained by carbonizing general waste such as municipal waste can be targeted. it can. By maintaining the water content at about 30% after desalting and without drying, problems such as dust explosion and spontaneous combustion can be improved, handling can be improved, and there is no problem as burner fuel. It is effective because it can be used and its uses can be expanded. The present invention can be suitably applied to wet pulverized coal that easily adheres, but can also be applied to various dry pulverized coals.

図1以下は、本発明の実施例を示すものである。微粉炭バーナ装置1は、図1、図2のように微粉炭バーナ2の円筒状のバーナ本体3の先端部に切頭円錐形状のスロート4を接続し、その中心部に微粉炭を噴射する所定径の微粉炭ノズル5を直管状として配設し、図3、図4のようにその両側部に重油ノズル6を設け、各ノズル5、6から保炎板7の前方のスロート4内に形成される火炎領域に吹き込めるようにしている。 The following is an embodiment of the present invention. As shown in FIGS. 1 and 2, the pulverized coal burner device 1 connects a truncated cone-shaped throat 4 to the tip of the cylindrical burner main body 3 of the pulverized coal burner 2, and injects pulverized coal into the center thereof. A pulverized coal nozzle 5 having a predetermined diameter is arranged as a straight cylinder, heavy oil nozzles 6 are provided on both sides thereof as shown in FIGS. 3 and 4, and the nozzles 5 and 6 are placed in the throat 4 in front of the flame holding plate 7. It is designed to blow into the flame area that is formed.

微粉炭ノズル5の先端を逆テーパ形状とし、前方部の噴射口付近のノズル先端から100〜200mm程の位置に図1〜図3のように微粉炭ノズル5の両側の接線方向から左右対称状に旋回流を発生させるための外気導入ノズル11を微粉炭ノズル5の長手方向に対してそれぞれ直交状に連結し、外気の導入によって微粉炭ノズル5内の混合気を旋回状態として、バーナ燃焼量に応じて噴射時に所要の分散状態で火炎に吹き込めるようにしている。 The tip of the pulverized coal nozzle 5 has an inverted tapered shape, and is symmetrical from the tangential direction on both sides of the pulverized coal nozzle 5 at a position of about 100 to 200 mm from the nozzle tip near the injection port in the front portion as shown in FIGS. The outside air introduction nozzle 11 for generating a swirling flow is connected orthogonally to the longitudinal direction of the pulverized coal nozzle 5, and the air-fuel mixture in the pulverized coal nozzle 5 is swirled by the introduction of the outside air, and the burner combustion amount Depending on the situation, it is possible to blow into the flame in the required dispersed state at the time of injection.

上記微粉炭バーナ装置1について、図5の試験設備で試験した。図5中の101は本試験装置、105は微粉炭ノズル、108は微粉炭投入用の投入ホッパ、109はロータリーバルブ、110は微粉炭送風機、111は外気導入ノズル、118は外気送風機、121はスクリューコンベア、122及び123は風量センサ、124は温度センサ、125はカメラである。 The pulverized coal burner device 1 was tested at the test facility shown in FIG. In FIG. 5, 101 is the test apparatus, 105 is a pulverized coal nozzle, 108 is an input hopper for charging pulverized coal, 109 is a rotary valve, 110 is a pulverized coal blower, 111 is an outside air introduction nozzle, 118 is an outside air blower, and 121 is an outside air blower. The screw conveyor, 122 and 123 are air volume sensors, 124 is a temperature sensor, and 125 is a camera.

なお、本試験装置101では、微粉炭の噴射状態を確認するため、実際に燃焼までは行わず、微粉炭の噴射試験のみを行った。前記試験において、微粉炭送風機110や外気送風機118からの送風量を前記風量センサ122、123にて検出して各流速を演算し、前記温度センサ124にてノズル先端部から噴射直後(1mの地点)の出口空気温度を検出し、前記カメラ125にて微粉炭の噴射状態を撮影してその画像データを基に噴射角度を測定した。なお、微粉炭噴射角度αは図6のように微粉炭ノズル105の先端中心部から250mmの地点での噴射域外縁部を結んだ角度とした。 In addition, in this test apparatus 101, in order to confirm the injection state of pulverized coal, only the injection test of pulverized coal was performed without actually performing combustion. In the test, the amount of air blown from the pulverized coal blower 110 and the outside air blower 118 is detected by the air volume sensors 122 and 123, each flow velocity is calculated, and the temperature sensor 124 immediately after injection from the nozzle tip (1 m point). ), The outlet air temperature was detected, the injection state of the pulverized coal was photographed by the camera 125, and the injection angle was measured based on the image data. The pulverized coal injection angle α is an angle connecting the outer edges of the injection region at a point 250 mm from the center of the tip of the pulverized coal nozzle 105 as shown in FIG.

湿潤状態(含水率約31〜33%)の微粉炭の炭化燃料を投入ホッパ108からスクリューコンベア121を介してロータリーバルブ109で切り出して直管状の微粉炭ノズル105内に送給し、微粉炭送風機110での所要量の圧送空気で圧送し、微粉炭を下記条件下で噴射した。 Carbonized fuel of pulverized coal in a wet state (moisture content of about 31 to 33%) is cut out from a hopper 108 via a screw conveyor 121 by a rotary valve 109 and fed into a straight tubular pulverized coal nozzle 105, and is supplied to a pulverized coal blower. It was pumped with the required amount of pumped air at 110, and pulverized coal was injected under the following conditions.

外気導入ノズル111の連結位置はノズル先端から150mm位置、微粉炭供給量は90Kg/h、微粉炭圧送空気流速は15m/sとし、導入外気流速を50m/s(低速)または100m/s(高速)の2パターン、また微粉炭ノズル105の出口空気温度を10℃(常温)または90℃(高温)の2パターンで試験した。その結果は図7に示す。 The connection position of the outside air introduction nozzle 111 is 150 mm from the nozzle tip, the pulverized coal supply amount is 90 kg / h, the pulverized coal pressure feed air flow velocity is 15 m / s, and the introduced outside air flow velocity is 50 m / s (low speed) or 100 m / s (high speed). ), And the outlet air temperature of the pulverized coal nozzle 105 was tested in two patterns of 10 ° C. (normal temperature) or 90 ° C. (high temperature). The results are shown in FIG.

微粉炭ノズル105の出口空気温度が10℃の場合、導入外気の風速が50m/sのときに微粉炭の噴射角度はおよそ38°(No.1)で、導入外気の流速が100m/sのときには微粉炭の噴射角度はおよそ61°(No.2)となり、導入外気の流速を速めるほど微粉炭の噴射角度は大きくなることが確認できた。 When the outlet air temperature of the pulverized coal nozzle 105 is 10 ° C., the injection angle of the pulverized coal is about 38 ° (No. 1) when the wind speed of the introduced outside air is 50 m / s, and the flow velocity of the introduced outside air is 100 m / s. Occasionally, the injection angle of the pulverized coal was about 61 ° (No. 2), and it was confirmed that the injection angle of the pulverized coal increased as the flow velocity of the introduced outside air increased.

また、出口空気温度が90℃の場合、導入外気の風速が50m/sのときに微粉炭の噴射角はおよそ49°(No.3)で、導入外気の風速が100m/sのときには微粉炭の噴射角はおよそ72°(No.4)となり、出口空気温度を高めることで微粉炭の噴射角が若干大きくなることも確認できた。このとき、微粉炭ノズル105から噴射した微粉炭の含水率を確認したところ、出口空気温度10℃の場合が約29〜30%であるのに対し、90℃の場合では約21〜23%で含水率が7〜8%程度下がっており、高温の圧送空気による加熱乾燥に伴って微粉炭の分散性が向上したことによるものと予想される。 When the outlet air temperature is 90 ° C., the injection angle of the pulverized coal is about 49 ° (No. 3) when the wind speed of the introduced outside air is 50 m / s, and the pulverized coal is when the wind speed of the introduced outside air is 100 m / s. The injection angle of pulverized coal was about 72 ° (No. 4), and it was confirmed that the injection angle of pulverized coal was slightly increased by increasing the outlet air temperature. At this time, when the water content of the pulverized coal injected from the pulverized coal nozzle 105 was confirmed, it was about 29 to 30% when the outlet air temperature was 10 ° C., whereas it was about 21 to 23% when the outlet air temperature was 90 ° C. The water content has decreased by about 7 to 8%, and it is expected that this is because the dispersibility of the pulverized coal has improved with heating and drying with high-temperature pumped air.

また、図8は微粉炭ノズル105管内での微粉炭の付着状態を表したもので、図8(a)のように微粉炭ノズル105の出口空気温度が10℃の場合、外気導入口付近に微粉炭付着物が僅かに確認され、図8(b)のように出口空気温度を90℃にすると、付着物は確認されなかった。これも、高温の圧送空気による加熱乾燥に伴って微粉炭の付着性が軽減したことによるものと予想される。 Further, FIG. 8 shows the state of adhesion of pulverized coal in the pulverized coal nozzle 105 pipe, and when the outlet air temperature of the pulverized coal nozzle 105 is 10 ° C. as shown in FIG. 8A, it is located near the outside air introduction port. A small amount of pulverized coal deposits were confirmed, and when the outlet air temperature was set to 90 ° C. as shown in FIG. 8 (b), no deposits were confirmed. It is presumed that this is also due to the fact that the adhesion of the pulverized coal was reduced due to heating and drying with high-temperature pumped air.

また、図9は微粉炭ノズル105から噴射直後の微粉炭の粒径の分布図であって、微粉炭ノズル105の出口空気温度が90℃(No.4)の場合、10℃(No.2)の場合と比較して500〜600μmのピークが無くなる。これも、前記同様に、高温の圧送空気による加熱乾燥に伴って微粉炭同士の付着力(表面張力)が低下し、粒子径が細かくなったことによるものと予想される。 Further, FIG. 9 is a distribution diagram of the particle size of the pulverized coal immediately after injection from the pulverized coal nozzle 105, and when the outlet air temperature of the pulverized coal nozzle 105 is 90 ° C. (No. 4), 10 ° C. (No. 2). ), The peak of 500 to 600 μm disappears. It is presumed that this is also due to the fact that the adhesive force (surface tension) between the pulverized coals decreased with the heating and drying by the high-temperature pumped air, and the particle size became finer.

本発明は、都市ごみ等の一般廃棄物を炭化処理した微粉炭、特に脱塩処理後、未乾燥の湿潤状態の微粉炭を燃料とする微粉炭バーナに対して広く利用できる。 INDUSTRIAL APPLICABILITY The present invention can be widely used for pulverized coal obtained by carbonizing general waste such as municipal waste, particularly pulverized coal burner using undried and wet pulverized coal as fuel after desalting treatment.

1…微粉炭バーナ装置 2…微粉炭バーナ 4…スロート 5…微粉炭ノズル11…外気導入ノズル 1 ... pulverized coal burner device 2 ... pulverized coal burner 4 ... throat 5 ... pulverized coal nozzle 11 ... outside air introduction nozzle

Claims (4)

微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭ノズルを直管状としてこの微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、
前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に火炎中に吹き込むようにしたことを特徴とする微粉炭バーナ装置。
A pulverized coal burner that injects pulverized coal from a pulverized coal nozzle and uses it as burner fuel. The pulverized coal nozzle is a straight tube, and an outside air introduction nozzle that generates a swirling flow is connected to the vicinity of the injection port of the pulverized coal nozzle.
A pulverized coal burner device characterized in that the flow velocity of the outside air from the outside air introducing nozzle is tunably introduced so that the air-fuel mixture in the pulverized coal nozzle is blown into a flame in a dispersed state as a required swirling flow.
外気導入ノズルを微粉炭ノズルの両側に対してそれぞれ接線方向から連結し、外気導入ノズルに外気の流速を調整自在に外気流速調整装置を設け、バーナ燃焼量に応じて導入外気の流速を増減調整して微粉炭を安定燃焼するようにしたことを特徴とする請求項1に記載の微粉炭バーナ装置。 The outside air introduction nozzle is connected to both sides of the pulverized coal nozzle from the tangential direction, and the outside air flow velocity adjusting device is provided in the outside air introduction nozzle so that the flow velocity of the outside air can be adjusted freely, and the flow velocity of the introduced outside air can be increased or decreased according to the burner combustion amount. The pulverized coal burner device according to claim 1, wherein the pulverized coal is stably combusted. 湿潤状態の微粉炭を微粉炭ノズルから微粉炭バーナに供給するもので、微粉炭バーナから排出される高温ガスを前記微粉炭ノズルの基端部に導入するように連結して微粉炭を加熱するようにしたことを特徴とする請求項1または2に記載の微粉炭バーナ装置。 Wet pulverized coal is supplied from the pulverized coal nozzle to the pulverized coal burner, and the high-temperature gas discharged from the pulverized coal burner is connected so as to be introduced into the base end portion of the pulverized coal nozzle to heat the pulverized coal. The pulverized coal burner device according to claim 1 or 2, wherein the pulverized coal burner device is characterized in that. 一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナ燃焼方法であって、
直管状の微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結して、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を旋回流として分散状態に火炎中に吹き込むことを特徴とする微粉炭バーナの燃焼方法。
A pulverized coal burner combustion method in which undried wet pulverized coal is injected from a pulverized coal nozzle to be used as burner fuel after desalting the carbide obtained by carbonizing general waste.
An outside air introduction nozzle that generates a swirling flow is connected near the injection port of the straight tubular pulverized coal nozzle, and the flow velocity of the outside air from the outside air introducing nozzle is adjustedly introduced to swirl the air-fuel mixture in the pulverized coal nozzle. A method of burning a pulverized coal burner, which is characterized by blowing into a flame in a dispersed state.
JP2019091157A 2019-05-14 2019-05-14 Pulverized coal burner device and its combustion method Active JP7284630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019091157A JP7284630B2 (en) 2019-05-14 2019-05-14 Pulverized coal burner device and its combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091157A JP7284630B2 (en) 2019-05-14 2019-05-14 Pulverized coal burner device and its combustion method

Publications (2)

Publication Number Publication Date
JP2020186846A true JP2020186846A (en) 2020-11-19
JP7284630B2 JP7284630B2 (en) 2023-05-31

Family

ID=73222374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091157A Active JP7284630B2 (en) 2019-05-14 2019-05-14 Pulverized coal burner device and its combustion method

Country Status (1)

Country Link
JP (1) JP7284630B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292135A (en) * 1976-01-23 1977-08-03 Foster Wheeler Energy Corp Coal burner
JPS582509A (en) * 1981-06-26 1983-01-08 Hitachi Ltd Combustion method of pulverized coal
JP2006170459A (en) * 2004-12-10 2006-06-29 Shiraishi Haruo Burner applying flame-retardant carbon powder as its fuel, boiler structure and its system
JP2010106188A (en) * 2008-10-31 2010-05-13 Ihi Corp Method and apparatus for desalinating carbonized material
CN104141950A (en) * 2014-07-18 2014-11-12 华南理工大学 Device and method for reducing discharging of boiler NOx in powder mode
JP2019027647A (en) * 2017-07-28 2019-02-21 日工株式会社 Pulverized-coal burner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292135A (en) * 1976-01-23 1977-08-03 Foster Wheeler Energy Corp Coal burner
JPS582509A (en) * 1981-06-26 1983-01-08 Hitachi Ltd Combustion method of pulverized coal
JP2006170459A (en) * 2004-12-10 2006-06-29 Shiraishi Haruo Burner applying flame-retardant carbon powder as its fuel, boiler structure and its system
JP2010106188A (en) * 2008-10-31 2010-05-13 Ihi Corp Method and apparatus for desalinating carbonized material
CN104141950A (en) * 2014-07-18 2014-11-12 华南理工大学 Device and method for reducing discharging of boiler NOx in powder mode
JP2019027647A (en) * 2017-07-28 2019-02-21 日工株式会社 Pulverized-coal burner

Also Published As

Publication number Publication date
JP7284630B2 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
JP3623130B2 (en) Fuel combustion apparatus and combustion method for cement rotary kiln
JP6198572B2 (en) Hot-air generator with solid fuel as the main fuel
JP5410694B2 (en) Combustible waste treatment equipment
JP2004347270A (en) Combustion device and method
JP2020186846A (en) Dust coal burner device, and burning method therefor
JPH0252765B2 (en)
KR100766137B1 (en) Burner for pulverized fuel made from food waste
JP4477944B2 (en) Tuna structure of waste melting furnace and method of blowing combustible dust
JP5509397B1 (en) Combustion device
JP7458792B2 (en) Pulverized coal burner device and its combustion method
KR200374230Y1 (en) The burning apparatus using useless plastic
JP5490956B1 (en) Incinerator
KR100867337B1 (en) Burner for the combustion of pulverized fuel made from food waste
JP4148847B2 (en) burner
JPS6170314A (en) Whirling stream type fired melting furnace
JP4393977B2 (en) Burner structure for burning flame retardant carbon powder and its combustion method
JPH08178236A (en) Resin combustion furnace and combustion control method thereof
TWI740396B (en) Powder fuel combustion device and combustion method
JPH08592Y2 (en) Combustion device for flame-retardant fuel
JP7199235B2 (en) Combustion furnace and its starting method
JP7316074B2 (en) Pulverized fuel-fired boiler
KR101335621B1 (en) Combustor for the pulverized solid fuel
JP4859851B2 (en) Combustion device for simultaneous combustion of coal and biomass
WO2005121646A1 (en) Tuyere structure of waste fusion furnace and combustible dust blowing method
JPH06347005A (en) Combustion device for powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230519

R150 Certificate of patent or registration of utility model

Ref document number: 7284630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150