JPS582485A - Method of controlling operation of variable capacity compressor in cooler - Google Patents

Method of controlling operation of variable capacity compressor in cooler

Info

Publication number
JPS582485A
JPS582485A JP56099474A JP9947481A JPS582485A JP S582485 A JPS582485 A JP S582485A JP 56099474 A JP56099474 A JP 56099474A JP 9947481 A JP9947481 A JP 9947481A JP S582485 A JPS582485 A JP S582485A
Authority
JP
Japan
Prior art keywords
temperature
compressor
capacity
cooling
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56099474A
Other languages
Japanese (ja)
Inventor
Hiroya Kono
河野 博哉
Atsushi Hasegawa
淳 長谷川
Hisao Kobayashi
久雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP56099474A priority Critical patent/JPS582485A/en
Publication of JPS582485A publication Critical patent/JPS582485A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To facilitate adjustment of room temperature and prevent any loss of power by changing over capacity of a variable capacity compressor to adjust a damper operating control lever to a predetermined position at first when temperature in a room to be cooled reaches a set temperature. CONSTITUTION:When a compressor 2 has been changed over from 100% to 50% rate of operation, causing shortage of present cooling ability, vehicle room temperature T rises and reaches a set temperature T1(25 deg.C) so that capacity increasing signal is generated from a controller 16 to change over the compressor from 50% to 100% rate of operation. When thus the cooling ability is increased and the temperature T in the vehicle room is again lowered to a set temperature T2(23 deg.C), the compressor is changed over from 100% to 50% rate of operation. Then similarly the capacity is changed over from 50% to 100% or vice versa alternatively. Thus, useless heating of overcooled air is obviated to provide efficient operation of the compressor.

Description

【発明の詳細な説明】 本発明は負荷状況Gこ応して稼働容量を変えることかで
きる特1こ車両空調用に好癲な可変容量圧縮機の運転制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a variable capacity compressor, which is particularly suitable for vehicle air conditioning, and is capable of changing its operating capacity in response to load conditions G.

一般蔭こ、車両用冷房装置においては、ダクト内にファ
ン、冷凍サイクルのエバポレータ、ダンパ及びエンジン
の冷却水を利用し1こヒータ等が配設されており、車室
温度のコントロールは塔乗首がレバーを操作して前記ダ
ンパを回動することにより行なわれている。この1こめ
、車室温度が適温まで下がつ1コ後は前記ダンパを調節
しないと温度が下がり過ぎるので、エバポレータで冷し
過ぎ1こ望見をヒータにより加熱することfこなり、従
って、圧縮機の効率が低下し、動力損失が大きくなると
いう欠陥があつrこ。
In general, in vehicle cooling systems, a fan, a refrigeration cycle evaporator, a damper, and a heater that uses the engine's cooling water are installed in the duct, and the control of the cabin temperature is controlled by the controller. This is done by operating a lever to rotate the damper. After this step, the temperature inside the vehicle will drop too much unless the damper is adjusted. The defect is that compressor efficiency decreases and power loss increases.

本発明の第一の目的は、単室等の被冷房室内の温度を検
出し、この温度が設定温度になつfコとき可変容量圧縮
機の容量切換えを行なうことにより、最初(こタンパを
操作するコントロールレバーを所定位置蛋こ調節してお
けば、あとはそのままの状態で利用者に快適な室内温度
制御を行なうことができるとともに、室温の調節も容易
で、圧縮機の効率を硯め動力損失を防ぐことができる冷
房装置における可変容量圧縮機の運転制御方法を提供す
ることにある。
The first object of the present invention is to detect the temperature inside a room to be cooled, such as a single room, and change the capacity of the variable capacity compressor when this temperature reaches the set temperature. By adjusting the control lever to a predetermined position, you can control the indoor temperature for the comfort of the user without changing the settings, and it is also easy to adjust the room temperature, increasing the efficiency of the compressor and increasing the power. An object of the present invention is to provide a method for controlling the operation of a variable capacity compressor in a cooling device that can prevent losses.

不発明の第二の目的は室内温度が設定温度となり、かつ
その温度変化率が設定変化率マリも大きいとき【こは容
量ダウンを行ない、小さいときには室内温度が前記設定
温度よりも低い別の設定温度になつrことき谷童ダウン
を行なうこと憂こより、あるいは室内温度が設定温度と
なり、かつ圧縮機の始動時からの運転時間が設定時間よ
りも短いときには容量ダウンを行ない、長いときには室
内温度が前記設定温度よりも低い別の設定温度になっT
コとき容量ダウンを行なうことにまり、前記第一の目的
に加えて冷房負荷1こ応じて容量切換回数を調節し、一
層効率のよい運転を行なうことができる可変容量圧縮機
の運転制御方法を提供することにある。
The second purpose of non-invention is that when the indoor temperature becomes the set temperature and the temperature change rate is also large, the capacity is reduced, and when the indoor temperature is lower than the set temperature, another setting If the room temperature reaches the set temperature and the operating time from the start of the compressor is shorter than the set time, the capacity will be reduced; if it is longer, the indoor temperature will drop. A different set temperature lower than the set temperature is reached.
In addition to the first objective, we have developed a variable capacity compressor operation control method that can adjust the number of capacity changes according to the cooling load and achieve even more efficient operation. It is about providing.

以下、不発明の第一の目的を達成する運転制御方法を車
両用冷房装置に具体化し1こ第一実施例を第1図及び第
2図について説明する。
Hereinafter, a first embodiment of the operation control method that achieves the first object of the invention will be described with reference to FIGS. 1 and 2, in which the method is applied to a vehicle cooling system.

まず、この実施例の制御方法に使用される冷房装置の概
要を第1図Gこついて説明すると、図中1、はエンジン
、2はこのエンジン1により駆動萎れる可変容量圧縮機
であって、この実施例では稼働容量を50%と100%
の二段階に切換えることができる斜板式のものを使用し
ている。この圧縮機はフロント及びリヤ側の圧縮室と吐
出室とをつなぐ吐出口用の吐出弁のうち、iツヤ側の吐
出弁を・スプリングを介して常には開放位置に浮上堡持
せしめるとともに、吐出弁の背面側、′lこ冷凍サイク
ルの吐出圧を作用させることで同吐出弁を正規の閉゛鎖
位置に保持させるようにしTコ容量切換機構6を備えて
いる。(同一出願人になる特願昭55−151298号
)。この斜板式圧縮機の外に三段階以上無段階に容量切
換えを行なうことができる各種圧縮機を用いてもよい。
First, an overview of the cooling system used in the control method of this embodiment will be explained with reference to FIG. In the example, the operating capacity is 50% and 100%.
It uses a swash plate type that can be switched to two stages. Of the discharge valves for the discharge ports connecting the front and rear compression chambers and the discharge chamber, this compressor has the gloss side discharge valve always floated in the open position via a spring, and the discharge valve A T capacity switching mechanism 6 is provided on the rear side of the valve so as to maintain the discharge valve in a normal closed position by applying the discharge pressure of the refrigeration cycle. (Japanese Patent Application No. 151298/1989 filed by the same applicant). In addition to this swash plate type compressor, various types of compressors capable of steplessly changing the capacity in three or more stages may be used.

111J i6圧縮機2の吐出フランジ4と吸入フラン
ジ5には、冷凍サイクルを構成するコンヂ−サ6、レシ
ーバ7、エキスパンションバルブ8及びエバポレータ9
が直列に接続されている。
The discharge flange 4 and suction flange 5 of the 111J i6 compressor 2 are equipped with a condenser 6, a receiver 7, an expansion valve 8, and an evaporator 9, which constitute a refrigeration cycle.
are connected in series.

−万、ダクト10内にはファン11、前記エバポレータ
9、ダンパ12及びエンジン1の冷却水+利用しTこヒ
ータ16が順次配設され、コントロールレバー(図示路
)を操作することにより前記ダンパ12を位置調節し、
ダク1−10の吹田口14から吹き出される空気の温度
を必要に応じ調節可能である。
- In the duct 10, a fan 11, the evaporator 9, a damper 12, and a heater 16 that utilizes the cooling water of the engine 1 are arranged in order. Adjust the position of
The temperature of the air blown out from the Suita port 14 of the duct 1-10 can be adjusted as necessary.

又、車室内の適当な場所(風、直射日光が当らないとこ
ろが望ましい)には、車室温度を検出する温度センサ1
5が配設されている。この温度センサ15と前記容量切
換機構3との間には、制御器16が接続されていて、本
実施例ではこの制御器の温度比較判別回路(図示路)に
より予め定められrコ設定温度T2(例えは23℃)と
温度センサ15により検出□されTコ車室温iTとを比
較判別し、車室温13[Tか前記設定温度T2になつr
コとき、前記制御器16の動作回路(図示路)から前記
容量切換機構6に対し容量ダウン信号を出力し、反対に
前記車室温度Tが設定温度T+(例えば25℃)となつ
Tコとき、容量切換機構乙に対し容量アップ信号を出力
するよう番こしている。
In addition, a temperature sensor 1 for detecting the temperature inside the vehicle is installed at an appropriate location in the vehicle interior (preferably a place that is not exposed to wind or direct sunlight).
5 are arranged. A controller 16 is connected between this temperature sensor 15 and the capacity switching mechanism 3, and in this embodiment, a temperature comparison/discrimination circuit (shown in the figure) of this controller sets a preset temperature T2. (For example, 23 degrees Celsius) is compared with the T car room temperature iT detected by the temperature sensor 15, and the car temperature is determined to be 13 [T or the set temperature T2.
When this happens, a capacity down signal is output from the operating circuit (path shown) of the controller 16 to the capacity switching mechanism 6, and conversely, when the cabin temperature T reaches the set temperature T+ (for example, 25°C) , so as to output a capacity up signal to the capacity switching mechanism B.

又、前記制御器16は圧縮機2の電磁クラッチ(図示略
角こ電気的に接続されており、車室温度Tが設定温f 
T 4 (例えば20℃)になると同制wJA器16か
ら前記電磁クラッチをOFFする信号を出力し、車室温
度Tが設定温度Ts(例えば22p)になると電磁クラ
ッチ4ONする信号を出力するよう〔こしている。
Further, the controller 16 is electrically connected to an electromagnetic clutch (not shown) of the compressor 2, and the vehicle interior temperature T is set to a set temperature f.
When temperature T4 (e.g. 20°C) is reached, the same control wJA device 16 outputs a signal to turn off the electromagnetic clutch, and when the cabin temperature T reaches the set temperature Ts (e.g. 22p), a signal is outputted to turn on the electromagnetic clutch 4. It's straining.

前記制御+a16により設定され1こ温度Tl″−T4
ハ温度コントロールスイッチ17により連動しであるい
はそれぞれ独立して調節し得るよう蛋こなつ・でおり、
搭乗者に適しTコ単室温度に設定可能である。又、これ
らの温度Tl−T4の間にはT+>T2>T8>T4の
関係が成立するようにしている。
Temperature Tl″-T4 set by the above control +a16
C. Temperature control switches 17 are arranged so that they can be adjusted in conjunction with each other or independently.
It is possible to set the temperature in a single room to suit the passenger. Further, the relationship T+>T2>T8>T4 is established between these temperatures Tl-T4.

次に、前記のように構成し1こ冷房装置をもとに本発明
の運転制御方法を説明する。
Next, the operation control method of the present invention will be explained based on the single cooling device configured as described above.

今、冷S装置の起動スイッチ(図示路)Iこより電磁ク
ラッチがONされると、圧縮機は50%容量で起動され
、その後吐出圧が上昇して吐出弁が正規の閉鎮位置Gこ
移!oされると、50%から100%谷輩に切換えられ
る。吐出フランジ4から吐出されγこ圧縮冷媒ガスはコ
ンデンサ6、レシーバ7及ヒエキスパンジヨンバルブ8
を経てエバポレータ9へと送られ、ここでファン11に
より強制移送される空気によって熱交換されTコ後、吸
入フランジ5から圧縮機2内に吸い込まれる。エバポレ
−タ9を通過して冷Tこ(なつfこ空気の一部はヒータ
ー13を通って加熱され冷却空気と合流して吹き出し口
14から吹き出され、車室内が冷却される。
Now, when the electromagnetic clutch is turned on from the cold S device start switch (path shown) I, the compressor is started at 50% capacity, and then the discharge pressure rises and the discharge valve moves to the normal closing position G. ! o, it switches from 50% to 100%. The compressed refrigerant gas discharged from the discharge flange 4 is passed through a condenser 6, a receiver 7 and an expansion valve 8.
The air is then sent to the evaporator 9, where it undergoes heat exchange with the air forcibly transferred by the fan 11, and is then sucked into the compressor 2 through the suction flange 5. A portion of the cold air that passes through the evaporator 9 is heated through the heater 13, merges with the cooling air, and is blown out from the outlet 14 to cool the interior of the vehicle.

車室温度Tは運転時1kIhの経過につれて次第Gこ降
下していくが、これを第2図に示すグラフ(こついて見
てみると、まず停止時には温度センサ15は外気とほぼ
同じ温度(30〜40℃)を検出しており、圧縮機の運
転初期lこは車室内の温度がまだ高くて冷房負荷か大き
い1こめに熱交換が効率的に行なわれて車室温度Tが急
激に降下する。そして、運転時間の経過につれて車室温
度Tが低下し熱交換効率が低下してくるとその下降も緩
かになっていき、同車室温度Tが設定温度T2(23℃
)になると、制御器16から〒量ダウン信号が出力され
て容量切換機構61こより圧縮機が100%から50%
稼働に切換えられる。
The cabin temperature T gradually drops by G as the driving time increases by 1 kHz, which is shown in the graph shown in Figure 2. -40°C), and during the initial operation of the compressor, the temperature inside the passenger compartment is still high and the cooling load is high, when heat exchange is performed efficiently and the temperature inside the passenger compartment drops rapidly. Then, as the driving time passes, the cabin temperature T decreases and the heat exchange efficiency decreases, and the drop becomes more gradual, until the cabin temperature T reaches the set temperature T2 (23℃).
), the controller 16 outputs a volume down signal and the capacity switching mechanism 61 changes the compressor from 100% to 50%.
Switched to operation.

こうして容量ダウンしても圧縮機の冷房能力がやや大き
い場合には、第2図実線で示すようEこ単室温度Tは緩
かに低下してい(。そして、車室内か充分冷却され車室
温度Tが設定温度T4(20℃)になると、電磁クラッ
チがOFFされて50%稼働していTコ圧縮機が停止さ
れる。なお、圧縮機の停止後車室温度Tが上昇して設定
温度T3(22℃)に達しTこときクラッチがONされ
、再び圧縮機が50%で駆動され、以下同様番こして0
%、50%の容量切換えが交互に行なわれる。
Even if the capacity is reduced in this way, if the cooling capacity of the compressor is somewhat large, the temperature in the single compartment E will gradually decrease (as shown by the solid line in Figure 2). When the temperature T reaches the set temperature T4 (20°C), the electromagnetic clutch is turned off and the T compressor, which is operating at 50%, is stopped.After the compressor is stopped, the cabin temperature T rises and the set temperature is reached. When the temperature reaches T3 (22℃), the T clutch is turned on and the compressor is driven again at 50%, and then the same goes back to 0.
% and 50% capacity switching is performed alternately.

反対〔こ、圧縮機が100%から50%稼働1こ切換え
られ1こが、これでは冷房能力が不足しているとき〔こ
は、車室温度Tは第2図破線で示すように上昇していき
設定温度T125℃)lこなると、制御器16から容置
アップ信号が出力されて圧縮機が50%から100.%
稼働Eこ切換えられる。こうして冷房能力が大きくなっ
て車室温度Tが低くなり、再び設定温piT2(23′
c)になると、圧縮機は100%から50%稼働に切換
えられ、以下同様にして50%、’ 100%の容量切
換えが交互fこ行なわれる。
On the other hand, when the compressor is switched from 100% to 50% operation and the cooling capacity is insufficient, the cabin temperature T rises as shown by the broken line in Figure 2. When the set temperature (T125°C) is reached, the controller 16 outputs a container up signal and the compressor changes from 50% to 100%. %
Operation mode can be switched. In this way, the cooling capacity increases and the cabin temperature T decreases, and the set temperature piT2 (23'
At c), the compressor is switched from 100% to 50% operation, and thereafter the capacity is alternately switched between 50% and 100%.

前述のよう1こして圧縮機の運転制御が行なわれるか、
不発間第−実施例1こおいては、車室温度Tを検出して
こQ)温度が設定温度T2になっTコとき100%から
50%Eこ容量ダウンし、冷房負荷が小さいときには設
定温度T4.Tl11こより0%。
As mentioned above, the compressor operation is controlled or
In this case, the cabin temperature T is detected, and when the temperature reaches the set temperature T2, the capacity decreases from 100% to 50%, and when the cooling load is small, the set temperature is lowered. T4. 0% from Tl11.

50%の容量切換えを行ない、冷房負荷が大きいときに
は、設定温度T2.T目こより50%、100%の容量
切換えを行なうようにし1こので、ダンパ12の位置と
無関係に圧縮機の容量切換えによって車室温度を制御す
ることができ、この1こめダンパ12をある適当な位置
に一部セットしておけばあとは全く調節を行なう必要は
なく、従って冷し過ぎの空気を加熱するという無駄をな
くして圧縮機を効率的に運転して動力損失を少くするこ
とができる。
When 50% capacity switching is performed and the cooling load is large, the set temperature T2. 50% and 100% capacity switching is performed from the Tth point.1 This makes it possible to control the cabin temperature by switching the capacity of the compressor regardless of the position of the damper 12. Once you have set some of them in the correct position, there is no need to make any further adjustments, which eliminates the waste of heating air that is too cold, allowing you to operate the compressor more efficiently and reduce power loss. can.

又、不発明実施例においては、車室温度Tを検出するよ
うにしているので、温度コントロールスイッチ17を操
作することにより搭乗者に適し1こ車室温度の調節を簡
単に行なうことができる。
Further, in the non-inventive embodiment, since the cabin temperature T is detected, the cabin temperature can be easily adjusted to suit the passenger by operating the temperature control switch 17.

次に、本発明の第二の目的を達成する第二実施例を第3
図について説明する。
Next, a second embodiment that achieves the second object of the present invention will be described as a third embodiment.
The diagram will be explained.

車室温度Tは前述しγこように運転時間りの経過にとも
なって下降し、この変化率をθとすると、で表わされる
。そして、この変化率θは冷房負荷が小さいほど大きく
、冷房負荷が大きいほど小さくなるので、例えば設定温
度T2(23℃)付近における変化率θが予め設定しr
こ設定変化率θCよりも大きいか小さいかを比較判別す
れば、冷房負荷の度合を知ることができる。そこで、こ
の第二実施例は前述し1こ制御器16に対し、車室温度
Tが設定温度T2を下方へ越え1こ状態において同温度
T2付近における検出変化率θが設定変化率θCよりも
大きいときに容量ダウンを行なわせ、小さいときにはさ
らに前記温度T2よりも低い設定温[Taになつfこと
き容量ダウンを行なわせるrコめの温度変化率θ、θC
の比較判別回路(図示略)及び動作回路(図示略)を設
けることにより、冷房負荷が小さく冷房能力に余裕があ
るときには容量切換えを早く行ない、冷房負荷が大きく
冷房す目方に余裕がないときには、容量切換えを遅くし
て切換動作が頻繁に行なわれるのを防止するようにして
いる。
As mentioned above, the vehicle interior temperature T decreases with the passage of driving time as γ, and if this rate of change is θ, it is expressed as γ. This rate of change θ increases as the cooling load decreases, and decreases as the cooling load increases, so for example, if the rate of change θ near the set temperature T2 (23°C) is
By comparing and determining whether this rate of change is larger or smaller than the set rate of change θC, the degree of cooling load can be known. Therefore, in this second embodiment, when the cabin temperature T exceeds the set temperature T2 below the set temperature T2, the detected rate of change θ near the same temperature T2 is lower than the set rate of change θC. When the temperature is large, the capacity is reduced, and when it is small, the set temperature [Ta] is lower than the temperature T2.The temperature change rate θ, θC is
By providing a comparison/discrimination circuit (not shown) and an operation circuit (not shown), capacity switching can be performed quickly when the cooling load is small and there is room for cooling capacity, and when the cooling load is large and there is no room for cooling, the capacity can be switched quickly. , capacity switching is slowed down to prevent frequent switching operations.

すなわち、冷房能力に余裕がない状態で第3図に示すよ
うに車室温度Tが設定温度T2となるP点で容量ダウン
を行なうと、同図二点鎖線で示すように車室温度Tが設
定温度T1となるQ点で容量アップが行なわれるが、こ
の第三実施例では車室温13jTが設定温度T2よりも
低い設定温度T8となるR点で容量ダウンを行iうので
、容量ダウン時期がP点よりも遅くするとともに、容量
アップ時期S点もQ点より遅くなるのである。
In other words, if the capacity is reduced at a point P where the cabin temperature T reaches the set temperature T2 as shown in Figure 3 when there is no room for cooling capacity, the cabin temperature T will decrease as shown by the two-dot chain line in the figure. Capacity is increased at point Q, which is the set temperature T1, but in this third embodiment, capacity is reduced at point R, where the vehicle room temperature 13jT is lower than set temperature T2, which is set temperature T8. is later than point P, and the capacity increase timing at point S is also later than point Q.

なお、設定温度T2で容量ダウンしても能力が過剰の場
合、車室温度Tが設定温度T5まで下がつrコときクラ
ッチが切れ圧縮機が停止される。車室温度Tが設定温度
T4まで上昇し1ことき再びクラッチが入り圧縮機は5
0%で運転される。
Note that if the capacity is excessive even if the capacity is reduced at the set temperature T2, the clutch is disengaged and the compressor is stopped when the cabin temperature T falls to the set temperature T5. When the cabin temperature T rises to the set temperature T4, the clutch is engaged again and the compressor is turned 5.
Runs at 0%.

次Gこ、本発明の第二の目的を達成する第三実施例を第
4図擾こついて説明する。
Next, a third embodiment that achieves the second object of the present invention will be described with reference to FIG.

この実施例は圧縮機が運転を開始してからの時間をタイ
マーによりカウントし、この運転時間りが予め設定し1
こ設定時間hcよりも短い状態において、車室温度Tか
設定温度T2になつrコとき圧縮機の容量ダウンを行な
うようにするとともに1、運転時間りが設定時間heを
オーパージrコ状態では、車室温度Tが設定温度T2に
なっても圧縮機の容量ダウンは行なわず、T2よりも低
い設定温度T8になつfことき容量ダウンを行なうよう
にa■記制御器1′6を構成している。従って、この第
三実施例もna記第二実施例と同様に冷房能力に応じて
容量ダウン・アンプの切換時期を調節して効率、のよい
運転を行なうことができるという特徴があるが、その他
の構成及び効果は前記第一実施例と同様である。
In this embodiment, a timer counts the time since the compressor starts operating, and this operating time is set in advance.
In a state that is shorter than the set time hc, the capacity of the compressor is reduced when the cabin temperature T reaches the set temperature T2, and when the operating time is over the set time he, The controller 1'6 described in a) is configured so that the capacity of the compressor is not reduced even when the cabin temperature T reaches the set temperature T2, and the capacity is reduced only when the set temperature T8, which is lower than T2, is reached. ing. Therefore, like the second embodiment, this third embodiment also has the feature that it is possible to perform efficient operation by adjusting the switching timing of the capacity down and amplifier according to the cooling capacity. The structure and effects are the same as those of the first embodiment.

なお、不発明は次のような実施例で具体化することも可
能である。
Incidentally, the non-invention can also be embodied in the following examples.

(1)エバポレータ9から吸入フランジ5を結ぶ管路の
途中に一層の高級車に使用される蒸発圧力を一定に保持
するTこめのEPR(エバポレータ・プレッシャー・レ
ギュレータ)を接続すること。この場合にはエバポレー
タ9内が0℃以下にならないので、第一実施例のTa、
T4.第二、第三実施例のT4.T5の設定は不要で、
圧縮機は冷房始動スイッチを切らない限りOFFになら
ない。
(1) Connect a T-type EPR (evaporator pressure regulator) used in higher-end cars to maintain a constant evaporation pressure in the middle of the pipe connecting the evaporator 9 to the suction flange 5. In this case, since the temperature inside the evaporator 9 does not fall below 0°C, the Ta of the first embodiment
T4. T4 of the second and third embodiments. No need to set T5,
The compressor will not turn off unless the cooling start switch is turned off.

(2)  エバポレータ9のフロスト防止のTこめエバ
ポレータ9の出口温度を検出する温度センサをダクト1
0内に配設して、フロスト前に圧縮機を一時的にOFF
するようにすること。
(2) A temperature sensor to detect the outlet temperature of the evaporator 9 is installed in the duct 1.
0 and temporarily turn off the compressor before frosting.
to do as you please.

なお、前記実施例において設定温度T+−T6にそれぞ
れ一定の温度差をもTコせfコのは、容量切換動作、ク
ラッチ人切動作を確実に行なうTコめである。
In the above-mentioned embodiment, the constant temperature difference between the set temperatures T+ and T6 is provided to ensure that the capacity switching operation and clutch disengagement operation are performed.

以上詳述しγこように本発明は、ダンパを操作しなくて
も圧縮機の容量切換えによって単室等の温度を制御する
ことができるとともに、温度コントロールスイッチによ
り室温を利用者■こ最適な温度に簡単に調節することが
でき、圧縮機を効率面に゛運転して動力損失を少くする
ことができ、さらに冷房負荷に応じて圧縮機の容量切換
時期を調節でき一層効率旧な運転を行なうことができる
効果がある。
As described in detail above, the present invention allows the temperature of a single room, etc. to be controlled by changing the capacity of the compressor without operating the damper, and also allows the user to adjust the room temperature to the optimum level using the temperature control switch. The temperature can be easily adjusted, the compressor can be operated efficiently to reduce power loss, and the compressor capacity switching timing can be adjusted according to the cooling load, allowing even more efficient operation. There are some effects that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の可変容量圧縮機の運転制御方法に使用
される車両用冷房装置の一実施例を示す略体図、第2図
〜第4図はそれぞれ第一〜第三実施例における圧縮機の
運転時間と車室温度との関係を示すグラフである。 可変容量圧縮機2、容量切換機構6、温度センサ15、
制御器16、車室温度T、設定温1f:’rL〜T5、
温度変化率θ、設定変化率θ01運転時間り、設定時間
he0 特許出願人  株式会社豊田自動織機製作所゛    
 代 理 人  弁理士 恩 1) 博 宣第1図 ÷Ml倒ト一 −〜曽− トl−1!−ml−I ロロOO 、b i6 2’/H 膿のへ口 へへ〜へ 一の一〇φ N〜〜〜−
FIG. 1 is a schematic diagram showing an embodiment of a vehicle cooling system used in the uninvented variable capacity compressor operation control method, and FIGS. 2 to 4 show the first to third embodiments, respectively. It is a graph showing the relationship between the operating time of the compressor and the cabin temperature. variable capacity compressor 2, capacity switching mechanism 6, temperature sensor 15,
Controller 16, cabin temperature T, set temperature 1f:'rL~T5,
Temperature change rate θ, setting change rate θ01 operating time, setting time he0 Patent applicant: Toyota Industries Corporation.
Agent Patent Attorney On 1) Hirosen Figure 1 ÷ Ml down 1 - ~ Zeng - 1 - 1! -ml-I Roro OO ,b i6 2'/H To the mouth of the pus ~to 110φ N~~~~-

Claims (1)

【特許請求の範囲】 l 容量切換機構Eこより冷房負荷に応じて容量すなわ
ち冷房能力を切換調節し得る可変容量圧縮機から圧縮ガ
スを冷凍サイクルに送って冷房作用を行なわせγこ後、
熱交換を終えTコガスを再び前記圧縮機に吸入するよう
1こしTコ冷房方法において、被冷房室内の温度を温度
七ンサにより検出して、この室内温度と予め設定されr
コ設定温度とを比較判別手段により比較判別し、前記室
内温度が設定温度になつ1ことき、動作手段【こまり前
記容量切換機P4を作動させて圧縮機の容量を調節する
ことを特徴とする可変容量圧縮機の運転制御方法。 2 前記室内温度が比較判別手段の低い万の設定温度に
まで降下し1ことき、動作手段により圧縮機が容量ダウ
ンに切換えられ、その後室内温度が上昇して比較判別手
段の扁い万の設定温度になつrコとき、動作手段により
圧縮機が容量アップに切換えられる特許請求の範囲第1
項記載の冷房装置における可変容量圧縮機の運転制御方
法。 3 圧縮機を容量ダウンに切換えTこのちも前記温度が
降下し、容量ダウンの設定温度よりも低いさらに別の設
定温度に達しTコとき、駆動力を圧縮機Gこ伝達する1
こめのクラッチを断とすることを特徴とする特許請求の
範囲第1項に記載の冷房装置tこおける可変容量圧縮機
の運転制御方法。 4 前記クラッチを継とするTこめの設定温度を、MU
記ツクラッチ断とするTこめの設定温度より高くし1こ
ことを特徴とする特許請求の範囲第3項に記載の冷房装
置Eこおける可変容量圧縮#19)運転制御方法・ 5、設定温度は温度コントロールスイッチによう連動し
て調節可能である特許請求の範囲第1項番こ記載の冷房
装置における可変容量圧縮機の運転制御方法。 6 容量切換機構〔こより冷房負荷に応じて容量すなわ
ち冷房能力を切換調節し得る可変容量圧縮機力)ら圧縮
ガスを冷凍サイクルに送って冷房作用を行なわせTコ挟
、熱交換を終えrコガスを再び前記圧縮機に吸入するよ
うにしTコ冷房方法薔こおいて、被冷房室内の温度を温
度センサにより検出し、この検出温度と予め設定されf
コ設定温度とを比較判別手段により比較判別し、前記室
内温度が設定温度にまで降下し、かつ室内温度の変化率
と予め設定され1こ設定変化率とを変化率比較判別手段
により比較判別して室内温度の変化率が設定変化率より
も大きいとさ、動作手段によ’JR記容麓切換機構を作
動させて圧縮機の容量ダウンを行ない、室内温度の変化
率が設定変化率よりも小さいときには目M記設定温度よ
りも低い別お設定温度になつTコとき、圧縮機の容量ダ
ウンを行なうことを特徴とする可変容量圧縮機の運転制
御方法。 7 容量切換機構をこまり冷房負荷に応じて容量丁なわ
ら冷房能力を切換調節し得る可変容量圧縮機ρ)ら圧縮
ガスを冷凍サイクルに送って冷房作用を行なわせrコ後
、熱交換を終えfコカスを再びB−u記圧縮機に吸入す
るようにしTコ冷房方法において、被冷房室内の温度を
温度センサにより検出し、この室内温度と予め設定され
Tコ設定温度とを比較判別手段Eこより比較判別し、m
U記室円温度が設定温度にまで降下し、かつ圧縮機が運
転を開始してから゛タイマーにより時間を検出してこの
時間が予め設定され1こ設定時間とを比較判別手段によ
り比較判別して運転時間が設定時間内にあるとき、動作
手段によりR?J記酋量切換機構を作動させて圧縮機の
容量ダウンを行ない、運転時間が設定時間を越えている
ときには、前記設定温度まりも低い別の設定温度になつ
1ことき圧縮機の容量ダウンを行なうことを特徴とする
可変容量圧縮機の運転制御方法。
[Scope of Claims] l Capacity switching mechanism E sends compressed gas to the refrigeration cycle from a variable capacity compressor whose capacity, that is, cooling capacity can be switched and adjusted according to the cooling load, to perform cooling action.
In the single strain cooling method, the temperature in the room to be cooled is detected by a temperature sensor, and the temperature in the room to be cooled is set in advance so that the gas is sucked into the compressor again after heat exchange.
A comparison and determination means compares and determines the set temperature, and when the indoor temperature reaches the set temperature, the operation means [Komari operates the capacity switching machine P4 to adjust the capacity of the compressor. Operation control method for variable capacity compressor. 2. When the indoor temperature drops to the low setting temperature of the comparison and discrimination means, the operating means switches the compressor to reduce the capacity, and then the indoor temperature rises and the comparison and discrimination means reaches the low setting. Claim 1, wherein the operating means switches the compressor to increase capacity when the temperature rises.
A method for controlling the operation of a variable capacity compressor in a cooling device according to paragraph 1. 3 When the compressor is switched to capacity down, the temperature continues to drop and reaches yet another set temperature lower than the capacity down setting temperature, the driving force is transferred to the compressor.
2. A method for controlling the operation of a variable capacity compressor in a cooling system according to claim 1, characterized in that a clutch of a compressor is disengaged. 4 The set temperature of the T-piece connected to the clutch is set to MU
Variable displacement compression #19) Operation control method in the air conditioner E according to claim 3, characterized in that the temperature is set higher than the set temperature of the T-column at which the latch is disconnected. Claim 1: A method for controlling the operation of a variable capacity compressor in an air conditioner according to claim 1, wherein the variable capacity compressor can be adjusted in conjunction with a temperature control switch. 6 Compressed gas is sent from the capacity switching mechanism (variable capacity compressor power that can switch and adjust the capacity, that is, the cooling capacity according to the cooling load) to the refrigeration cycle to perform cooling action, and after heat exchange is completed, the compressed gas is transferred to the refrigeration cycle. is sucked into the compressor again, the temperature inside the room to be cooled is detected by a temperature sensor, and this detected temperature and a preset value f
The indoor temperature is lowered to the set temperature, and the rate of change of the indoor temperature is compared and determined with a preset rate of change by the rate of change comparison and discrimination means. If the rate of change in the indoor temperature is greater than the set rate of change, the operating means operates the switching mechanism to reduce the capacity of the compressor, and the rate of change in the indoor temperature is greater than the set rate of change. A method for controlling the operation of a variable capacity compressor, characterized in that the capacity of the compressor is reduced when the temperature reaches a set temperature lower than the set temperature when the temperature is small. 7) The capacity switching mechanism is configured to send compressed gas from the variable capacity compressor (ρ), which can switch and adjust the cooling capacity according to the cooling load, to the refrigeration cycle to perform cooling action, and then heat exchange is completed. In the cooling method in which the coke is sucked into the compressor B again, the temperature inside the room to be cooled is detected by a temperature sensor, and the indoor temperature is compared with a preset temperature. Compare and discriminate from this, m
After the temperature in the chamber U has fallen to the set temperature and the compressor starts operating, the timer detects the time, this time is set in advance, and the comparison and discrimination means compares and discriminates this time with the set time. When the operating time is within the set time, the operating means causes the R? The capacity of the compressor is reduced by activating the amount switching mechanism described in J, and when the operating time exceeds the set time, the capacity of the compressor is reduced once the set temperature reaches another set temperature that is lower. A method for controlling the operation of a variable capacity compressor, characterized in that:
JP56099474A 1981-06-25 1981-06-25 Method of controlling operation of variable capacity compressor in cooler Pending JPS582485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099474A JPS582485A (en) 1981-06-25 1981-06-25 Method of controlling operation of variable capacity compressor in cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099474A JPS582485A (en) 1981-06-25 1981-06-25 Method of controlling operation of variable capacity compressor in cooler

Publications (1)

Publication Number Publication Date
JPS582485A true JPS582485A (en) 1983-01-08

Family

ID=14248306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099474A Pending JPS582485A (en) 1981-06-25 1981-06-25 Method of controlling operation of variable capacity compressor in cooler

Country Status (1)

Country Link
JP (1) JPS582485A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718397U (en) * 1971-03-31 1972-10-31
JPS5556556A (en) * 1978-10-18 1980-04-25 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718397U (en) * 1971-03-31 1972-10-31
JPS5556556A (en) * 1978-10-18 1980-04-25 Matsushita Electric Ind Co Ltd Air conditioner

Similar Documents

Publication Publication Date Title
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
JPH0474210B2 (en)
JPH0479850B2 (en)
JPH05256525A (en) Air-conditioner
JP2001063348A (en) Refrigerating cycle system
KR20060030761A (en) Multi type air conditioning system and thereof method
WO2005078362A1 (en) Air conditioner
JP2001121952A (en) Air conditioner for vehicle
JPS5830A (en) Operation control for variable capacity compressor in cooling apparatus
JPH03241260A (en) Multi-room air-conditioner
JPS582485A (en) Method of controlling operation of variable capacity compressor in cooler
US5507155A (en) Compressor control apparatus and method for an automobile air-conditioning system
KR101195556B1 (en) A air conditioner and control method thereof
JPS59112156A (en) Method of controlling compressor for air-conditioning of car
JPS5819639A (en) Method of operating and controlling variable-capacity compressor in a refrigerating system
JP3526393B2 (en) Air conditioner
JPH05240522A (en) Air conditioning apparatus
JPH04198672A (en) Electric expansion valve controller for multi-chamber type air-conditioning machine
JP3330194B2 (en) Air conditioner
JPS5818047A (en) Method of controlling operation of capacity-variable compressor used in space-cooling apparatus
JP2000055484A (en) Air conditioner
JPS5818048A (en) Method of controlling operation of capacity-variable compressor used in space-cooling apparatus
JPS6358725B2 (en)
JP2531264B2 (en) Operation control device for air conditioner
JPH03159815A (en) Air conditioner for vehicle