JPS5824879A - Converter driving circuit for electronic time piece - Google Patents

Converter driving circuit for electronic time piece

Info

Publication number
JPS5824879A
JPS5824879A JP12707682A JP12707682A JPS5824879A JP S5824879 A JPS5824879 A JP S5824879A JP 12707682 A JP12707682 A JP 12707682A JP 12707682 A JP12707682 A JP 12707682A JP S5824879 A JPS5824879 A JP S5824879A
Authority
JP
Japan
Prior art keywords
circuit
output
phase
drive
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12707682A
Other languages
Japanese (ja)
Inventor
Akio Nakajima
中島 章夫
Akira Nikaido
二階堂 旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP12707682A priority Critical patent/JPS5824879A/en
Publication of JPS5824879A publication Critical patent/JPS5824879A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means

Abstract

PURPOSE:To return the vibration phase to the normal state quickly by changing the drive pulse width and the phase at the normal time in linkage with a switch circuit employing a CMOS transistor when the amplitude and the phase of a converter are above or below the preset value. CONSTITUTION:When the vibration phase of a converter advances with respect to a force drive signal 58 due to disturbance, the waveform of the induced voltage is as shown by the waveform 51b. A phase advance difference detection circuit 22 whose input is a phase advance reference signal phiS1 and not-output -A of the detection circuit output A operates to produce pulses 69 from the output B to set the output D of phase advance difference memory circuits 23 and 24 at ''1''. Phase advance driving pulses phiS2 pass a switching circuit 25 and pulses -phiZ develop at the output G to be applied to the input J of an AND circuir 40. Since the waveform 58 was previously applied to the input K, the output L of a pulse selection circuit is as shown by the waveform 71. In short, this generates an output voltage equivalent to two times as large as the pulse width of pulses extended by 1/16 second in the advance direction from those at the normal time which causes a drive current 72 to flow through a drive coil 43. Thus, the vibration phase of the converter is returned quickly.

Description

【発明の詳細な説明】 本発明は電子時計、特に水晶腕時計に利用されるテンプ
、音片等の機械振動子駆動回路の構成に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a mechanical oscillator drive circuit for a balance wheel, a vibrator, etc. used in an electronic timepiece, particularly a quartz wristwatch.

電子時計において、水晶発振回路等の基準信号源からの
電気信号によって、テンプ、音片等の機械共振子を強制
駆動する共振式変換機の場合は、共振式変換機の振動振
巾及び基準駆動信号と振動位相との位相差を一定の範囲
に保つことが、基準信号に同期して輪列系に正確に運動
変換するために必要である。
In electronic watches, in the case of a resonant converter that forcibly drives a mechanical resonator such as a balance wheel or a tone bar by an electric signal from a reference signal source such as a crystal oscillator circuit, the vibration amplitude and reference drive of the resonant converter are It is necessary to maintain the phase difference between the signal and the vibration phase within a certain range in order to accurately convert the motion to the wheel train system in synchronization with the reference signal.

一般に共振式変換機を強制駆動するとき、駆動入力信号
の電圧、電流、周波数及び・ぞルス巾により共振式変換
機の振動振巾及び位相が一定に保持されている。しかる
に携帯時の衝撃等の外乱は共振式変換機の振巾及び位相
の変動を生じさせ、運動変換作用の安定性を害する。
Generally, when a resonant converter is forcibly driven, the vibration amplitude and phase of the resonant converter are held constant by the voltage, current, frequency, and pulse width of the drive input signal. However, disturbances such as shocks during carrying cause fluctuations in the amplitude and phase of the resonant transducer, impairing the stability of the motion conversion effect.

従来、振動振1]を外乱に対して安定化させるために、
振動振巾の変化に対応して、駆動入力信号のパルス巾が
変るように振1〕制御回路を設けることは公知である。
Conventionally, in order to stabilize vibration vibration 1] against disturbances,
It is known to provide a control circuit so that the pulse width of the drive input signal changes in response to changes in the vibration amplitude.

しかしながら、従来技術は振動振巾制御効果のみで位相
制御効果はまったく無いため、外乱等によって基準駆動
信号に対して振動位相が変化した場合には即応できず、
大きく変化した場合には同期外れを起し、運動変換作用
の安定性が害され止り等の原因とも々る。
However, since the conventional technology only has a vibration amplitude control effect and no phase control effect, it cannot immediately respond when the vibration phase changes with respect to the reference drive signal due to disturbance etc.
If there is a large change, synchronization may occur, which may impair the stability of the motion conversion effect and cause it to stall.

本発明は前述の欠点を除去し、C/MOSトランジスタ
を使用したスイッチ回路と連動して変換機の振巾及び位
相が予め設定した値以上又は以下になったときに、通常
時の駆動ノクルス巾及び位相を変化させるように作動す
る回路構成に係るものである。
The present invention eliminates the above-mentioned drawbacks, and works in conjunction with a switch circuit using C/MOS transistors to change the normal drive nockle width when the amplitude and phase of the converter exceeds or falls below a preset value. and a circuit configuration that operates to change the phase.

以下図面にもとすき本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第1図に於いて、10.11及び12は水晶発振器等の
出力を適宜%ずつ分周するフリップフロップ回路より構
成される第1の信号発生回路で、10aは入力側、12
aは出力側でフリップフロップ回路12の出力φ3、φ
3の周波数が16Hzならば、フリップフロップ回路1
1の出力φ2、φ2の周波数は32Hz、フリップフロ
ップ回路10の出力φ1、φ1の周波数1464Hz 
及びフリップフロップ回路10の入力φo1 φ。の周
波数は128 Hz  となる。
In FIG. 1, 10, 11 and 12 are first signal generation circuits composed of flip-flop circuits that divide the output of a crystal oscillator or the like by appropriate percentages, 10a is an input side, and 12
a is the output side of the flip-flop circuit 12, φ3, φ
If the frequency of 3 is 16Hz, flip-flop circuit 1
The frequency of the output φ2, φ2 of the flip-flop circuit 10 is 32Hz, and the frequency of the output φ1, φ1 of the flip-flop circuit 10 is 1464Hz.
and the input φo1 φ of the flip-flop circuit 10. The frequency of is 128 Hz.

(3) 13.14.15及び16は第1の基準信号φ  を得
るだめの第1の基準信号発生回路で、3+ 13はフリップフロップ10の入力φo1フリツゾフロ
ツ7”10の出力φ1を入力とするAND回路、14は
フリップフロップ10の入力φo1フリッゾフロッ7″
10の出力φ1を入力とするAND回路で11−tAN
D回路13.14の出力を入力とするOR回路であり、
16はフリップフロップ11の出力φ2、OR回路15
の出力及びフリップフロップ12の出力φ3を入力とす
るAND回路である。
(3) 13.14.15 and 16 are first reference signal generation circuits for obtaining the first reference signal φ, and 3+13 receives the input φo1 of the flip-flop 10 and the output φ1 of the fritz flop 7''10. AND circuit, 14 is the input φo1 of the flip-flop 10, the flip-flop 7″
11-tAN with an AND circuit that inputs the output φ1 of 10
It is an OR circuit that receives the outputs of D circuits 13 and 14 as input,
16 is the output φ2 of the flip-flop 11, and the OR circuit 15
This is an AND circuit whose inputs are the output of the flip-flop 12 and the output φ3 of the flip-flop 12.

17は第2の基準信号φ  を得るだめの第22 の基準信号発生回路で7リツプ′フロツゾ10の出力φ
1111フリップフロラゾの出力φ2、フリップフロッ
プ12の出力φ3を入力とするAND回路である。
17 is a 22nd reference signal generation circuit for obtaining the second reference signal φ;
This is an AND circuit whose inputs are the output φ2 of the 1111 flip-flop 12 and the output φ3 of the flip-flop 12.

18は第11Jセツト/?ルスφ  を得るための1 波形変換回路で、フリップフロップ10の出力φ1、フ
リップフロップ11の出力φ2、フリップフロラ7”1
2の出力φ3を入力とするAND回(4) 路である。
18 is the 11th J set/? In order to obtain the pulse φ, the output φ1 of the flip-flop 10, the output φ2 of the flip-flop 11, and the output φ2 of the flip-flop 7”1 are used.
This is an AND circuit (4) which takes the output φ3 of 2 as an input.

19は第2リセツ) ノ4ルスφ  を得るための2 波形変換回路で、フリップフロラ7”10の出力φ1、
フリップフロラf11の出力φ2、フリップフロップ1
2の出力φ3を入力とするNAND回路である。
19 is the second waveform conversion circuit for obtaining the second reset pulse φ, and the output φ1 of the flip roller 7"10
Output φ2 of flip flop f11, flip flop 1
This is a NAND circuit that receives the output φ3 of 2 as an input.

20は進相駆動用パルスを得る第2の信号発生回路で7
リツプフロツf 1.0の入力φo1フリツプフロツゾ
10の出力φ11フリツプフロツゾ11の出力φ2、フ
リップフロラ7’12の出力φ3を入力とするNAND
 回路である。
20 is a second signal generation circuit that obtains phase advance driving pulses; 7;
NAND with input φo1 of flip-flop f1.0, output φ11 of flip-flop 10, output φ2 of flip-flop 11, and output φ3 of flip-flop 7'12.
It is a circuit.

第2図に於いて、30は検出回路、31はリセット回路
、33.34は検出回路30の出力に応じてゝ1“にセ
ットされ、第1リセツトパルスφ  によってゝゝO“
にリセットされるRe s e を旧 Set Inverseフリツゾフロツf (R8T 
FF )によって構成される振動振巾記憶回路、35は
インバーター、36.37はAND回路、38はNOR
回路で、第1の信号発生回路の出力φo1 φlを入力
とする入力切換回路として動作し、後述する駆動/eル
ス選択回路の一部を構成する。検出回路30、振巾記憶
回路33.34、入力切換回路35.36.37.38
で振巾制御系を構成する。
In FIG. 2, 30 is a detection circuit, 31 is a reset circuit, 33.34 is set to "1" according to the output of the detection circuit 30, and is set to "O" by the first reset pulse φ.
Reset to old Set Inverse Fritzoflots f (R8T
FF ), 35 is an inverter, 36.37 is an AND circuit, and 38 is a NOR
The circuit operates as an input switching circuit that receives the outputs φo1 to φl of the first signal generation circuit as input, and forms part of a drive/e pulse selection circuit to be described later. Detection circuit 30, amplitude storage circuit 33.34, input switching circuit 35.36.37.38
Configure the amplitude control system.

39はNAND  回路で、端子0は切換回路の出力■
、端子IFi信号φ11端子2は信号φ2、端子3は信
号φ3に接続されて波形変換回路を構成している。
39 is a NAND circuit, and terminal 0 is the output of the switching circuit.
, terminal IFi signal φ11, terminal 2 is connected to signal φ2, and terminal 3 is connected to signal φ3, forming a waveform conversion circuit.

31はインバーターで22は第1の基準信号φ  と検
出回路30の出力Aの否定Aを入力とl するNAND回路で進相位相差検出回路を構成し、23
.24は進相位相差検出回路22の出力に応じてゝゝ1
“にセットされ、第1リセツトハルスφ  によってゝ
ゝ0“にリセットされるRe5et旧 Set Inverseフリッグフロツf (R8T 
FF)によって構成される進相位相差記憶回路、25は
進相位相差記憶回路23.24の出力りと、進相駆動用
/(’ルスφ2を入力とするNAND回路で第1の切換
回路を構成する。
31 is an inverter; 22 is a NAND circuit whose inputs are the first reference signal φ and the negative A of the output A of the detection circuit 30; a leading phase difference detection circuit;
.. 24 corresponds to the output of the advanced phase difference detection circuit 22.
Re5et old Set Inverse frig float f (R8T
A first switching circuit 25 is composed of the outputs of the leading phase difference storing circuits 23 and 24, and a NAND circuit whose input is the phase leading drive/('rus φ2). do.

上記進相位相差検出回路22、進相位相差記憶回路23
.24、切換回路25で進相位相制御系44を構成する
The advanced phase difference detection circuit 22 and the advanced phase difference storage circuit 23
.. 24, the switching circuit 25 constitutes an advanced phase control system 44.

26は第2の基準信号φ  と検出回路30の2 出力Aの否定Aを入力とするNAND回路で、遅相位相
差検出回路を構成し、27.2Bは遅相位相差検出回路
26の出力に応じてゝゝ1“にセットされ、第1リセツ
トノ母ルスφ  によってゝゝ0“1 にリセットされるRe5et Set Inverse
フリップフロップ(R8T FF)によって構成される
遅相位相差記憶回路、29は遅相位相差記憶回路27.
28の出力Eと第2リセツトパルスφ  を入力2 とするNAND回路で第2の切換回路を構成する。
26 is a NAND circuit which receives the second reference signal φ and the negative A of the second output A of the detection circuit 30, and constitutes a lagging phase difference detection circuit; Re5et Set Inverse
A lagging phase difference storage circuit 29 constituted by a flip-flop (R8T FF) is a lagging phase difference storage circuit 27.
A second switching circuit is constituted by a NAND circuit whose inputs are the output E of 28 and the second reset pulse φ.

上記遅相位相差検出回路26、遅相位相差記憶回路27
.28、切換回路29で遅相位相制御系を構成する。
The lagging phase difference detection circuit 26 and the lagging phase difference storage circuit 27
.. 28, a switching circuit 29 constitutes a delayed phase control system.

32Fi第2の切換回路29の出力Nと第1リセツトパ
ルスφ  を入力とするAND回路で出力I Hは振巾記憶回路33.34のNAND回路に接続され
ている。
32Fi is an AND circuit which receives the output N of the second switching circuit 29 and the first reset pulse φ, and the output IH is connected to the NAND circuit of the amplitude storage circuits 33 and 34.

40Fi切換回路25の出力Gと波形変換回路39の出
力Kを入力とするAND回路である。第(7) lの切換回路25、第2の切換回路29、及びインバー
タ35、ダート回路36.37.38よりなる入力切換
回路、波形変換回路39、ダート回路40により駆動パ
ルス選択回路を構成する。
This is an AND circuit that receives the output G of the 40Fi switching circuit 25 and the output K of the waveform conversion circuit 39 as inputs. (7) A drive pulse selection circuit is constituted by the input switching circuit consisting of the first switching circuit 25, the second switching circuit 29, the inverter 35, and the dart circuits 36, 37, and 38, the waveform conversion circuit 39, and the dart circuit 40. .

41.42げ駆動用インバーター、43は駆動コイルで
ある。
41. 42 is a drive inverter, and 43 is a drive coil.

第3図、第4図は電気機械変換機が正常に動作している
時の作動を説明する波形図で、51は駆動コイル43に
誘起する電圧波形、52は振巾検出電圧レベル、53は
検出回路30の出力波形、67は駆動コイルの電流波形
を示す。
3 and 4 are waveform diagrams illustrating the operation when the electromechanical converter is operating normally, in which 51 is the voltage waveform induced in the drive coil 43, 52 is the amplitude detection voltage level, and 53 is the waveform diagram illustrating the operation when the electromechanical converter is operating normally. The output waveform of the detection circuit 30, 67, shows the current waveform of the drive coil.

第5図は電気機械変換器の振動位相が進んだときの作動
を説明する波形図で、進相位相差検出回路22の出力B
69によって、進相制御回路が動作している状態を示す
FIG. 5 is a waveform diagram illustrating the operation when the vibration phase of the electromechanical converter advances, and shows the output B of the leading phase difference detection circuit 22.
69 indicates the state in which the phase advance control circuit is operating.

第6図は電気機械変換機の撮動位相が遅れたときの作動
を説明する波形図で、遅相位相差検出回路26の出力C
γ4によって遅相制御回路が動作している状態を示す。
FIG. 6 is a waveform diagram illustrating the operation when the imaging phase of the electromechanical converter is delayed, and shows the output C of the delayed phase difference detection circuit 26.
γ4 indicates the state in which the slow phase control circuit is operating.

次に作用について説明する。Next, the effect will be explained.

(8) 変換機駆動コイル43に16 Hz 、  i/’16
周期の・やルス巾の駆動信号が印加され定常状態にある
場合は、第3図、第4図の各電圧電流波形で示される。
(8) 16 Hz, i/'16 to converter drive coil 43
When a drive signal with a period of a certain pulse width is applied and the device is in a steady state, the voltage and current waveforms shown in FIGS. 3 and 4 are shown.

駆動コイル43はテンプ式共振変換機に設けた永久磁石
と駆動コイル43との電磁作用により誘起電圧波形が発
生する。51’、51“は誘起電圧が最大となる点、即
ち、変換機の磁石と駆動コイル20が重なるときの一振
動中の2回の最大速度の点の誘起電圧を示している。誘
起電圧が51′lのときに強制駆動力が生じるように設
計されている変換機に於いて、誘起電圧51′を本発明
駆動回路では振巾及び位相差の検出に用いようとするも
のである。
The drive coil 43 generates an induced voltage waveform due to the electromagnetic action between the drive coil 43 and a permanent magnet provided in the balance type resonance converter. 51' and 51'' indicate the induced voltage at the point where the induced voltage is maximum, that is, at the two maximum speed points during one vibration when the magnet of the converter and the drive coil 20 overlap. In a converter designed to generate a forced driving force when 51'l, the drive circuit of the present invention uses induced voltage 51' to detect the amplitude and phase difference.

第2図の検出回路30はコンプリメンタリMOSトラン
ジスタで構成されており、供給電圧1.5Vのとき、し
きい値電圧を0.75V程度に設定でき、定常時の駆動
コイル43のピーク誘起電圧を1.0V程度に設定すれ
ば誘起電圧は第3図Xに示す波形となる。従って、この
とき検出レベル52の電圧は0.75Vとなり、誘起電
圧の頭部51′は315点で検出レベル52を横切る。
The detection circuit 30 in FIG. 2 is composed of complementary MOS transistors, and when the supply voltage is 1.5V, the threshold voltage can be set to about 0.75V, and the peak induced voltage of the drive coil 43 during steady state can be set to 1. If set to about .0V, the induced voltage will have the waveform shown in FIG. 3X. Therefore, at this time, the voltage at the detection level 52 is 0.75V, and the head 51' of the induced voltage crosses the detection level 52 at 315 points.

それ故、第3図Xに示すah間では検出回路30は反転
して第2図A点の出力波形は第3図53の如くになる。
Therefore, between ah shown in FIG. 3, the detection circuit 30 is inverted, and the output waveform at point A in FIG. 2 becomes as shown in FIG. 3, 53.

このパルスによって振巾記憶回路33.34の出力Fを
ゝ1”にセットすると、インバーター35の出力は50
″となるから第1の信号発生回路の出力φ1はAND回
路36を通過できない。第1の信号発生回路の出力φ0
はAND回路37を通過して入力切換回路38の出力■
はφ。となる。従ってNAND 回路39の入力端子0
には波形54即ちφo1端子1には波形55φ7、端子
2には波形56即ちφ2、端子3には波形57即ち第1
の信号発生回路の出力φ3が印加され出力端子Kには・
やルス巾1/16となって第3図58に示す出力波形を
得る。一方定常状態では進相位相制御回路は動作しない
ため出力G=1であり、したがってAND回路40の入
力J=1であり、AND回路40の出力りすなわち・ぐ
ルス選択回路の出力には58がその捷ま現れる。
When the output F of the amplitude memory circuits 33 and 34 is set to ``1'' by this pulse, the output of the inverter 35 becomes 50.
'', the output φ1 of the first signal generation circuit cannot pass through the AND circuit 36.The output φ0 of the first signal generation circuit
passes through the AND circuit 37 and becomes the output of the input switching circuit 38 ■
is φ. becomes. Therefore, the input terminal 0 of the NAND circuit 39
waveform 54, i.e., φo1, waveform 55, φ7, at terminal 2, waveform 56, i.e., φ2, and waveform 57, i.e., the first waveform at terminal 3.
The output φ3 of the signal generating circuit is applied to the output terminal K.
The las width becomes 1/16 and the output waveform shown in FIG. 3 is obtained. On the other hand, in the steady state, since the phase advance control circuit does not operate, the output G is 1, so the input J of the AND circuit 40 is 1, and the output of the AND circuit 40, that is, the output of the signal selection circuit is 58. The darkness will appear.

このように検出レベル52を越えた誘起電圧51が生じ
ている定常状態ではパルス選択回路出力し即ち58は予
め定められた周波数16Hz。
Thus, in a steady state where the induced voltage 51 exceeding the detection level 52 is generated, the pulse selection circuit outputs the signal 58 at a predetermined frequency of 16 Hz.

パルス中1/16に保たれる。又、振巾記憶回路33.
34のNAND回路33にAND回路32を介して第1
リセツ) z9ルスφ  (第4図(7)1 64)を印加して、駆動パルスが印加される毎に振巾記
憶回路出力Fをゝゝ0“にリセットしてセットパルスが
入力端子Aに入る前の状態に戻している。なお、このと
きは、遅相位相制御回路は動作していないため、出力N
ばゝ1”であり、φR1はAND回路32を通過してN
AND回路33に印加されている。
It is kept at 1/16 during the pulse. Further, the amplitude memory circuit 33.
34 NAND circuits 33 through the AND circuit 32
z9 pulse φ (Fig. 4 (7) 164) is applied, and the amplitude memory circuit output F is reset to "0" every time a drive pulse is applied, and the set pulse is applied to the input terminal A. The state is returned to the state before entering.At this time, the lagging phase control circuit is not operating, so the output N
1", and φR1 passes through the AND circuit 32 and becomes N
It is applied to the AND circuit 33.

一方、外乱等によって変換機の振動位相が強制駆動信号
58に対して進んだ場合は、第5図に示す如く、誘起電
圧波形は51bの如くになり、進相基準信号φ  と検
出回路出力Aの否定出力A1 を入力とする進相位相差検出回路22が動作して、その
出力Bは69となり、進相位相差記憶回路23.24の
出力Dn %% 1 //にセットされ、進相駆動用・
母ルスφ2 (第3図の59)は第1の切換回路25を
通過して出力Gにはφ2 (第5図の70〕が現れ、A
ND回路回路4人0 れる。入力Kには波形58が印加されているため、パル
ス選択回路の出力りの波形は71の如くになる。すなわ
ち定常時のパルスを1/16sec進み方向に延長した
・ξルス巾2倍の出力電圧が発生し、駆動コイル43に
は駆動電流72が流れその誘起電圧51bとの関係は第
5図の如くになる。この結果合力は2倍となり、しかも
進相方向に増加するため、駆動力は有効に作用して、進
んだ振動位相は遅らせられて急速に定常状態に引き戻さ
れる。
On the other hand, when the vibration phase of the converter advances with respect to the forced drive signal 58 due to disturbance etc., the induced voltage waveform becomes as shown in 51b as shown in FIG. The leading phase difference detection circuit 22 which inputs the negative output A1 of is operated, and its output B becomes 69, which is set to the output Dn %% 1 of the leading phase difference storage circuit 23.24, for the leading phase drive.・
The mother pulse φ2 (59 in FIG. 3) passes through the first switching circuit 25, and φ2 (70 in FIG. 5) appears at the output G, and A
ND circuit circuit 4 people 0 will be. Since the waveform 58 is applied to the input K, the output waveform of the pulse selection circuit is as shown in 71. In other words, an output voltage is generated that is the steady state pulse extended by 1/16 sec in the forward direction and twice the ξ pulse width, and a drive current 72 flows through the drive coil 43, and its relationship with the induced voltage 51b is as shown in FIG. become. As a result, the resultant force doubles and increases in the phase advance direction, so the driving force acts effectively and the advanced vibration phase is delayed and rapidly returned to a steady state.

さらに変換機の振動位相が強制駆動信号58に対して遅
れた場合は、第6図に示す如く、誘起電圧波形は51c
の如くになり、第1の基準信号とは位相の異なる第2の
基準信号φ  と検出回路2 出力Aの否定へを入力とする遅相位相差検出回路26が
動作して、その出力Cは74となり、遅相位相差記憶回
路27、28の出力Eはゝゝ1“にセットされ、第2リ
セツト・ぐルスφR2 (第4図の65)はNAND回
路29を通過して出力NKは(11) φ  (第6図の75)が現れ、AND回路322 に印加されその出力Hに76の如くになる。すなわちA
によってゝゝ1“にセットされた振巾記憶回路33、3
4の出力Fは再び“0“にリセットされ、切換回路の出
力Iはφ1とな,す、これが波形変換回路390入力端
子0に印加され、端子1には波形55即ちφ1、端子2
には波形56即ちφ2、端子3には波形57即ちφ3が
印加されているから、その出力にの波形は77の如くに
なり、進相位相制御回路は動作していないためその出力
Gflゝゝ1“すなわちAND回路40の入力Jばゞ1
“であるため、・ぞルス選択回路の出力りは77の如く
になる。すなわち定常時のノ々ルスを1/□6SeC遅
れ方向に延長した・ぐルス巾2倍の出力電圧が発生し、
駆動コイル43には駆動電流78が流れ、その誘起電圧
51cとの関係は第6図の如くになる。
Furthermore, when the vibration phase of the converter lags behind the forced drive signal 58, the induced voltage waveform becomes 51c as shown in FIG.
The second reference signal φ having a different phase from the first reference signal and the negative of the output A of the detection circuit 2 are operated, and the delayed phase difference detection circuit 26 operates, and its output C is 74 Therefore, the outputs E of the slow phase difference memory circuits 27 and 28 are set to ``1'', the second reset signal φR2 (65 in FIG. 4) passes through the NAND circuit 29, and the output NK becomes (11). φ (75 in FIG. 6) appears, is applied to the AND circuit 322, and its output H becomes like 76. That is, A
The amplitude memory circuit 33, 3 is set to ``1'' by
The output F of 4 is reset to "0" again, and the output I of the switching circuit becomes φ1. This is applied to the input terminal 0 of the waveform conversion circuit 390, and the waveform 55, that is, φ1, is applied to the terminal 1, and the output I of the switching circuit becomes φ1.
Since the waveform 56 or φ2 is applied to the terminal 3 and the waveform 57 or φ3 is applied to the terminal 3, the output waveform is as shown in 77, and since the phase advance phase control circuit is not operating, its output Gflゝゝゝ1", that is, the input J of the AND circuit 40
Therefore, the output voltage of the voltage selection circuit is as shown in 77. In other words, the normal voltage is extended in the direction of 1/□6SeC delay, and an output voltage twice the voltage is generated.
A drive current 78 flows through the drive coil 43, and its relationship with the induced voltage 51c is as shown in FIG.

この結果入力は2倍となり、しかも遅相方向に増加する
ため、駆動力は有効に作用して、遅れた振動位相は進め
られ急速に定常状態に引き戻される。
As a result, the input is doubled and also increases in the direction of the slow phase, so the driving force acts effectively and the delayed vibration phase is advanced and rapidly returned to the steady state.

ここに変換機の振動位相は第1の基準信号φSl  。Here, the vibration phase of the converter is the first reference signal φSl.

(12) と一定時間後の第2の基準信号φ  とによって2 比較されることになる。(12) and the second reference signal φ after a certain period of time. will be compared.

変換機の振動振巾が減少し、従って駆動コイル43に誘
起する電圧51aが検出レベル52以下になった場合は
検出回路30は動作せず出力端子AKは検出/ー,Qル
スは現れない。一方遅相位相制御回路も動作しないため
その出力Nは常に91“であシ、リセット・ソルスφ 
 (第6図64)は常R+ にAND回路32′ff:介して振巾記憶回路33、3
4のNAND回路33人力I(K接続されているため振
巾記憶回路33、34の出力Fflゝゝ0“にリセット
される。すなわち振動位相が遅れた場合と同じ状態とな
り、切換回路の出力■はφIとなり、これが波形変換回
路390入力に印加され、その出力にの波形は77の如
くになり、進相位相制御回路は動作していないため、そ
の出力Gはゝゝ1“すなわちAND回路40の入力Jは
ゝゝ1“であり、パルス選択回路の出力しは77の如く
になる。すなわち、定常時のパルス中が2倍の出力電圧
が発生し、駆動コイル43には2倍の駆動電流が流れ、
入力は2倍となって減少した振巾は急速に定常状態に引
き戻される。
When the vibration amplitude of the converter decreases and therefore the voltage 51a induced in the drive coil 43 becomes lower than the detection level 52, the detection circuit 30 does not operate and the output terminal AK does not detect /- and Q pulses. On the other hand, since the lagging phase control circuit also does not operate, its output N is always 91", and the reset sorus φ
(Fig. 6 64) is normally connected to R+ by AND circuit 32'ff: amplitude storage circuit 33, 3 through
Since the NAND circuit 33 of No. 4 is connected to the human power I (K), the output of the amplitude memory circuits 33 and 34 is reset to Fflゝゝ0''. In other words, the state is the same as when the vibration phase is delayed, and the output of the switching circuit ■ becomes φI, which is applied to the input of the waveform conversion circuit 390, and the waveform at its output becomes as shown in 77. Since the phase advance phase control circuit is not operating, its output G is ``1'', that is, the AND circuit 40 The input J is ``1'', and the output of the pulse selection circuit is 77. That is, twice the output voltage is generated during the steady pulse, and the drive coil 43 has twice the drive. current flows,
The input is doubled and the reduced amplitude is quickly pulled back to steady state.

本実施例ではテンゾ式共振変換機を用いた場合のパルス
1〕で説明したが、本発明を音叉音片等信の変換機駆動
に応用しても差し支えないことは明らかである。また、
本発明はパルスモーク等にも容易に適用可能である。こ
の場合は、駆動・ぐルス印加終了直後の回転子の過渡的
振巾状態を検出して駆動パルス巾を制御すればよい。ま
た、本実施例では変換機への同期化力を16 Hz 1
/16パルス中とし、振動の異常時(位相進み時、位相
遅れ時及び振巾減少時)に〆・ぞルス巾にしているが、
一般には/4’ルス巾ば%n(n=1.2、・・・・・
・)で良く、異常時に2倍、4倍といった1倍以上のパ
ルス巾の拡大を図る回路構成を作り得ることも明らかで
ある。1だ駆動周波数も16 Hz  に限定されない
。検出回路への入力は駆動コイルとしたが、新たに検出
コイルを設けても良いことは明らである。
In this embodiment, the pulse 1 in the case of using a Tenzo type resonant converter has been described, but it is clear that the present invention may be applied to driving a converter of a tuning fork vibrating piece or the like. Also,
The present invention can be easily applied to pulse smoke and the like. In this case, the drive pulse width may be controlled by detecting the transient amplitude state of the rotor immediately after the end of drive/gurus application. In addition, in this embodiment, the synchronization power to the converter is 16 Hz 1
/16 pulses, and when the vibration is abnormal (phase advance, phase lag, and amplitude decrease), the width is set to zero.
In general, /4'rus width%n (n=1.2,...
), and it is also clear that it is possible to create a circuit configuration that expands the pulse width by a factor of 1 or more, such as 2 times or 4 times, in the event of an abnormality. The driving frequency is also not limited to 16 Hz. Although the drive coil is used as the input to the detection circuit, it is clear that an additional detection coil may be provided.

本発明の効果の一つは、外乱等によって変換機(15) の振動位相が遅れたときに、パルス111は定常時の2
倍でしかも遅れ方向に延長するので、急速に振動位相は
定常状態に戻され動作が安定することである。
One of the effects of the present invention is that when the vibration phase of the converter (15) is delayed due to disturbance etc., the pulse 111 is
Since it doubles and extends in the delay direction, the vibration phase quickly returns to a steady state and the operation becomes stable.

効果のもう一つは、変換機の振動位相が進んだときに、
・やルスd]は定常時の2倍でしかも進み方向に延長す
るので、急速に振動位相it定常状態に戻され動作が安
定することである。
Another effect is that when the vibration phase of the converter advances,
Since the vibration phase d] is twice that of the steady state and extends in the advancing direction, the vibration phase is quickly returned to the steady state and the operation becomes stable.

効果のもう一つは、変換機の振巾が減少して検出振巾よ
り小さくなったとき駆動パルス中が定常時の2倍になる
ので急速に振巾が定常状態に戻され動作が安定すること
である。さらに本発明の駆動回路を用いる効果の一つは
全MO8化が行なわれ、回路が極小になることである。
Another effect is that when the amplitude of the converter decreases and becomes smaller than the detection amplitude, the amplitude during the drive pulse is twice that of the steady state, so the amplitude quickly returns to the steady state and the operation becomes stable. That's true. Furthermore, one of the effects of using the drive circuit of the present invention is that the entire MO8 is implemented and the circuit becomes extremely small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例の主要構成ブロック
線図、第3図、第4図は定常時の回路の作動説明図、第
5図は変換機の振動位相が進んだときの作動説明図、第
6図は振動位相が遅れたときの作動説明図である。 (16) 44・・・・・・進相位相制御系 45・・・・・・遅相位相制御系 33.34・・・・・・振巾記憶回路 30・・・・・・検出回路 10.11.12.20・・・・・・信号発生回路第1
図 第4@ 0          61 九     60 ψ259
Figures 1 and 2 are main configuration block diagrams of an embodiment of the present invention, Figures 3 and 4 are illustrations of the operation of the circuit in steady state, and Figure 5 is when the vibration phase of the converter advances. FIG. 6 is an explanatory diagram of the operation when the vibration phase is delayed. (16) 44... Advance phase control system 45... Lagging phase control system 33.34... Amplitude storage circuit 30... Detection circuit 10 .11.12.20...Signal generation circuit 1st
Figure No. 4 @ 0 61 9 60 ψ259

Claims (1)

【特許請求の範囲】[Claims] 変換機の駆動コイル両端に駆動用インバータを介して駆
動パルスを供給することにより変換機を駆動する変換機
駆動回路に於いて、複数の巾の異なるパルス信号を発生
する信号発生回路、前記複数のパルス信号を選択的に駆
動用インバータに供給する駆動ieルス選択回路、前記
駆動コイルの一端に接続された該駆動コイルの誘起電圧
を検出する検出回路とを備え、前記検出回路が駆動パル
ス印加時をさけて誘起電圧を検出することにより変換機
の振巾の低下を検出し駆動・ゼルス選択回路を切換え、
パルス巾の大きな駆動・やルスを供給することを特徴と
する電子時計の変換機駆動回路。
In a converter drive circuit that drives a converter by supplying drive pulses to both ends of a drive coil of the converter via a drive inverter, a signal generating circuit that generates a plurality of pulse signals having different widths; A drive pulse selection circuit that selectively supplies a pulse signal to a drive inverter; and a detection circuit that detects an induced voltage of the drive coil connected to one end of the drive coil, and the detection circuit detects when a drive pulse is applied. By detecting the induced voltage while avoiding the
A converter drive circuit for an electronic watch characterized by supplying a drive signal with a large pulse width.
JP12707682A 1982-07-21 1982-07-21 Converter driving circuit for electronic time piece Pending JPS5824879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12707682A JPS5824879A (en) 1982-07-21 1982-07-21 Converter driving circuit for electronic time piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12707682A JPS5824879A (en) 1982-07-21 1982-07-21 Converter driving circuit for electronic time piece

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7075572A Division JPS5760589B2 (en) 1972-07-17 1972-07-17

Publications (1)

Publication Number Publication Date
JPS5824879A true JPS5824879A (en) 1983-02-14

Family

ID=14950978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12707682A Pending JPS5824879A (en) 1982-07-21 1982-07-21 Converter driving circuit for electronic time piece

Country Status (1)

Country Link
JP (1) JPS5824879A (en)

Similar Documents

Publication Publication Date Title
US4361410A (en) Drive system for pulse motor
US4715725A (en) Step motor control mechanism for electronic timepiece
JPS6115387B2 (en)
US4615625A (en) Analog electronic timepiece
US4283783A (en) Drive control system for stepping motor
US3937003A (en) Electric clock
US4361409A (en) Electronic watch having braked stepping motor
JPS5824879A (en) Converter driving circuit for electronic time piece
JPS6112554B2 (en)
EP1117016A1 (en) Electronic apparatus and method of controlling electronic apparatus
JPS6115384B2 (en)
US3892066A (en) Synchronized watch movement
JPS6148726B2 (en)
JPS629874B2 (en)
JP2906558B2 (en) Semiconductor integrated circuit using piezoelectric vibrator
US3481138A (en) Drive for a balance in an electric timepiece
US4492910A (en) Control circuit for a timing motor
JP3105510B2 (en) Semiconductor integrated circuit
JPS6130224B2 (en)
JPS60259982A (en) Load detection circuit of pulse motor for electronic timepiece
JPS6115385B2 (en)
JP2561206Y2 (en) Electronic clock
JPS61165680A (en) Electronic timepiece
JPS6137587B2 (en)
JPS607480B2 (en) Pulse motor operation detection circuit