JP7458792B2 - Pulverized coal burner device and its combustion method - Google Patents

Pulverized coal burner device and its combustion method Download PDF

Info

Publication number
JP7458792B2
JP7458792B2 JP2020003418A JP2020003418A JP7458792B2 JP 7458792 B2 JP7458792 B2 JP 7458792B2 JP 2020003418 A JP2020003418 A JP 2020003418A JP 2020003418 A JP2020003418 A JP 2020003418A JP 7458792 B2 JP7458792 B2 JP 7458792B2
Authority
JP
Japan
Prior art keywords
pulverized coal
nozzle
throat
burner
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020003418A
Other languages
Japanese (ja)
Other versions
JP2021110510A (en
Inventor
正也 清水
尚人 横路
史樹 福永
雄司 今田
勝 下田
伸宏 宇山
裕樹 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2020003418A priority Critical patent/JP7458792B2/en
Publication of JP2021110510A publication Critical patent/JP2021110510A/en
Application granted granted Critical
Publication of JP7458792B2 publication Critical patent/JP7458792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、都市ごみ等の一般廃棄物の炭化処理物の微粉炭を燃料とする微粉炭バーナ装置およびその燃焼方法に関するものである。 The present invention relates to a pulverized coal burner device that uses pulverized coal obtained by carbonizing general waste such as municipal waste as fuel, and a combustion method thereof.

従来、焼却処理していた一般廃棄物(都市ゴミ等)を低酸素、あるいは無酸素下で炭化処理して炭化物を得て、該炭化物を化石燃料の一部と代替させることで化石燃料の使用量を減らし、環境負荷の低減を図るといったことが行われている。 The use of fossil fuels is achieved by carbonizing general waste (municipal garbage, etc.), which was conventionally incinerated, in low oxygen or no oxygen conditions to obtain char, and replacing some of the fossil fuel with the char. Efforts are being made to reduce the amount and reduce the environmental impact.

しかし、一般廃棄物を原料とする前記炭化物中には塩素が含有しており、燃料として燃焼させる際にはダイオキシンを発生させる懸念があるため、例えば、生成した炭化物を水槽内に投入し、流水にて水洗して塩素分を洗い出すといった脱塩処理が行われる。そして、脱水機(フィルタープレス等)にてある程度(例えば、含水率で約30%程度)まで脱水した後、乾燥機にて絶乾状態まで乾燥処理される。 However, the charred material, which is made from general waste, contains chlorine, and there is a concern that it may generate dioxins when burned as a fuel. Desalination treatment is performed by washing with water to remove chlorine. Then, after being dehydrated to a certain degree (for example, about 30% water content) in a dehydrator (filter press, etc.), it is dried to an absolutely dry state in a dryer.

そして、前記脱塩処理を経た炭化物は、例えばペレット状にして焼却炉等に投入して補助燃料として使用したり、粉砕機(ミル等)にて微粉炭化してバーナ燃料として使用したりしている。 The carbide that has undergone the desalination treatment is, for example, made into pellets and put into an incinerator or the like to be used as auxiliary fuel, or pulverized in a pulverizer (mill, etc.) and carbonized to be used as burner fuel. There is.

しかし、前記脱塩処理後、脱水した後に、敢えて乾燥処理せず、ある程度水分を残した湿潤状態に保てば、粉塵爆発や自然発火等の不具合を防げてハンドリング性を高められる可能性がある。 However, after the desalination treatment and dehydration, if the product is kept in a moist state with some moisture remaining without drying, problems such as dust explosions and spontaneous combustion may be prevented and handling properties may be improved. .

そこで、本出願人らは、一般廃棄物由来の微粉炭を脱塩処理した後、粉塵爆発等の不具合を防げてハンドリング性を高められる可能性があることから、敢えて乾燥処理せずにそのまま利用可能とするために、微粉炭ノズルの噴射口付近に外気導入ノズルを連結し、微粉炭ノズル内の混合気を所要の旋回流として分散状態にて火炎中に吹き込む構成の微粉炭バーナ装置を研究してきて、これにより微粉炭が湿潤状態であっても、ノズル内壁等への付着・閉塞の問題もなく、火炎中に分散状態で吹き込められて適正に燃焼可能としている。 Therefore, after desalinating pulverized coal derived from general waste, the applicants decided to use it as is without drying it, since it could prevent problems such as dust explosions and improve handling. In order to make this possible, we are researching a pulverized coal burner device in which an outside air introduction nozzle is connected near the injection port of the pulverized coal nozzle, and the mixture in the pulverized coal nozzle is blown into the flame in a dispersed state as a swirling flow. As a result, even when the pulverized coal is in a wet state, it can be blown into the flame in a dispersed state without problems of adhesion to or clogging of the inner wall of the nozzle, and can be properly combusted.

特願2019-091157号Patent application No. 2019-091157

しかしながら、微粉炭が湿潤状態(含水率:約30%程度)であるが故に、例え旋回流として分散性を高めても、通常の乾燥状態(絶乾状態)のものと比較すると燃焼効率で劣る部分があり、場合によっては微粉炭がバーナ火炎中で燃え切らず、未燃分が発生する可能性もある。 However, because pulverized coal is in a wet state (moisture content: about 30%), even if it improves dispersion by creating a swirling flow, the combustion efficiency is inferior to that in a normal dry state (absolutely dry state). In some cases, the pulverized coal may not burn out in the burner flame, resulting in unburned coal.

バーナ火炎温度を高めるようにすれば燃焼効率を改善でき、バーナ火炎温度を高める手段としては、例えば空気比を下げるといったことが一般的に行なわれる。 Combustion efficiency can be improved by increasing the burner flame temperature, and a common method for increasing the burner flame temperature is, for example, to lower the air ratio.

しかし、その場合、バーナ先端部の火炎形成用のスロート内に供給される二次燃焼用空気量も減少することとなる。前記二次燃焼用空気は、バーナ火炎からの輻射熱によって高温に晒されるスロート内壁の冷却・保護機能も兼ねているため、その供給量が減少すると、場合によってはスロートが過熱され、その表面が赤熱したり、歪みや割れ等の熱変形をきたす可能性がある。 However, in that case, the amount of secondary combustion air supplied to the throat for flame formation at the tip of the burner also decreases. The secondary combustion air also has the function of cooling and protecting the inner wall of the throat, which is exposed to high temperatures due to radiant heat from the burner flame, so if the amount of air supplied decreases, the throat may become overheated, causing its surface to become red-hot. This may cause thermal deformation such as distortion or cracking.

そのため、湿潤状態の微粉炭の分散性を高められて、適正に燃焼させるために、微粉炭ノズル内に外気を導入して混合気を旋回流としつつ、空気比を下げた状態でも支障なく燃焼可能にすることが課題であった。 Therefore, in order to improve the dispersibility of wet pulverized coal and burn it properly, outside air is introduced into the pulverized coal nozzle to create a swirling flow of the mixture, and combustion occurs without any problems even when the air ratio is lowered. The challenge was to make it possible.

本発明は、上記の点に鑑み、上記の課題を解決するために、請求項1に記載のように湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、前記ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにし、前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、前記吸引ダクトより吸引する微粉炭圧送空気を前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設したことを特徴とする微粉炭バーナ装置を提供するにある。
In view of the above points, and in order to solve the above problems, the present invention provides a pulverized coal burner in which wet pulverized coal is injected from a pulverized coal nozzle as burner fuel as claimed in claim 1. , a throat is connected to the tip of the burner body of the pulverized coal burner, and a pulverized coal nozzle that injects pulverized coal is connected to the center of the throat, and a straight tube is formed from the pulverized coal cutting and feeding section behind the throat to the nozzle tip. A heavy oil nozzle is arranged in parallel on the side of the pulverized coal nozzle, and an annular flame-holding plate with a diameter larger than the inner diameter of the burner body is provided in the throat in front of the nozzle. An outside air introduction nozzle that generates a swirling flow is connected to the outside air introduction nozzle, and the flow rate of the outside air from the outside air introduction nozzle is introduced so as to be adjustable, so that the mixture in the pulverized coal nozzle is dispersed as a desired swirling flow from the pulverized coal nozzle. The pulverized coal pressurized air is blown into the flame in the flame region formed at the throat in front of the flame stabilizing plate, and a suction duct for pulverized coal pressurized air is provided around the outer periphery of the throat, and the pulverized coal pressurized air is sucked from the suction duct. It is an object of the present invention to provide a pulverized coal burner device, characterized in that the pulverized coal is arranged in a straight tube shape from the pulverized coal cutting and feeding section to the nozzle tip.

また、請求項2に記載のように外気導入ノズルを微粉炭ノズルの両側に対してそれぞれ接線方向から連結し、外気導入ノズルに外気の流速を調整自在に外気流速調整装置を設け、バーナ燃焼量に応じて導入外気の流速を増減調整して微粉炭を安定燃焼するようにしたことを特徴とする微粉炭バーナ装置を提供するにある。 Further, as claimed in claim 2, the outside air introduction nozzle is connected tangentially to both sides of the pulverized coal nozzle, and the outside air introduction nozzle is provided with an outside air flow rate adjustment device to freely adjust the flow rate of the outside air. To provide a pulverized coal burner device characterized in that pulverized coal is stably burned by increasing or decreasing the flow velocity of introduced outside air according to the temperature.

また、請求項3に記載のように前記スロートの外周部の全幅にわたって微粉炭圧送空気の吸引ダクトを周設してスロート表面を冷却可能に設け、前記吸引ダクトを介して熱交換して予熱を有する微粉炭圧送空気を供給可能に前記微粉炭ノズルの圧送フアンの吸込口に配管接続したことを特徴とする微粉炭バーナ装置を提供するにある。 Further, as described in claim 3, a suction duct for pulverized coal pressurized air is disposed around the entire width of the outer peripheral portion of the throat so that the throat surface can be cooled, and preheating is performed by exchanging heat through the suction duct. It is an object of the present invention to provide a pulverized coal burner device, characterized in that the pulverized coal burner device is connected to a suction port of a pressure fan of the pulverized coal nozzle through piping so as to be able to supply pulverized coal air.

さらに、請求項4に記載のように一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナ燃焼方法であって、前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、前記ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにすると共に、前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、スロート表面を冷却可能に設けた前記吸引ダクトを介して熱交換して予熱を有する微粉炭圧送空気を前記微粉炭ノズルの圧送フアンの吸込口より吸引して前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設した微粉炭ノズルに供給して噴射することを特徴とする微粉炭バーナの燃焼方法を提供するにある。
Furthermore, as claimed in claim 4, a pulverized coal burner in which pulverized coal obtained by carbonizing general waste is desalinated and undried wet pulverized coal is injected from a pulverized coal nozzle to serve as burner fuel. In the combustion method, a throat is connected to the tip of the burner body of the pulverized coal burner, and a pulverized coal nozzle that injects pulverized coal into the center of the throat is connected to the pulverized coal cutting and feeding section behind the throat to the tip of the nozzle. The pulverized coal is arranged in a straight tube shape, with heavy oil nozzles arranged in parallel on the side thereof, and an annular flame holding plate with a diameter larger than the inner diameter of the burner body is provided in the throat in front of the nozzle. An outside air introduction nozzle that generates a swirling flow is connected near the injection port of the nozzle, and the flow rate of the outside air from the outside air introduction nozzle is introduced in an adjustable manner to disperse the air-fuel mixture in the pulverized coal nozzle as a desired swirling flow. The pulverized coal is blown from the pulverized coal nozzle into the flame in the flame area formed at the throat in front of the flame stabilizing plate, and a pulverized coal pressure air suction duct is provided around the outer periphery of the throat so that the throat surface is The pulverized coal is sucked through the suction port of the pressure fan of the pulverized coal nozzle through heat exchange and preheated pulverized coal air through the suction duct provided to be coolable, and the pulverized coal is cut out and sent from the feeding section to the tip of the nozzle. It is an object of the present invention to provide a combustion method for a pulverized coal burner, characterized in that the pulverized coal is supplied to a pulverized coal nozzle disposed in a straight tube across the pulverized coal for injection.

本発明に係る微粉炭バーナ装置は、請求項1に記載のように湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、前記ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにし、前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、前記吸引ダクトより吸引する微粉炭圧送空気を前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設したことによって、一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭であっても、微粉炭ノズルを微粉炭の切り出し送給部からノズル先端部にわたって直管状なので、微粉炭が微粉炭ノズルに付着したり、閉塞することなく、外気導入ノズルからの外気を外気流速調整装置で外気の流速を調整して重油ノズルの前方に形成される保炎板の前方のスロートに形成される火炎領域の火炎中に分散状態で適正に吹き込められて微粉炭バーナで適正に燃焼することができる。
たとえば、外気流速が速い程微粉炭ノズル内の混合気に旋回力が付与され、分散性が増して微粉炭噴射時の噴射角度が広がり、逆に、外気流速が遅いと分散力が低下し、微粉炭噴射時の噴射角度が狭くなり、導入外気の流速を増減調整して微粉炭噴射角度を調整することで常に微粉炭を火炎中に適正に吹き込められて、微粉炭を未燃分なく安定してガス化燃焼することができる。
また、微粉炭が湿潤状態であれば、粉塵爆発や自然発火等の微粉炭特有の問題を解消できるとともにハンドリング性を高められ、上記のように燃焼処理することができる。
そして、吸引ダクトを通過する空気が微粉炭の火炎バーナの燃焼により輻射熱等として受けるスロート部の表面との間で熱交換されてスロート部の冷却・保護ができて、空気比を下げた状態で高火炎温度下での微粉炭燃焼が可能となって、微粉炭圧送空気の予熱も図れ、湿潤状態の微粉炭も加熱乾燥でき、微粉炭の付着の抑制と噴射時の分散性の向上が図れて適正に燃焼することができる。
A pulverized coal burner device according to the present invention is a pulverized coal burner in which moist pulverized coal is injected from a pulverized coal nozzle as burner fuel as claimed in claim 1, wherein the pulverized coal burner has a burner main body. A pulverized coal nozzle that injects pulverized coal is connected to the tip of the throat, and a pulverized coal nozzle that injects pulverized coal is arranged in a straight tube from the pulverized coal cutting and feeding section behind it to the nozzle tip. A heavy oil nozzle is arranged in parallel with the pulverized coal nozzle, and an annular flame-holding plate with a diameter larger than the inner diameter of the burner body is provided in the throat in front of the nozzle, and an outside air introduction nozzle generates a swirling flow near the injection port of the pulverized coal nozzle. The air-fuel mixture in the pulverized coal nozzle is formed in a dispersed state as a required swirl flow from the pulverized coal nozzle to the throat in front of the flame stabilizing plate by adjusting the flow rate of the outside air from the outside air introduction nozzle. A suction duct for pulverized coal pressurized air is provided around the outer periphery of the throat, and the pulverized coal pressurized air sucked from the suction duct is supplied to the pulverized coal cutting and feeding section. The pulverized coal nozzle is arranged in a straight tube shape from the tip of the nozzle to the tip of the nozzle, making it possible to use the pulverized coal nozzle even if the pulverized coal is wet and undried after desalting the carbide obtained by carbonizing general waste. Since the tube is straight from the pulverized coal cutting and feeding section to the nozzle tip, the pulverized coal nozzle does not adhere to or block the pulverized coal nozzle. By adjusting the amount, the fuel can be appropriately blown in a dispersed state into the flame in the flame region formed at the throat in front of the flame-holding plate formed in front of the heavy oil nozzle, and can be properly combusted in the pulverized coal burner.
For example, the faster the outside air flow rate is, the more swirling force is applied to the air-fuel mixture in the pulverized coal nozzle, which increases the dispersibility and widens the injection angle during pulverized coal injection.On the other hand, when the outside air flow rate is slow, the dispersion force decreases. The injection angle when injecting pulverized coal becomes narrower, and by adjusting the flow rate of the introduced outside air to increase or decrease the pulverized coal injection angle, pulverized coal can always be properly injected into the flame, resulting in stable pulverized coal without any unburned particles. It can be gasified and burned.
Further, if the pulverized coal is in a wet state, problems peculiar to pulverized coal such as dust explosion and spontaneous combustion can be solved, and handling properties can be improved, and the combustion treatment can be performed as described above.
Then, the air passing through the suction duct exchanges heat with the surface of the throat section, which receives radiant heat from the combustion of the pulverized coal flame burner, cooling and protecting the throat section, reducing the air ratio. It is now possible to burn pulverized coal under high flame temperatures, preheating the air for pulverized coal, and heat drying wet pulverized coal, suppressing adhesion of pulverized coal and improving dispersion during injection. can be burned properly.

また、微粉炭バーナ装置は、請求項2に記載のように、外気導入ノズルを微粉炭ノズルの両側に対してそれぞれ接線方向から連結し、外気導入ノズルに外気の流速を調整自在に外気流速調整装置を設け、バーナ燃焼量に応じて導入外気の流速を増減調整して微粉炭を安定燃焼するようにしたことによって、微粉炭ノズルの両側の接線方向から外気導入ノズルで外気の流速を調整自在に導入して、微粉炭ノズル内の混合気を旋回流として微粉炭噴射角度を適正に調整できてバーナ燃焼量に応じて火炎中に適正に吹き込められて、上記のように微粉炭を安定して燃焼することができる。 Moreover, as described in claim 2, the pulverized coal burner device has the outside air introduction nozzle connected tangentially to both sides of the pulverized coal nozzle, so that the outside air flow rate can be freely adjusted to the outside air introduction nozzle. By installing a device to increase or decrease the flow rate of introduced outside air according to the burner combustion amount to ensure stable combustion of pulverized coal, it is possible to freely adjust the flow rate of outside air with the outside air introduction nozzle from the tangential direction on both sides of the pulverized coal nozzle. By introducing the air-fuel mixture in the pulverized coal nozzle into a swirling flow, the pulverized coal injection angle can be adjusted appropriately, and the pulverized coal can be properly injected into the flame according to the burner combustion amount, thereby stabilizing the pulverized coal as described above. can be burned.

また、微粉炭バーナ装置は、請求項3に記載のように、前記スロートの外周部の全幅にわたって微粉炭圧送空気の吸引ダクトを周設してスロート表面を冷却可能に設け、前記吸引ダクトを介して熱交換して予熱を有する微粉炭圧送空気を吸込可能に前記微粉炭ノズルの圧送フアンの吸込口に配管接続したことによって、上記のように吸引ダクトを通過する空気でスロート部の冷却・保護が可能となって、圧送フアンから予熱された微粉炭圧送空気を微粉炭ノズルに供給できて湿潤状態の微粉炭を加熱乾燥でき、微粉炭の付着の抑制と噴射時の分散性の向上が図れ、微粉炭を安定して燃焼することができる。 Further, in the pulverized coal burner device according to claim 3, a suction duct for pulverized coal pressurized air is provided around the entire width of the outer circumference of the throat so that the throat surface can be cooled, and the throat surface is cooled. By connecting the pulverized coal nozzle to the suction port of the pressure fan of the pulverized coal nozzle so that the pulverized coal air that has been preheated through heat exchange is connected to the suction port of the pulverized coal nozzle, the throat section is cooled and protected by the air passing through the suction duct as described above. This makes it possible to supply preheated pulverized coal air from the pressure feeding fan to the pulverized coal nozzle, allowing wet pulverized coal to be heated and dried, thereby suppressing the adhesion of pulverized coal and improving dispersion during injection. , it is possible to stably burn pulverized coal.

またさらに、微粉炭バーナ燃焼方法は、請求項4に記載のように一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナ燃焼方法であって、前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、前記微粉炭ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させるために外気導入ノズルを外気の流速を調整可能に連結して、微粉炭ノズル内の混合気を旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにすると共に、前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、スロート表面を冷却可能に設けた前記吸引ダクトを介して熱交換して予熱を有する微粉炭圧送空気を前記微粉炭ノズルの圧送フアンの吸込口より吸引して前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設した微粉炭ノズルに供給して噴射することによって、一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭であっても、上記のように微粉炭が微粉炭ノズルに付着したり、閉塞することなく、所要の外気の流速を調整して重油ノズルの前方に形成される火炎中に分散状態で適正に吹き込められて微粉炭バーナで適正に燃焼することができる。また、微粉炭が湿潤状態であれば、粉塵爆発や自然発火等の微粉炭特有の問題を解消できるとともにハンドリング性を高められ、上記のように燃焼処理することができる。
そして、吸引ダクトを通過する空気が微粉炭の火炎バーナの燃焼により輻射熱等として受けるスロート部の表面との間で熱交換されてスロート部の冷却・保護ができて、空気比を下げた状態で高火炎温度下での微粉炭燃焼が可能となって、微粉炭圧送空気の予熱も図れ、湿潤状態の微粉炭も加熱乾燥でき、微粉炭の付着の抑制と噴射時の分散性の向上が図れて適正に燃焼することができる。
Furthermore, the pulverized coal burner combustion method includes desalting the carbide obtained by carbonizing general waste as described in claim 4, and then injecting undried wet pulverized coal from a pulverized coal nozzle. In this pulverized coal burner combustion method, a throat is connected to the tip of the burner body of the pulverized coal burner, and a pulverized coal nozzle that injects pulverized coal into the center of the throat is connected to the pulverized coal nozzle behind the throat. The pulverized coal nozzle is arranged in a straight tube from the cutting feed section to the tip of the nozzle, with heavy oil nozzles arranged in parallel on the side thereof, and an annular pipe with a diameter larger than the inner diameter of the burner body is installed in the throat in front of the pulverized coal nozzle. A flame stabilizing plate is provided, and an outside air introduction nozzle is connected so as to be able to adjust the flow rate of the outside air in order to generate a swirling flow near the injection port of the pulverized coal nozzle, and the air-fuel mixture in the pulverized coal nozzle is dispersed as a swirling flow. In this state, the pulverized coal is blown from the pulverized coal nozzle into the flame in the flame region formed at the throat in front of the flame stabilizing plate, and a pulverized coal pressure air suction duct is provided around the outer periphery of the throat. The pulverized coal is sucked through the suction port of the pressure fan of the pulverized coal nozzle through heat exchange and preheated pulverized coal air through the suction duct, which is provided to cool the surface of the pulverized coal. The pulverized coal is pulverized coal in an undried, wet state after desalination of the carbide obtained by carbonizing municipal waste by supplying it to a pulverized coal nozzle arranged in a straight pipe over the area and injecting it. Also, as mentioned above, the pulverized coal can be properly blown into the flame formed in front of the heavy oil nozzle in a dispersed state by adjusting the required flow rate of outside air without adhering to or clogging the pulverized coal nozzle. It can be burned properly with a pulverized coal burner. Further, if the pulverized coal is in a wet state, problems peculiar to pulverized coal such as dust explosion and spontaneous combustion can be solved, and handling properties can be improved, and the combustion treatment can be performed as described above.
Then, the air passing through the suction duct exchanges heat with the surface of the throat section, which receives radiant heat from the combustion of the pulverized coal flame burner, cooling and protecting the throat section, reducing the air ratio. It is now possible to burn pulverized coal under high flame temperatures, preheating the air for pulverized coal, and heat drying wet pulverized coal, suppressing adhesion of pulverized coal and improving dispersion during injection. can be burned properly.

本発明の一実施例の概略系統図、A schematic system diagram of an embodiment of the present invention, 同上のバーナ本体部の拡大断面図、An enlarged cross-sectional view of the burner body as above, 同上の微粉炭バーナ部のA-A断面図、A-A sectional view of the pulverized coal burner section as above, 同上のスロート部のB-B断面図、BB sectional view of the throat part same as above, 同上の一部切欠した斜視断面図、A partially cutaway perspective sectional view of the same as above, 同上のための試験設備の概略説明図、A schematic diagram of the test equipment for the same; 同上の噴射角度測定説明図、Explanation diagram of injection angle measurement same as above, 同上の導入外気の流速と噴射角度の関連図、The relationship between the flow velocity of the introduced outside air and the injection angle as above, 同上の微粉炭ノズルの管内付着状態説明図(a)、(b)、Explanatory diagrams (a), (b) of the state of adhesion inside the pipe of the pulverized coal nozzle as above, 同上の微粉炭噴射後の粒径分布図、Particle size distribution diagram after pulverized coal injection as above, 同上のバーナスロート部の冷却試験説明図。An explanatory diagram of a cooling test of the burner throat portion same as above.

本発明の微粉炭バーナ装置およびその燃焼方法は、湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、前記ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにし、前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、前記吸引ダクトより吸引する微粉炭圧送空気を前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設した微粉炭ノズル側に供給して噴射することを特徴としている。
The pulverized coal burner device and its combustion method of the present invention are a pulverized coal burner that uses moist pulverized coal as burner fuel by injecting it from a pulverized coal nozzle, a throat is connected to the tip of a burner body of the pulverized coal burner, a pulverized coal nozzle for injecting pulverized coal in the center is arranged in a straight tube shape from a pulverized coal cut-out and delivery section behind it to the nozzle tip , a heavy oil nozzle is arranged in parallel to the side, and an annular flame stabilizing plate with a diameter larger than the inner diameter of the burner body is provided in the throat in front of the nozzle, and a swirling flow is generated near the injection port of the pulverized coal nozzle. an external air introduction nozzle that generates a swirling flow is connected to the external air introduction nozzle, the flow rate of external air from the external air introduction nozzle is adjustable to make the mixture in the pulverized coal nozzle a required swirling flow and dispersed, and the mixture is blown from the pulverized coal nozzle into the flame in a flame region formed in the throat in front of the flame stabilizing plate; a suction duct for pulverized coal compression air is provided around the outer periphery of the throat, and the pulverized coal compression air sucked through the suction duct is supplied to the pulverized coal nozzle side that is arranged in a straight tube shape from the pulverized coal cut-out and delivery section to the nozzle tip, and injected.

微粉炭バーナ装置1は、図1のように微粉炭バーナ2の円筒状のバーナ本体3の先端部に切頭円錐形状のスロート4を接続し、その中心部に微粉炭を噴射する所定径の微粉炭ノズル5を直管状として配設し、その両側部等に重油ノズル6を設けて所要の火力で燃焼できるようにしている。 As shown in FIG. 1, the pulverized coal burner device 1 includes a truncated conical throat 4 connected to the tip of a cylindrical burner body 3 of a pulverized coal burner 2, and a throat 4 of a predetermined diameter that injects pulverized coal into the center of the throat 4. The pulverized coal nozzle 5 is arranged in the form of a straight tube, and heavy oil nozzles 6 are provided on both sides of the pulverized coal nozzle 5 to enable combustion with the required thermal power.

これらのノズル5、6の前方のスロート4内には、図2のようにバーナ本体3の内径より若干大径で環状の保炎板7を備え、前記の各ノズル5、6から微粉炭を保炎板7の前方のスロート4内に形成される火炎領域に吹き込めるようにしている。 Inside the throat 4 in front of these nozzles 5 and 6, as shown in FIG. The flame can be blown into the flame region formed inside the throat 4 in front of the flame holding plate 7.

前記微粉炭ノズル5の後端部の基端部には、図1のように微粉炭を貯蔵する微粉炭貯蔵ビン8から微粉炭を切り出し可能にロータリーバルブ9を接続するとともに微粉炭圧送用の微粉炭送風機10を配設し、ロータリーバルブ9で切り出す微粉炭を前記微粉炭送風機10の送風によって微粉炭の切り出し送給部からノズル先端部にわたって直管状とした微粉炭ノズル5に圧送して供給するようにしている。 A rotary valve 9 is connected to the base end of the rear end of the pulverized coal nozzle 5, as shown in FIG. A pulverized coal blower 10 is provided, and the pulverized coal cut out by the rotary valve 9 is forcedly fed by air from the pulverized coal blower 10 to the pulverized coal nozzle 5, which has a straight tube shape extending from the pulverized coal cutting and feeding section to the nozzle tip. We are trying to supply the same.

このような先端を逆テーパ形状とした微粉炭ノズル5の前方部の噴射口付近には、図2、図3のように微粉炭ノズル5の両側の接線方向から左右または上下対称状に旋回流を発生させるために外気導入ノズル11をそれぞれ連結し、外気の導入によって微粉炭ノズル5内の混合気を旋回状態として噴射時に分散状態で火炎に吹き込めるようにしている。12はインバータの送風量調整装置で、前記微粉炭貯蔵ビン8からの微粉炭の切り出し量に応じて前記微粉炭送風機10の送風量を調整可能にしている。 In the vicinity of the injection port at the front of the pulverized coal nozzle 5, which has a reversely tapered tip, a swirling flow is generated in a symmetrical manner horizontally or vertically from the tangential direction on both sides of the pulverized coal nozzle 5, as shown in FIGS. 2 and 3. In order to generate this, the outside air introduction nozzles 11 are connected to each other, and by introducing the outside air, the air-fuel mixture in the pulverized coal nozzle 5 is swirled so that it can be blown into the flame in a dispersed state at the time of injection. Reference numeral 12 denotes an air flow rate adjusting device of an inverter, which allows the air flow rate of the pulverized coal blower 10 to be adjusted in accordance with the amount of pulverized coal cut out from the pulverized coal storage bin 8.

なお、外気導入ノズル11の接続位置は、ノズル先端からの距離が遠くなると旋回力が減衰してしまい、逆に近すぎても十分な旋回効果が得られず、ノズル先端から100~200mm程度の位置が好ましい。また、外気導入ノズル11からは70~120m/s程度の外気流入速度として、微粉炭ノズル5内の混合気の流速を10~20m/s程度として旋回状態で火炎中に吹き込めるようにしている。 Note that the connecting position of the outside air introduction nozzle 11 should be determined at a distance of approximately 100 to 200 mm from the nozzle tip, as the turning force will attenuate as the distance from the nozzle tip increases, and conversely, if it is too close, sufficient turning effect will not be obtained. Location is preferred. In addition, the outside air inflow speed from the outside air introduction nozzle 11 is about 70 to 120 m/s, and the flow rate of the mixture in the pulverized coal nozzle 5 is set to about 10 to 20 m/s so that it can be blown into the flame in a swirling state. .

微粉炭ノズル5には、外気導入ノズル11をその接線方向からこれらの内周面に段差がなく接続できるようにして連結すると、図3のように外気が微粉炭ノズル5内をその内壁面にそってスムーズに旋回し、圧送される微粉炭を旋回流として噴射時に効果的に分散状態として噴射でき、適正な火炎にできて好ましい。なお、外気導入ノズル11は、微粉炭ノズル5の長手方向に対し、図1~図3に示すように、略直交状態に連結することで混合気に最も効率よく旋回力を付与できて好ましいが、旋回流を生じさせられる範囲で前後方向に数十度程度傾斜状態に連結することもできる。 When the outside air introduction nozzle 11 is connected to the pulverized coal nozzle 5 so that it can be connected tangentially to these inner peripheral surfaces without any steps, the outside air swirls smoothly along the inner wall surface inside the pulverized coal nozzle 5 as shown in Figure 3, and the pulverized coal being pumped can be sprayed as a swirling flow in an effectively dispersed state when sprayed, which is preferable because it creates an appropriate flame. Note that the outside air introduction nozzle 11 is preferably connected in a state that is approximately perpendicular to the longitudinal direction of the pulverized coal nozzle 5 as shown in Figures 1 to 3, which is preferable because it can most efficiently impart a swirling force to the air-fuel mixture, but it can also be connected in a state that is inclined by several tens of degrees in the forward and backward directions as long as a swirling flow can be generated.

そして、図1~図4のように前記微粉炭ノズル5の両側に備えた重油ノズル6には、それぞれ重油タンクから供給される重油燃料を重油供給ポンプ13と流量調整バルブ14とで所要量を供給自在とし、上記のように各重油ノズル6前方に形成される火炎領域に前記微粉炭ノズル5から噴射する微粉炭を吹き込んでガス化して着火燃焼できるようにしている。 As shown in Figures 1 to 4, the heavy oil nozzles 6 provided on both sides of the pulverized coal nozzle 5 are supplied with the required amount of heavy oil fuel from a heavy oil tank by a heavy oil supply pump 13 and a flow rate control valve 14, and the pulverized coal sprayed from the pulverized coal nozzle 5 is injected into the flame area formed in front of each heavy oil nozzle 6 as described above, where it is gasified and ignited.

そして、微粉炭ノズル5の先端側の前記スロート4部の外周部には、図1、図2、図4、図5のように微粉炭圧送空気吸引用の吸引ダクト15を周設し、吸引ダクト15を介して吸引する微粉炭圧送空気を前記微粉炭送風機10の吸引口16から吸引するように空気吸引管17を接続し、微粉炭ノズル5に送給するようにしている。 As shown in FIGS. 1, 2, 4, and 5, a suction duct 15 for suctioning pulverized coal pressure air is provided around the outer periphery of the throat 4 portion on the tip side of the pulverized coal nozzle 5. An air suction pipe 17 is connected so that the pulverized coal pressurized air sucked through the duct 15 is sucked from the suction port 16 of the pulverized coal blower 10, and is supplied to the pulverized coal nozzle 5.

前記吸引ダクト15は、図4,図5のようにスロート4の外周の略全幅にわたった幅で、所要の高さとして所要量の空気を吸引可能としていて、その側部に矩形状の吸込口18を設け、スロート4の略4分の3周部のところに閉塞板19を設けて吸出口20に前記空気吸引管17を接続している。 As shown in FIGS. 4 and 5, the suction duct 15 has a width that spans almost the entire width of the outer periphery of the throat 4, and has a required height so that it can suck in the required amount of air. An opening 18 is provided, a closing plate 19 is provided at approximately three quarters of the circumference of the throat 4, and the air suction pipe 17 is connected to the suction port 20.

前記吸引ダクト15を通過する空気は、微粉炭の火炎バーナの燃焼により輻射熱等として受けるスロート4部の表面との間で熱交換され、スロート4部が加熱されて表面が赤熱したり、歪みや割れ等の変形をきたさないように過熱防止と保護が図れ、空気比を下げた状態で高火炎温度下での微粉炭燃焼が可能としている。また、同時に微粉炭圧送空気の予熱が図れて微粉炭ノズル5に送給でき、湿潤状態の微粉炭を加熱乾燥できて、微粉炭の付着の抑制と噴射時の分散性の向上が図れるようにしている。 The air passing through the suction duct 15 exchanges heat with the surface of the throat 4, which receives radiant heat from the combustion of the pulverized coal flame burner, heating the throat 4 and causing the surface to become red hot, distorted, etc. It is designed to prevent overheating and protect it from deformation such as cracking, and allows pulverized coal to be burned at high flame temperatures with a reduced air ratio. In addition, at the same time, the pulverized coal can be preheated and fed to the pulverized coal nozzle 5, and the wet pulverized coal can be heated and dried, thereby suppressing adhesion of pulverized coal and improving dispersion during injection. ing.

前記バーナ本体3の後端部には、図1のように送風ダクト21を介して燃焼用空気供給用の燃焼用空気送風機22を配設し、インバータの風量調整装置23を介して前記燃焼用空気送風機21の送風量を調整してバーナ燃焼量に見合った燃焼用空気量をバーナ本体3に供給できるようにしている。24は前記外気導入ノズル11に外気を供給する外気送風機、25はそのインバータの風量調整装置である。 A combustion air blower 22 for supplying combustion air is disposed at the rear end of the burner main body 3 through a blower duct 21 as shown in FIG. The amount of air blown by the air blower 21 is adjusted so that the amount of combustion air commensurate with the burner combustion amount can be supplied to the burner body 3. 24 is an outside air blower that supplies outside air to the outside air introduction nozzle 11, and 25 is an air volume adjusting device for the inverter.

因みに、バーナ燃焼量の全開時では、燃焼用空気送風機22からの送風量が増加して保炎板7裏面の背圧が高くなる結果、重油ノズル6の前方に形成される火炎は保炎板7側に強く吸い寄せられ、保炎板7に近接する(図2中のf1)。一方、バーナ燃焼量が落ちると、前記燃焼用空気送風機22からの送風量が減少して保炎板7裏面の背圧が低下する結果、重油ノズル6の前方の火炎の位置が保炎板7から離間する(図2中のf2)。 Incidentally, when the burner combustion rate is at full throttle, the airflow rate from the combustion air blower 22 increases, increasing the back pressure on the rear side of the flame stabilizing plate 7, so that the flame formed in front of the heavy oil nozzle 6 is strongly drawn toward the flame stabilizing plate 7 and approaches the flame stabilizing plate 7 (f1 in FIG. 2). On the other hand, when the burner combustion rate drops, the airflow rate from the combustion air blower 22 decreases, decreasing the back pressure on the rear side of the flame stabilizing plate 7, so that the position of the flame in front of the heavy oil nozzle 6 moves away from the flame stabilizing plate 7 (f2 in FIG. 2).

また、外気流速が速い程、微粉炭ノズル5内の混合気に旋回力が付与され、分散性が増して微粉炭噴射時の噴射角度が広がる(図2中のα1)。逆に、外気流速が遅いと分散力が低下し、微粉炭噴射時の噴射角度が狭くなる(図2中のα2)。このように外気流速と微粉炭噴射角度とには相関性があり、バーナ燃焼量に応じてスロート4内を前後(図2中では左右)に移動する火炎に対し、外気導入ノズル11からの導入外気の流速を増減調整して微粉炭噴射角度を調整することで、常に微粉炭を火炎中に適正に吹き込められて、微粉炭を未燃分なく安定してガス化燃焼することができる。なお、本実施例では、微粉炭噴射角度を約45~75度程度の範囲で調整可能としている。 Further, as the outside air flow rate is faster, a swirling force is applied to the air-fuel mixture in the pulverized coal nozzle 5, the dispersibility increases, and the injection angle at the time of pulverized coal injection becomes wider (α1 in FIG. 2). Conversely, when the outside air flow rate is slow, the dispersion force decreases and the injection angle during pulverized coal injection becomes narrow (α2 in FIG. 2). In this way, there is a correlation between the outside air flow velocity and the pulverized coal injection angle, and the flame that moves back and forth (left and right in FIG. 2) inside the throat 4 depending on the burner combustion amount is By increasing or decreasing the flow rate of outside air and adjusting the pulverized coal injection angle, pulverized coal can always be properly injected into the flame, and pulverized coal can be stably gasified and burned without any unburned material. In this embodiment, the pulverized coal injection angle can be adjusted within a range of about 45 to 75 degrees.

また、上記微粉炭バーナ装置1は、燃焼制御器26等を設けて、前記したロータリーバルブ9、微粉炭送風機10、重油供給ポンプ13、燃焼用空気送風機22、外気送風機24等の稼働及び出力を装置の運転に際して所要のバーナ燃焼に対応し、増減等を適正に調整制御可能としている。 The pulverized coal burner device 1 is also provided with a combustion controller 26 and the like to control the operation and output of the rotary valve 9, pulverized coal blower 10, heavy oil supply pump 13, combustion air blower 22, outside air blower 24, etc. When operating the device, it is possible to appropriately adjust and control increases and decreases in response to the required burner combustion.

なお、微粉炭バーナ2から排出される高温ガスを微粉炭ノズル5の後端側の基端部に導入するようにして微粉炭を加熱するようにし、排出される高温ガスで湿潤状態の微粉炭を加熱して乾燥させることもできる。 The pulverized coal is heated by introducing the high temperature gas discharged from the pulverized coal burner 2 into the base end on the rear end side of the pulverized coal nozzle 5, and the pulverized coal in a moist state is heated by the high temperature gas discharged from the pulverized coal nozzle 5. It can also be dried by heating.

本発明では、特に、都市ごみ等の一般廃棄物を炭化処理した炭化物を脱塩処理し、脱水後、未乾燥の湿潤状態(例えば、含水率30%程度)の微粉炭を対象とすることができる。脱塩処理後、乾燥処理せずに、30%程度の含水状態に維持することで、粉塵爆発や自然発火等の問題が生じなく、かつハンドリング性を向上でき、その上でバーナ燃料として支障なく利用できて用途を広げられて有効である。 In the present invention, in particular, it is possible to target pulverized coal in an undried wet state (for example, moisture content of about 30%) after desalinating the carbonized material obtained by carbonizing general waste such as municipal waste, and dehydrating it. can. By maintaining the water content at around 30% without drying after desalination treatment, problems such as dust explosions and spontaneous combustion can be prevented, and handling properties can be improved, and it can be used as burner fuel without any problems. It can be used, has a wide range of uses, and is effective.

図1以下は、本発明の実施例を示すものである。微粉炭バーナ装置1は、図1、図2のように微粉炭バーナ2の円筒状のバーナ本体3の先端部に切頭円錐形状のスロート4を接続し、その中心部に微粉炭を噴射する所定径の微粉炭ノズル5を微粉炭の切り出し送給部からノズル先端部にわたって直管状として配設し、図3、図4のようにその両側部に重油ノズル6を設け、各ノズル5、6から保炎板7の前方のスロート4内に形成される火炎領域に吹き込めるようにしている。








FIG. 1 and subsequent figures show an embodiment of the present invention. As shown in FIGS. 1 and 2, the pulverized coal burner device 1 has a truncated conical throat 4 connected to the tip of a cylindrical burner body 3 of a pulverized coal burner 2, and injects pulverized coal into the center of the throat 4. A pulverized coal nozzle 5 of a predetermined diameter is arranged in the form of a straight tube extending from the pulverized coal cutting and feeding part to the nozzle tip, and as shown in FIGS. 3 and 4, heavy oil nozzles 6 are provided on both sides of the nozzle. , 6 into the flame region formed in the throat 4 in front of the flame holding plate 7.








微粉炭ノズル5の先端を逆テーパ形状とし、前方部の噴射口付近のノズル先端から100~200mm程の位置に図1~図3のように微粉炭ノズル5の両側の接線方向から左右対称状に旋回流を発生させるための外気導入ノズル11を微粉炭ノズル5の長手方向に対してそれぞれ直交状に連結し、外気の導入によって微粉炭ノズル5内の混合気を旋回状態として、バーナ燃焼量に応じて噴射時に所要の分散状態で火炎に吹き込めるようにしている。 The tip of the pulverized coal nozzle 5 is made into a reverse tapered shape, and the pulverized coal nozzle 5 is symmetrically placed from the tangential direction on both sides of the pulverized coal nozzle 5 at a position of about 100 to 200 mm from the nozzle tip near the injection port in the front part, as shown in FIGS. 1 to 3. Outside air introduction nozzles 11 for generating a swirling flow are connected perpendicularly to the longitudinal direction of the pulverized coal nozzle 5, and the air-fuel mixture in the pulverized coal nozzle 5 is brought into a swirling state by introducing the outside air, thereby increasing the burner combustion amount. Depending on the situation, the flame can be blown into the flame in the required dispersed state during injection.

そして、図1、図2、図4、図5のように微粉炭ノズル5の先端側の前記スロート4部の外周部に、スロート4の外周の略全幅にわたった幅で、所要の高さに吸引ダクト15を周設し、吸引ダクト15を介して吸引する微粉炭圧送空気を前記微粉炭送風機10の吸引口16から吸い込むように空気吸引管17を接続して微粉炭ノズル5に送給するようにし、火炎バーナの燃焼により輻射熱等を受けるスロート4部の表面を吸引ダクト15を通過する空気で冷却して、スロート4部の過熱防止と保護等を果たし、吸引ダクト15を通過する空気が予熱されて微粉炭ノズル5に送給されるようにしている。 Then, as shown in FIGS. 1, 2, 4, and 5, a required height is placed on the outer circumference of the throat 4 portion on the tip side of the pulverized coal nozzle 5, with a width that spans approximately the entire width of the outer circumference of the throat 4. A suction duct 15 is provided around the pulverized coal, and an air suction pipe 17 is connected so that the pulverized coal pressurized air sucked through the suction duct 15 is sucked from the suction port 16 of the pulverized coal blower 10, and the air is supplied to the pulverized coal nozzle 5. The surface of the throat 4, which receives radiant heat etc. due to the combustion of the flame burner, is cooled by the air passing through the suction duct 15, thereby preventing and protecting the throat 4 from overheating. The pulverized coal is preheated and fed to the pulverized coal nozzle 5.

上記微粉炭バーナ装置1について、図6の試験設備で試験した。図6中の101は本試験装置、105は微粉炭ノズル、108は微粉炭投入用の投入ホッパ、109はロータリーバルブ、110は微粉炭送風機、111は外気導入ノズル、118は外気送風機、121はスクリューコンベア、122及び123は風量センサ、124は温度センサ、125はカメラである。 The pulverized coal burner device 1 was tested using the test equipment shown in Figure 6. In Figure 6, 101 is the test device, 105 is a pulverized coal nozzle, 108 is a hopper for charging pulverized coal, 109 is a rotary valve, 110 is a pulverized coal blower, 111 is an outside air introduction nozzle, 118 is an outside air blower, 121 is a screw conveyor, 122 and 123 are air volume sensors, 124 is a temperature sensor, and 125 is a camera.

なお、本試験装置101では、微粉炭の噴射状態を確認するため、実際に燃焼までは行わず、微粉炭の噴射試験のみを行った。前記試験において、微粉炭送風機110や外気送風機118からの送風量を前記風量センサ122、123にて検出して各流速を演算し、前記温度センサ124にてノズル先端部から噴射直後(1mの地点)の出口空気温度を検出し、前記カメラ125にて微粉炭の噴射状態を撮影してその画像データを基に噴射角度を測定した。なお、微粉炭噴射角度αは図7のように微粉炭ノズル105の先端中心部から250mmの地点での噴射域外縁部を結んだ角度とした。 In this test device 101, in order to confirm the injection state of pulverized coal, only a pulverized coal injection test was performed without actually performing combustion. In the test, the air flow rate from the pulverized coal blower 110 and the outside air blower 118 is detected by the air flow rate sensors 122 and 123 to calculate each flow velocity. ) was detected, the injection state of the pulverized coal was photographed using the camera 125, and the injection angle was measured based on the image data. The pulverized coal injection angle α was an angle connecting the outer edge of the injection area at a point 250 mm from the center of the tip of the pulverized coal nozzle 105, as shown in FIG.

湿潤状態(含水率約31~33%)の微粉炭の炭化燃料を投入ホッパ108からスクリューコンベア121を介してロータリーバルブ109で切り出して直管状の微粉炭ノズル105内に送給し、微粉炭送風機110での所要量の圧送空気で圧送し、微粉炭を下記条件下で噴射した。 Wet pulverized coal carbonized fuel (moisture content approximately 31-33%) was cut from the input hopper 108 via the screw conveyor 121 by the rotary valve 109 and fed into the straight pulverized coal nozzle 105, where it was compressed with the required amount of compressed air by the pulverized coal blower 110, and the pulverized coal was sprayed under the following conditions.

外気導入ノズル111の連結位置はノズル先端から150mm位置、微粉炭供給量は90Kg/h、微粉炭圧送空気流速は15m/sとし、導入外気流速を50m/s(低速)または100m/s(高速)の2パターン、また微粉炭ノズル105の出口空気温度を10℃(常温)または90℃(高温)の2パターンで試験した。その結果は図8に示す。 The connection position of the outside air introduction nozzle 111 is 150 mm from the nozzle tip, the pulverized coal supply amount is 90 kg/h, the pulverized coal pressure air flow rate is 15 m/s, and the introduced outside air flow rate is 50 m/s (low speed) or 100 m/s (high speed). ), and two patterns in which the outlet air temperature of the pulverized coal nozzle 105 was 10°C (normal temperature) or 90°C (high temperature) were tested. The results are shown in FIG.

微粉炭ノズル105の出口空気温度が10℃の場合、導入外気の風速が50m/sのときに微粉炭の噴射角度はおよそ38°(No.1)で、導入外気の流速が100m/sのときには微粉炭の噴射角度はおよそ61°(No.2)となり、導入外気の流速を速めるほど微粉炭の噴射角度は大きくなることが確認できた。 When the outlet air temperature of the pulverized coal nozzle 105 is 10°C, the injection angle of pulverized coal is approximately 38° (No. 1) when the flow velocity of the introduced outside air is 50 m/s, and when the flow velocity of the introduced outside air is 100 m/s. At times, the injection angle of pulverized coal was approximately 61° (No. 2), and it was confirmed that the injection angle of pulverized coal increased as the flow rate of introduced outside air increased.

また、出口空気温度が90℃の場合、導入外気の風速が50m/sのときに微粉炭の噴射角はおよそ49°(No.3)で、導入外気の風速が100m/sのときには微粉炭の噴射角はおよそ72°(No.4)となり、出口空気温度を高めることで微粉炭の噴射角が若干大きくなることも確認できた。このとき、微粉炭ノズル105から噴射した微粉炭の含水率を確認したところ、出口空気温度10℃の場合が約29~30%であるのに対し、90℃の場合では約21~23%で含水率が7~8%程度下がっており、高温の圧送空気による加熱乾燥に伴って微粉炭の分散性が向上したことによるものと予想される。 Furthermore, when the outlet air temperature is 90°C, when the wind speed of introduced outside air is 50 m/s, the injection angle of pulverized coal is approximately 49° (No. 3), and when the wind speed of introduced outside air is 100 m/s, the pulverized coal injection angle is approximately 49° (No. 3). The injection angle was approximately 72° (No. 4), and it was confirmed that the injection angle of pulverized coal became slightly larger by increasing the outlet air temperature. At this time, when we checked the moisture content of the pulverized coal injected from the pulverized coal nozzle 105, it was about 29-30% when the outlet air temperature was 10°C, but about 21-23% when the outlet air temperature was 90°C. The moisture content decreased by about 7 to 8%, which is expected to be due to improved dispersibility of the pulverized coal as a result of heating and drying with high-temperature compressed air.

また、図9は、微粉炭ノズル105管内での微粉炭の付着状態を表したもので、微粉炭ノズル105の出口空気温度が10℃の場合、図9(a)のように外気導入口付近に微粉炭付着物が僅かに確認され、出口空気温度を90℃にすると、図9(b)のように付着物は確認されなかった。これも、高温の圧送空気による加熱乾燥に伴って微粉炭の付着性が軽減したことによるものと予想される。 Moreover, FIG. 9 shows the adhesion state of pulverized coal inside the pulverized coal nozzle 105 pipe. When the outlet air temperature of the pulverized coal nozzle 105 is 10°C, the area near the outside air inlet as shown in FIG. 9(a) A slight amount of pulverized coal deposits was observed, and when the outlet air temperature was set to 90° C., no deposits were observed as shown in FIG. 9(b). This is also expected to be due to the fact that the adhesion of the pulverized coal was reduced due to heating and drying using high-temperature compressed air.

また、図10は、微粉炭ノズル105から噴射直後の微粉炭の粒径の分布図であって、微粉炭ノズル105の出口空気温度が90℃(No.4)の場合、10℃(No.2)の場合と比較して500~600μmのピークが無くなる。これも、前記同様に、高温の圧送空気による加熱乾燥に伴って微粉炭同士の付着力(表面張力)が低下し、粒子径が細かくなったことによるものと予想される。 Moreover, FIG. 10 is a distribution diagram of the particle size of pulverized coal immediately after being injected from the pulverized coal nozzle 105, and shows that when the outlet air temperature of the pulverized coal nozzle 105 is 90°C (No. 4) and 10°C (No. Compared to case 2), the peak at 500 to 600 μm disappears. This is also expected to be due to the fact that the adhesion force (surface tension) between the pulverized coals decreased due to heating and drying using high-temperature compressed air, and the particle size became finer, as described above.

表1 バーナスロート部の冷却試験表

Figure 0007458792000001










Table 1 Burner throat cooling test table

Figure 0007458792000001










また、上記噴射試験を踏まえ、別途用意した燃焼テスト機のスロート4部に吸引ダクト15の冷却手段を設置する前後でのスロート4部の表面温度変化及び赤熱状態の有無を確認した。略同等のバーナ燃焼量(150L/h)での運転条件下で、スロート4部に冷却手段を設置しない場合(データ1))には空気比が比較的高くても(テストでは2.1に調整)、表1、図11のようにスロート4部の表面温度は500℃を超えて(テストでは855℃まで上昇)、赤熱を生じた。しかし、吸引ダクトの冷却手段を設置した場合(データ2)、4)~7))、スロート部の表面温度は表1、図11のように大幅に低下し(テストでは約400~500℃程度)、赤熱は生じなかった。なお、空気比を下げるほどスロート表面温度は上昇する傾向にあり、燃焼効率が上昇する。 In addition, based on the above injection test, changes in the surface temperature of the throat 4 section and the presence or absence of a red-hot state were confirmed before and after installing the cooling means for the suction duct 15 in the throat 4 section of a separately prepared combustion test machine. Under operating conditions with approximately the same burner combustion amount (150L/h), if no cooling means is installed in the throat 4 section (data 1)), even if the air ratio is relatively high (2.1 in the test) Adjustment), as shown in Table 1 and Figure 11, the surface temperature of the 4th part of the throat exceeded 500°C (increased to 855°C in the test), producing red heat. However, when a cooling means for the suction duct is installed (data 2), 4) to 7)), the surface temperature of the throat section drops significantly as shown in Table 1 and Figure 11 (approximately 400 to 500 degrees Celsius in tests). ), no red heat occurred. Note that as the air ratio is lowered, the throat surface temperature tends to rise, and the combustion efficiency increases.

ただし、冷却手段を設置した場合でも、空気比を約1.4未満まで下げると(データ3))、表1、図11のようにスロート表面温度は500℃を超えて(テストでは570℃まで上昇)、赤熱を生じた。
このように本テスト結果より、冷却手段を設置した上で、空気比を約1.4を下限としながらも(空気比約1.4以上に維持しながらも)、湿潤状態の微粉炭の燃焼効率を高めるためにはできるだけ低く抑える方が(空気比1.4に近い方が)好ましいといえる。
However, even if a cooling means is installed, if the air ratio is lowered to less than approximately 1.4 (data 3), the throat surface temperature will exceed 500°C (up to 570°C in the test) as shown in Table 1 and Figure 11. ), producing red heat.
From the results of this test, we found that even if a cooling means is installed and the air ratio is set at the lower limit of about 1.4 (while maintaining the air ratio at about 1.4 or higher), combustion of pulverized coal in a wet state is not possible. In order to increase efficiency, it is preferable to keep the air ratio as low as possible (closer to 1.4).

本発明は、都市ごみ等の一般廃棄物を炭化処理した微粉炭、特に脱塩処理後、未乾燥の湿潤状態の微粉炭を燃料とする微粉炭バーナに対して広く利用できる。 INDUSTRIAL APPLICABILITY The present invention can be widely used for pulverized coal burners that use pulverized coal obtained by carbonizing general waste such as municipal waste, particularly pulverized coal that is desalinated and undried in a wet state as fuel.

1…微粉炭バーナ装置 2…微粉炭バーナ 4…スロート 5…微粉炭ノズル 10…微粉炭送風機 15…吸引ダクト 1... Pulverized coal burner device 2... Pulverized coal burner 4... Throat 5... Pulverized coal nozzle 10... Pulverized coal blower 15... Suction duct

Claims (4)

湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナであって、前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、
前記ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにし、
前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、前記吸引ダクトより吸引する微粉炭圧送空気を前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設した微粉炭ノズル側に供給可能に配管接続したことを特徴とする微粉炭バーナ装置。
A pulverized coal burner that uses wet pulverized coal as burner fuel by injecting it from a pulverized coal nozzle, wherein a throat is connected to the tip of a burner body of the pulverized coal burner, and pulverized coal is injected into the center of the throat. A pulverized coal nozzle is arranged in a straight tube from the pulverized coal cutting/feeding part behind it to the nozzle tip, and heavy oil nozzles are arranged in parallel on the side of the pulverized coal nozzle.
An annular flame stabilizing plate having a larger diameter than the inner diameter of the burner body is provided in the front throat of the nozzle, and an outside air introduction nozzle that generates a swirling flow is connected to the vicinity of the injection port of the pulverized coal nozzle, and the outside air introduction nozzle is connected to the outside air introduction nozzle. The air-fuel mixture in the pulverized coal nozzle is dispersed as a desired swirl flow by adjusting the flow rate of outside air from the pulverized coal nozzle into the flame in the flame region formed at the throat in front of the flame stabilizing plate. Let it blow in,
A suction duct for pulverized coal pressurized air is provided around the outer periphery of the throat, and the pulverized coal pressurized air sucked from the suction duct is arranged in a straight pipe shape from the pulverized coal cutting and feeding section to the nozzle tip. A pulverized coal burner device characterized by having piping connected to a pulverized coal nozzle side so that the pulverized coal can be supplied.
外気導入ノズルを微粉炭ノズルの両側に対してそれぞれ接線方向から連結し、外気導入ノズルに外気の流速を調整自在に外気流速調整装置を設け、バーナ燃焼量に応じて導入外気の流速を増減調整して微粉炭を安定燃焼するようにしたことを特徴とする請求項1に記載の微粉炭バーナ装置。 The outside air introduction nozzle is connected tangentially to both sides of the pulverized coal nozzle, and an outside air flow rate adjustment device is installed on the outside air introduction nozzle to freely adjust the flow rate of outside air, and the flow rate of the introduced outside air is adjusted to increase or decrease according to the burner combustion amount. The pulverized coal burner device according to claim 1, wherein the pulverized coal is stably burned. 前記スロートの外周部の全幅にわたって微粉炭圧送空気の吸引ダクトを周設してスロート表面を冷却可能に設け、前記吸引ダクトを介して熱交換して予熱を有する微粉炭圧送空気を吸込可能に前記微粉炭ノズルの圧送フアンの吸込口に配管接続したことを特徴とする請求項1または2に記載の微粉炭バーナ装置。 A suction duct for pulverized coal pressurized air is disposed around the entire width of the outer periphery of the throat so that the throat surface can be cooled, and the pulverized coal pressurized air that has been preheated by heat exchange through the suction duct can be sucked. The pulverized coal burner device according to claim 1 or 2, characterized in that the pulverized coal burner device is connected to a suction port of a pressure feeding fan of a pulverized coal nozzle. 一般廃棄物を炭化処理して得られる炭化物を脱塩処理後、未乾燥の湿潤状態の微粉炭を微粉炭ノズルから噴射してバーナ燃料とする微粉炭バーナ燃焼方法であって、
前記微粉炭バーナのバーナ本体の先端部にスロートを接続して、その中心部に微粉炭を噴射する微粉炭ノズルをその後方の微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設して、その側部に重油ノズルを並設し、
前記ノズルの前方のスロート内にバーナ本体の内径より大径で環状の保炎板を備えて、前記微粉炭ノズルの噴射口付近に旋回流を発生させる外気導入ノズルを連結し、前記外気導入ノズルからの外気の流速を調整可能に導入して微粉炭ノズル内の混合気を所要の旋回流として分散状態に前記微粉炭ノズルから保炎板の前方のスロートに形成される火炎領域の火炎中に吹き込むようにすると共に、
前記スロートの外周部に微粉炭圧送空気の吸引ダクトを周設して、スロート表面を冷却可能に設けた前記吸引ダクトを介して熱交換して予熱を有する微粉炭圧送空気を前記微粉炭ノズルの圧送フアンの吸込口より吸引して前記微粉炭の切り出し送給部からノズル先端部にわたって直管状に配設した微粉炭ノズルに供給して噴射することを特徴とする微粉炭バーナの燃焼方法。
A pulverized coal burner combustion method comprising the steps of: carbonizing municipal waste, desalting the carbonized material; and injecting wet pulverized coal from a pulverized coal nozzle as burner fuel,
A throat is connected to the tip of the burner body of the pulverized coal burner, and a pulverized coal nozzle for injecting pulverized coal is disposed in the center of the throat in a straight pipe shape from a pulverized coal cut-out and delivery section behind the throat to the nozzle tip, and a heavy oil nozzle is disposed in parallel to the side of the throat,
A ring-shaped flame stabilizing plate having a diameter larger than the inner diameter of the burner body is provided in the throat in front of the nozzle, an outside air introduction nozzle that generates a swirling flow is connected near the nozzle outlet of the pulverized coal nozzle, and the flow rate of outside air from the outside air introduction nozzle is adjusted to make the air-fuel mixture in the pulverized coal nozzle a required swirling flow and to inject it into the flame in the flame region formed in the throat in front of the flame stabilizing plate from the pulverized coal nozzle in a dispersed state.
A combustion method for a pulverized coal burner, characterized in that a suction duct for pulverized coal compressed air is provided around the outer periphery of the throat, and preheated pulverized coal compressed air is heat exchanged through the suction duct which is provided so as to be able to cool the throat surface, and is sucked in through the suction port of the compression fan of the pulverized coal nozzle, and supplied to and injected into the pulverized coal nozzle which is arranged in a straight tube shape from the pulverized coal cut-out and delivery section to the nozzle tip.
JP2020003418A 2020-01-14 2020-01-14 Pulverized coal burner device and its combustion method Active JP7458792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003418A JP7458792B2 (en) 2020-01-14 2020-01-14 Pulverized coal burner device and its combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003418A JP7458792B2 (en) 2020-01-14 2020-01-14 Pulverized coal burner device and its combustion method

Publications (2)

Publication Number Publication Date
JP2021110510A JP2021110510A (en) 2021-08-02
JP7458792B2 true JP7458792B2 (en) 2024-04-01

Family

ID=77059548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003418A Active JP7458792B2 (en) 2020-01-14 2020-01-14 Pulverized coal burner device and its combustion method

Country Status (1)

Country Link
JP (1) JP7458792B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106188A (en) 2008-10-31 2010-05-13 Ihi Corp Method and apparatus for desalinating carbonized material
JP2015148393A (en) 2014-02-07 2015-08-20 日工株式会社 Burner device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043512A (en) * 1976-01-23 1977-08-23 Foster Wheeler Energy Corporation Coal burner
JPS6291709A (en) * 1985-10-16 1987-04-27 Yoshio Use Method and device for burning humid pulverulent body
JPH0763307A (en) * 1993-08-26 1995-03-07 Ishikawajima Harima Heavy Ind Co Ltd Combustion control device for pulverized coal burner device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106188A (en) 2008-10-31 2010-05-13 Ihi Corp Method and apparatus for desalinating carbonized material
JP2015148393A (en) 2014-02-07 2015-08-20 日工株式会社 Burner device

Also Published As

Publication number Publication date
JP2021110510A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
KR101860037B1 (en) The Steam Drying System
CN102042614B (en) Natural gas ignition system for coal burning boiler in generating plant
JP2008145007A (en) Coal burning boiler
KR20100118954A (en) Biomass center air jet burner
CN107894001B (en) Special burner for incinerating high boiling point waste liquid and waste gas
JP7458792B2 (en) Pulverized coal burner device and its combustion method
US3199476A (en) Apparatus and method for compound cyclone combustion of coal and other fuels
JPH0252765B2 (en)
JP7284630B2 (en) Pulverized coal burner device and its combustion method
JP6256859B2 (en) Waste incineration method
JP4477944B2 (en) Tuna structure of waste melting furnace and method of blowing combustible dust
JP3469003B2 (en) Charcoal-fired burner with high volatile content and high moisture content
JPH10337491A (en) Jetting device of steam jet stream and concentrating and drying pulverizer using the same
CN104781606B (en) Method for running steam generator
KR101352773B1 (en) Pellet used burner
KR100867337B1 (en) Burner for the combustion of pulverized fuel made from food waste
JPH08270906A (en) Powder fuel burner
JP4148847B2 (en) burner
US657228A (en) Burning pulverized and liquid hydrocarbons for fuel and heating.
JPH08178236A (en) Resin combustion furnace and combustion control method thereof
JP4393977B2 (en) Burner structure for burning flame retardant carbon powder and its combustion method
US3260227A (en) System for drying and burning wet coal
JP3792085B2 (en) Fluff burning method and apparatus, and ash melting equipment equipped with the fluff burning apparatus
JPH0227289Y2 (en)
JP4173062B2 (en) Asphalt plant dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7458792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150