JPS5824899B2 - Focusing device for electron beam equipment - Google Patents

Focusing device for electron beam equipment

Info

Publication number
JPS5824899B2
JPS5824899B2 JP51089174A JP8917476A JPS5824899B2 JP S5824899 B2 JPS5824899 B2 JP S5824899B2 JP 51089174 A JP51089174 A JP 51089174A JP 8917476 A JP8917476 A JP 8917476A JP S5824899 B2 JPS5824899 B2 JP S5824899B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
slit
electron
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51089174A
Other languages
Japanese (ja)
Other versions
JPS5315738A (en
Inventor
片桐信二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51089174A priority Critical patent/JPS5824899B2/en
Publication of JPS5315738A publication Critical patent/JPS5315738A/en
Publication of JPS5824899B2 publication Critical patent/JPS5824899B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電子線装置の焦点合わせ装置に係り、特に、透
過型電子顕微鏡の焦点合わせ装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focusing device for an electron beam device, and more particularly to an improvement in a focusing device for a transmission electron microscope.

従来から、透過型電子顕微鏡の焦点合わせ装置としては
通称ワブラーと称する装置が使用されている。
Conventionally, a device commonly called a wobbler has been used as a focusing device for a transmission electron microscope.

このワプラーは、試料を照射する電子線の試料に対する
入射角を時間的に変化させる装置で、螢光板上に生ずる
試料像の動きを観察し、その動きが認められな(なるよ
うに対物レンズに印加する電流を変化させて焦点合せを
行うものである。
This Wappler is a device that changes the incident angle of the electron beam on the sample over time, and observes the movement of the sample image that appears on the fluorescent plate. Focusing is performed by changing the applied current.

この場合は螢光板の明るさが肉眼で良(観察できる明る
さが必要であるので、相当多量の電子線量を試料に照射
することになる。
In this case, the brightness of the phosphor plate must be good enough to be observed with the naked eye, so a considerably large amount of electron beam will be irradiated onto the sample.

したがって、試料の形態や形質を変化させて損傷を与え
る場合があるという欠点があった。
Therefore, there is a drawback that the sample may be damaged by changing its morphology or characteristics.

それを避けるためには高倍率下の写真像撮影時の焦点合
せも暗い状態で行わなければならないという難点が生じ
、その解決策が熱望されていた。
In order to avoid this, a problem arises in that focusing must be done in dark conditions when photographing images at high magnification, and a solution to this problem has been eagerly awaited.

上記の解決策としては従来から螢光板の像を撮影して観
察できる揮度倍増装置がある。
As a solution to the above problem, there has conventionally been a volatility doubling device capable of photographing and observing an image of a fluorescent plate.

しかしこの装置は操作性と保守に難点があり、極めて高
価格であるので現在は殆んど使用されていない。
However, this device is difficult to operate and maintain, and is extremely expensive, so it is hardly used at present.

本発明の目的は、従来は肉眼観察不可能な程度の暗い状
態でも焦点合せが容易で確実にできる電子線装置の焦点
合わせ装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focusing device for an electron beam device that allows easy and reliable focusing even in a dark state that is conventionally impossible to observe with the naked eye.

第1図は本発明の原理説明図である。FIG. 1 is a diagram explaining the principle of the present invention.

試料1の像が対物レンズ4によって細隙6の位置に生じ
ておれび焦点が合った状態であるが、未調整の場合は対
物レンズの焦点距離が適正でないので物面3の像が細隙
6の位置に生じている。
The image of the sample 1 is formed at the position of the slit 6 by the objective lens 4 and is in focus, but if it is not adjusted, the focal length of the objective lens is not appropriate, so the image on the object plane 3 will be at the slit 6. It occurs at position 6.

このような状態で試料1の上部にある偏向コイル(図示
していない)によって偏向された電子線2を試料1に入
射させると、試料の影像はXに生じ対物レンズ4によっ
てにの像はyに生ずる。
When an electron beam 2 deflected by a deflection coil (not shown) on the top of the sample 1 is made incident on the sample 1 in this state, an image of the sample is created in occurs in

同様にして、偏向された電子線2が試料の同一点に入射
するときは、物面3における影像はA” となり像面5
にはB“の位置にA“の像が結像される。
Similarly, when the deflected electron beam 2 is incident on the same point on the sample, the image on the object plane 3 becomes A'' and becomes the image plane 5.
An image of A" is formed at position B".

試料1と物面3との距離をΔfとし、偏向された電子線
2,2′の試料入射角をαとすると、物面3におけるλ
、A′/の距離は2α・Δfとなり、細隙6における「
B“距離は上記A’A“の距離に対物レンズ4による倍
率を乗じた量となる。
If the distance between the sample 1 and the object surface 3 is Δf, and the incident angle of the deflected electron beams 2 and 2' on the sample is α, then λ at the object surface 3
, A'/ is 2α・Δf, and the distance of ' in the slit 6 is
The distance B" is equal to the distance A'A" multiplied by the magnification of the objective lens 4.

「Bτまは通常性の拡大レンズによって更に拡大されて
電子顕微鏡の螢光板上に投影されるのであるが、説明の
都合上細隙6は上記螢光板の近(にあり、その下部に近
接して螢光面7およびそれに密着取付けた光電子増倍管
8が置かれているものとする。
``Bτ is further magnified by a normal magnifying lens and projected onto the fluorescent plate of the electron microscope, but for convenience of explanation, the slit 6 is located near the fluorescent plate and close to the bottom thereof. It is assumed that a fluorescent surface 7 and a photomultiplier tube 8 closely attached thereto are placed.

細隙6の右側にB%Z来たときは、螢光面7に到達する
電子線は減少し、yのときは開放されて電子線量が増加
する。
When B%Z comes to the right side of the slit 6, the electron beam reaching the fluorescent surface 7 decreases, and when y, the electron beam is released and the electron beam amount increases.

即ち、Δfが大である程細隙6を通過する電子線量は試
料に入射する電子線の入射方向によって変化が犬となる
That is, the larger Δf is, the more the amount of electron beam passing through the gap 6 changes depending on the direction of incidence of the electron beam incident on the sample.

対物レンズ4の焦点距離を適正にして試料1と物面3が
一致した場合は上記I¥B(−!、細隙6開口の中央で
一致するから、試料に入射する電子線の方向が変化して
も光電子増倍管8で検知される電子線量は一定となる。
When the focal length of the objective lens 4 is set appropriately and the sample 1 and the object surface 3 match, the above I¥B(-!) will match at the center of the slit 6 opening, so the direction of the electron beam incident on the sample will change. However, the amount of electron beam detected by the photomultiplier tube 8 remains constant.

即ち、試料1に入射する電子線の入射方向が変化しても
検出される電子線量(螢光量)が不変であるときは焦点
が合致した状態であるといえる。
That is, when the detected amount of electron beam (fluorescence amount) remains unchanged even if the direction of incidence of the electron beam incident on the sample 1 changes, it can be said that the state is in focus.

試料1を取除いた状態で入射する電子線の方向によって
細隙6に入る電子線量に差が生ずるときは、予め検出値
にその補正値を与えてお(ことによって試料を入れた場
合の偏向電子線による変化分のみを検出することができ
る。
If there is a difference in the amount of electron beam entering the slit 6 depending on the direction of the incident electron beam with the sample 1 removed, the correction value should be given to the detected value in advance (by doing so, the deflection when the sample is inserted is Only changes caused by the electron beam can be detected.

実用製品にはこのような補正装置が必要となる。Practical products require such a correction device.

上記細隙6の巾とその位置が調節できることが重要であ
る。
It is important that the width of the slit 6 and its position can be adjusted.

すなわち、対象となる試料が小さくて像の大きさが細隙
間隔内であり、かつ像面5における変位量が間隙よりも
小さい場合は焦点外れによる電子線量の変化が表われな
いから、像と細隙の相対位置あるいは細隙中を変化でき
ることが測定精度を上げるためには重要な要件である。
In other words, if the target sample is small and the image size is within the narrow gap, and the amount of displacement on the image plane 5 is smaller than the gap, there will be no change in the electron beam amount due to defocus, so the image will be Being able to change the relative position of the slit or the inside of the slit is an important requirement for improving measurement accuracy.

上記相対的位置の調整には像に対しで細隙6を動かす場
合と、細隙6を固定して像を偏位させる場合がある。
To adjust the relative position, the slit 6 may be moved relative to the image, or the slit 6 may be fixed and the image may be deviated.

後者の像を偏位させる場合は試料微動装置を用いて試料
を動かしても良いし、又は電子線通路にある偏向コイル
を通常の手段で用いて電子線を偏向させても良い。
In the case of deflecting the latter image, the sample may be moved using a sample fine movement device, or the electron beam may be deflected using conventional means using a deflection coil in the electron beam path.

上記の細隙移動又は試料像の移動は手動でも自動でも良
い。
The above-mentioned movement of the slit or movement of the sample image may be performed manually or automatically.

第2図は本発明の1実施列である透過形電子顕微鏡の説
明図である。
FIG. 2 is an explanatory diagram of a transmission electron microscope which is one embodiment of the present invention.

電子源9より発生した電子線は陽極10で加乗され、コ
ンデンサレンズ11で収速され、偏向コイル12によっ
て周期的に偏向されて試料1を照射する。
The electron beam generated by the electron source 9 is multiplied by the anode 10, condensed by the condenser lens 11, and periodically deflected by the deflection coil 12 to irradiate the sample 1.

試料を通過した電子線は対物レンズ4、中間レンズ13
および投射レンズ14によって拡大した試料像を検出器
15の螢光面上に生ずる。
The electron beam that has passed through the sample is passed through the objective lens 4 and the intermediate lens 13.
A sample image magnified by the projection lens 14 is generated on the fluorescent surface of the detector 15.

この検出器15は第1図に示した細隙6、螢光面7およ
び光電子増倍管を具えたものである。
This detector 15 is equipped with a slit 6, a fluorescent surface 7 and a photomultiplier tube as shown in FIG.

その細隙6の位置は電子顕微鏡の終像螢光板の近くに置
かれておれば焦点深度が深いのでその上下いずれに置い
て差支えない。
As long as the slit 6 is placed near the final image phosphor plate of the electron microscope, the depth of focus will be deep, so it can be placed either above or below it.

検出器15より発生した電気信号は増巾器16で増巾さ
れてその電気量が表示器17に表示されると共に、その
変動分が変動分検出器18で取り出されて自動調整装置
19に伝えられる。
The electrical signal generated by the detector 15 is amplified by an amplifier 16 and the amount of electricity is displayed on a display 17, and the variation is extracted by a variation detector 18 and transmitted to an automatic adjustment device 19. It will be done.

自動調整装置19では上記電気量の変動分を減少する方
向に対物レンズ4に加える励磁電流を増減調節し、常に
変動分が最小値になるように自動的に調節する。
The automatic adjustment device 19 increases or decreases the excitation current applied to the objective lens 4 in a direction to reduce the amount of variation in the amount of electricity, and automatically adjusts so that the amount of variation always becomes the minimum value.

上記本発明の原理説明で述べたように、入射方向を異に
して電子線を照射した場合に検出器より生ずる電気量の
変化が最小であることは、対物レンズ4に流す励磁電流
が最適状態にあること、即ち対物レンズの焦点距離が最
適状態にあることを示すものである。
As stated above in the explanation of the principle of the present invention, the fact that the change in the amount of electricity generated by the detector when irradiating electron beams with different incident directions is minimal means that the excitation current flowing through the objective lens 4 is in an optimal state. This indicates that the focal length of the objective lens is in the optimum state.

この状況は表示器17によって見ることができるが、表
示器17としては電気計器やCRT管を使用しても良い
し、光の強さ又は色が変化する表示器を用いても良い。
This situation can be seen on the display 17, which may be an electric meter or a CRT tube, or a display whose light intensity or color changes.

上記検出器15よりの電気量を処理するには、単に電子
線の偏向による電気量を比較するよりもその変動分を検
出する方が良い。
In order to process the quantity of electricity from the detector 15, it is better to detect the variation thereof rather than simply comparing the quantity of electricity due to the deflection of the electron beam.

偏向方向切換えによる電子線量の差が変動分検出器18
によって検出され、その変化量の最小値が対物レンズ4
の焦点距離が最適で焦点が合った状態となる。
The difference in electron dose due to deflection direction switching is detected by the variation detector 18.
is detected by the objective lens 4, and the minimum value of the amount of change is detected by the objective lens 4.
The focal length is optimal and the image is in focus.

先に述べたように、試料を入れずに電子線を偏向させた
だけで検出信号が変化する場合は、両者の値を予め補正
しておいても良いし、あるいは両者の比の変化分を監視
しても良い。
As mentioned earlier, if the detection signal changes simply by deflecting the electron beam without inserting a sample, it is possible to correct both values in advance, or to calculate the change in the ratio between the two. You can monitor it.

自動焦点合せを行うには、上記検出電気量の変化分の最
小値を検出する手段と、対物レンズ4の励磁電流を自動
的に変化させる自動調整装置19とを用いる。
To perform automatic focusing, means for detecting the minimum value of the change in the detected quantity of electricity and an automatic adjustment device 19 that automatically changes the excitation current of the objective lens 4 are used.

対物レンズ4の励磁電流を連続的又は微小間欠的に変化
させながら、上記検出電気量の変化値を検出し、その最
小値に励磁電流を止める。
While changing the excitation current of the objective lens 4 continuously or minutely intermittently, the change value of the detected quantity of electricity is detected, and the excitation current is stopped at the minimum value.

変化分の最小値を求めるには記憶装置を用いて遂次変化
分を前値と比較する方法で得られる。
The minimum value of the change can be obtained by using a storage device and comparing successive changes with previous values.

また、電子線の入射角の変化は間欠的でも連続的でも本
質的な差はない。
Furthermore, there is no essential difference whether the incident angle of the electron beam changes intermittently or continuously.

電子線の検出手段として用いた光電子増倍管は約10−
0−15a/crAの高感度を有している。
The photomultiplier tube used as the means for detecting the electron beam has a power of about 10-
It has a high sensitivity of 0-15a/crA.

したがって、試料像の最終段の倍率を1万部で撮影する
ときは試料を照射する電子線密度’el O′?amp
/crtHに低下させても良いことになる。
Therefore, when photographing the final sample image at a magnification of 10,000 copies, the density of the electron beam irradiating the sample is 'el O'? amp
This means that it may be lowered to /crtH.

従来の螢光板上の試料像を裸眼観察して焦点合わせな行
う場合に試料を照射する電子線密度は1010−3a/
crl程度必要であったのに比較すれば、遥かに試料を
損傷することが少い。
When observing a sample image on a conventional fluorescent plate with the naked eye and performing focusing, the electron beam density with which the sample is irradiated is 1010-3a/
Compared to the case where about crl was required, there is much less damage to the sample.

また、光電子増倍管は安価なものであり、連応性があり
その検出電流の処理回転は比較的低価格で構成可能であ
る。
In addition, the photomultiplier tube is inexpensive, has coordination, and the processing rotation of its detection current can be constructed at a relatively low cost.

他の検出器としては、直接電子線を測定するファラディ
ケージ、荷電粒子線を直接増巾する電子線増倍装置など
が使用できる。
Other detectors that can be used include a Faraday cage that directly measures the electron beam, and an electron beam multiplier that directly amplifies the charged particle beam.

第3図は本発明の装置に用いる検出器の他の実施列を示
す平面図、第4図はその断面図を示す。
FIG. 3 is a plan view showing another row of detectors used in the apparatus of the present invention, and FIG. 4 is a sectional view thereof.

複数個の細隙をもつ固定細隙板20と可動細隙板21が
重ねて配置されであるので、試料組成の細かさおよびそ
の拡大像倍率に応じて最適な細隙中に調節することがで
きる利点がある。
Since the fixed slit plate 20 and the movable slit plate 21 having a plurality of slits are arranged one on top of the other, it is possible to adjust the slits to the optimum size according to the fineness of the sample composition and its enlarged image magnification. There are advantages that can be achieved.

この細隙の調節は可動細隙板21を移動させて行うこと
ができ、その細隙の長手方向は偏向させる電子線の偏向
面とは直角な方向である。
This slit can be adjusted by moving the movable slit plate 21, and the longitudinal direction of the slit is perpendicular to the deflection plane of the electron beam to be deflected.

このように細隙を配置することは検出性能を害すること
なく電子線量を増すことができるという効果がある。
Arranging the slits in this manner has the effect of increasing the electron beam dose without impairing detection performance.

以上本発明の実施列は透過型電子顕微鏡を列にとって説
明したが、これに限ることな(、広範囲の電孕線を収束
偏向されるような装置の焦点合わせ手琲として利用する
ことができる。
Although the embodiments of the present invention have been described above with reference to a transmission electron microscope, the present invention is not limited to this; however, it can be used as a focusing device for a device that converges and deflects a wide range of electron beams.

本発明は、電子線による試料の損傷を防止して試料体の
焦点合わせを容易かつ確実に行うことができるという顕
著な効果を有する。
INDUSTRIAL APPLICATION This invention has the remarkable effect that damage to a sample by an electron beam can be prevented and focusing of a sample body can be performed easily and reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図本発明の1実施1
1FUである透過型電子顕微鏡の説明図、第3図は本発
明の装置に用いる検出器の他の実施例を示す平面図、第
4図は第3図の検出器の断面図である。 符号の説明、1・・・試料、2.z・・・偏向された電
子線、3・・・物面、4・・・対物レンズ、5・・・像
面、6・・・細隙、7・・・螢光面、8・・・光電検出
器、9・・・電子源、10・・・s極、i i・・・コ
ンデンサーレンズ、12・・・偏向コイル、13・・・
中間レンズ、14・・・投射レンズ、15・・・検出器
、16・・・増巾器、17・・・表示器、18・・・変
動分検出器、19・・第動調整装置、20・・・固定細
隙板、21・・・可動細隙板。
Figure 1 is a diagram explaining the principle of the present invention, Figure 2 is 1 implementation 1 of the present invention.
FIG. 3 is a plan view showing another embodiment of the detector used in the apparatus of the present invention, and FIG. 4 is a sectional view of the detector shown in FIG. 3. Explanation of symbols, 1... Sample, 2. z... Deflected electron beam, 3... Object surface, 4... Objective lens, 5... Image plane, 6... Slit, 7... Fluorescent surface, 8... Photoelectric detector, 9... Electron source, 10... S pole, i i... Condenser lens, 12... Deflection coil, 13...
Intermediate lens, 14... Projection lens, 15... Detector, 16... Amplifier, 17... Display device, 18... Fluctuation detector, 19... Third dynamic adjustment device, 20 ... Fixed slit plate, 21... Movable slit plate.

Claims (1)

【特許請求の範囲】 1 試料に入射する電子線の入射角を変化させる手段と
、上記試料を透過した電子線を結像させる電子レンズと
、該電子レンズにより結像される電子線を透過させるよ
うに長さ方向が上記試料に入射する電子線の入射角の変
化方向と実質的に直角になるように配置された細隙と、
該細隙を通過する電子線を検出する手段と、上記電子レ
ンズの焦点距離を自動的に変化させる手段と、上記検出
手段の出力信号に応動して、その信号の変化が最小にな
ったとき上記電子レンズの焦点距離の変化を停止させる
手段とを備えていることを特徴とする電子線装置の焦点
合わせ装置。 2、特許請求の範囲第1項において、上記電子線が通過
する細隙の巾を調節可能としたことを特徴とする電子線
装置の焦点合わせ装置。
[Scope of Claims] 1. A means for changing the angle of incidence of an electron beam incident on a sample, an electron lens for forming an image of the electron beam transmitted through the sample, and a means for transmitting the electron beam imaged by the electron lens. a slit arranged such that its length direction is substantially perpendicular to the direction of change in the incident angle of the electron beam incident on the sample;
means for detecting the electron beam passing through the slit; means for automatically changing the focal length of the electron lens; and in response to an output signal of the detecting means, when the change in the signal becomes minimum. A focusing device for an electron beam apparatus, comprising means for stopping a change in focal length of the electron lens. 2. A focusing device for an electron beam apparatus according to claim 1, characterized in that the width of the slit through which the electron beam passes can be adjusted.
JP51089174A 1976-07-28 1976-07-28 Focusing device for electron beam equipment Expired JPS5824899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51089174A JPS5824899B2 (en) 1976-07-28 1976-07-28 Focusing device for electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51089174A JPS5824899B2 (en) 1976-07-28 1976-07-28 Focusing device for electron beam equipment

Publications (2)

Publication Number Publication Date
JPS5315738A JPS5315738A (en) 1978-02-14
JPS5824899B2 true JPS5824899B2 (en) 1983-05-24

Family

ID=13963408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51089174A Expired JPS5824899B2 (en) 1976-07-28 1976-07-28 Focusing device for electron beam equipment

Country Status (1)

Country Link
JP (1) JPS5824899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680469A (en) * 1984-08-17 1987-07-14 Hitachi, Ltd. Focusing device for a television electron microscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912763A (en) * 1972-05-10 1974-02-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912763A (en) * 1972-05-10 1974-02-04

Also Published As

Publication number Publication date
JPS5315738A (en) 1978-02-14

Similar Documents

Publication Publication Date Title
JP3786875B2 (en) Objective lens for charged particle beam devices
JP5916318B2 (en) Detector system used in transmission electron microscope
US10274441B2 (en) Generating an image of an object or a representation of data about the object
US5598002A (en) Electron beam apparatus
US9224574B2 (en) Charged particle optical equipment and method for measuring lens aberration
TWI592976B (en) Charged particle beam device and inspection method using the device
KR20030030972A (en) Specimen measuring method and scanning microscope
WO2015050201A1 (en) Charged particle beam inclination correction method and charged particle beam device
US8410438B2 (en) Charged particle beam device
JPH0690423B2 (en) Slit radiography equipment
JP2007171193A (en) Method and instrument for measuring distance
JP5553154B2 (en) Adjustment method of multi-segment STEM detector
US3601575A (en) Method and apparatus for viewing the impact spot of a charge carrier beam
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JP7076574B2 (en) Charged particle beam device
JPS5824899B2 (en) Focusing device for electron beam equipment
JPH01120749A (en) Automatic focusing device for electron microscope
JP2947440B2 (en) Simultaneous measurement of electron energy loss
Cowley High-voltage transmission scanning electron microscopy
JP6705946B2 (en) Charged particle beam device
JP2008107335A (en) Cathode luminescence measuring device and electron microscope
JP2000131045A (en) Scanning type charged particle beam system
JPS61217014A (en) Scanning type inspecting instrument
US20220359153A1 (en) Transmission Electron Microscope and Imaging Method
JP7289543B2 (en) Determination of electronic spot width and height