JPS5824848A - Measuring and controlling method for reacting amount and device thereof - Google Patents

Measuring and controlling method for reacting amount and device thereof

Info

Publication number
JPS5824848A
JPS5824848A JP17848881A JP17848881A JPS5824848A JP S5824848 A JPS5824848 A JP S5824848A JP 17848881 A JP17848881 A JP 17848881A JP 17848881 A JP17848881 A JP 17848881A JP S5824848 A JPS5824848 A JP S5824848A
Authority
JP
Japan
Prior art keywords
reaction amount
reaction
function
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17848881A
Other languages
Japanese (ja)
Other versions
JPH0241700B2 (en
Inventor
Toshio Arimatsu
有松 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP17848881A priority Critical patent/JPS5824848A/en
Priority to EP82107094A priority patent/EP0071988B1/en
Priority to DE8282107094T priority patent/DE3278458D1/en
Publication of JPS5824848A publication Critical patent/JPS5824848A/en
Priority to US06/706,317 priority patent/US4589072A/en
Publication of JPH0241700B2 publication Critical patent/JPH0241700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4806Details not adapted to a particular type of sample
    • G01N25/4813Details not adapted to a particular type of sample concerning the measuring means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable to perform both a precise-high measurement and a control of a reacting amount, by a method wherein each reacting amount is computed based on each temperature signal to find the arithmetic mean value, the maximum value, and the minimum value of said reacting amount, and an output signal is generated if each of said values exceeds a set value. CONSTITUTION:A plural number of temperature detectors 1-6 are mounted to different positions at the inside of a reacting system, the outer surface thereof, and a receptacle. The detector outputs a temperature signal, corresponding to temperature of a position where said detector is located, to a multiplexer 7. A microcomputer 10 computes their respective reacting amounts based on said temperature signals. Additionally, the computer 10 counts an arithmetic mean value of each reacting amount computed corresponding to selection of a selector switch 21, selects the maximum value or the minimum value of the computed reacting amounts, and selects a given reacting amount out of the computed reacting amounts. When said reacting amount, the arithmetic mean value, the maximum value, or the minimum value coincides with or exceeds a predetermined reacting amount, an output signal is generated.

Description

【発明の詳細な説明】 この発明は、化学反応光、例えばゴム加硫反応または高
分子物質硬化反応等の反応量を自動的に測定すると共に
制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for automatically measuring and controlling the amount of chemical reaction light, such as a rubber vulcanization reaction or a polymeric substance curing reaction.

一般に化学工業において反応工程を制御して反応効率、
製品の品質及び収率を高めることは極めて重要である。
Generally, in the chemical industry, reaction efficiency is improved by controlling the reaction process.
Increasing product quality and yield is extremely important.

そのため本出願人は特願昭54−22025号及び特願
昭55−162126号において開示した通り反応工程
の制御の前提として作業現場において容易に反応量を測
定できる反応量測定装置を開発した。これは\化学反応
におけるアレニウスの反応速度式に基づき、基準温度T
oにおける単位時間当りの基準反応量゛に対する反応糸
の71rlNTσTにおける5時間後の反応411″の
比、すなわち相対反応1″(等価反応1i“)を次の(
1)式またはその近似式である(2)式に基づき、マイ
クロコンピュータで計算し、温度測定と反応量の経時変
化を一県して読み取ることができるようにしたV)ので
ある。
Therefore, as disclosed in Japanese Patent Application No. 54-22025 and Japanese Patent Application No. 55-162126, the present applicant has developed a reaction amount measuring device that can easily measure the reaction amount at a work site as a prerequisite for controlling the reaction process. This is based on the Arrhenius reaction rate equation for chemical reactions, and the reference temperature T
The ratio of the reaction 411'' after 5 hours at 71rlNTσT of the reaction yarn to the standard reaction amount per unit time at o, that is, the relative reaction 1'' (equivalent reaction 1i'') is expressed as
V) is calculated by a microcomputer based on Equation 1) or its approximate equation (2), and allows temperature measurement and changes in reaction amount over time to be read in one area.

但し、 U:等価反応量 E:活性化エネルギ R:気体常数 T:温度 TO二二基湿温 度:温度係数 t:時間 実際には上記の(1)式または(2)式による計算は1
例えば反応系に設けた温度検出器からの温度信号により
得た温度T1予め設定したEsRSTosαに基づいて
一定時間間隔ごとに行なわれる。
However, U: Equivalent reaction amount E: Activation energy R: Gas constant T: Temperature TO22 humidity Temperature: Temperature coefficient t: Time Actually, the calculation using the above equation (1) or (2) is 1
For example, this is carried out at regular time intervals based on a temperature T1 obtained from a temperature signal from a temperature detector provided in the reaction system and a preset EsRSTosα.

この反応量測定装置では、現場で即座に容易に反応量を
求めることができるにとどまり、測定値に基づいて自動
的に反応量を制御することはできなかった。
This reaction amount measuring device can only easily determine the reaction amount instantly on site, and cannot automatically control the reaction amount based on the measured value.

この発明は、反応量を高精度に測定すると共に制御をも
併せてできる反応量測定制御方法及び装置を提併するこ
とを目的とする。
An object of the present invention is to provide a method and apparatus for measuring and controlling a reaction amount, which can both measure and control the reaction amount with high precision.

以下Xこの発明を図示の1実施例に基づいて説明する。This invention will be explained below based on one embodiment shown in the drawings.

第1図において、1乃至6は複数個の温度検出器、例え
ば熱電対で、反応系、例えば加硫するタイヤの肩部の円
周方向に沿うそれぞれ異なる位置の内部1表面または金
型の内部に設けられている。
In FIG. 1, reference numerals 1 to 6 indicate a plurality of temperature detectors, such as thermocouples, which are located at different positions along the circumferential direction of the reaction system, such as the shoulder of a tire to be vulcanized, or inside the mold. It is set in.

これら温度検出器1乃至6は設けられた位置の温度に対
応する温度信号をマルチプレックサ7に供給する。
These temperature detectors 1 to 6 supply a multiplexer 7 with a temperature signal corresponding to the temperature at the position where they are provided.

マルチプレックサ7は、例えば0.5秒間隔で温度1検
出器1乃至6の温度信号を順にアンプリニアライザ8に
供給していき、温度検出器6の温度信号の供給が終了す
ると、再び温■検出器1の温度信号をアンプリニアライ
ザ8に供給し、以下これを繰返すものである。アンプリ
ニアライザ8は)供給された温度信号をそれぞれ増幅直
線化し1A/D変換器9に供給している。A/D変換器
9は供給された温度信号をディジタル温■信壮に変換し
、マイクロコンピュータ10に供給する。
The multiplexer 7 sequentially supplies the temperature signals from the temperature detectors 1 to 6 to the amplifier linearizer 8 at intervals of, for example, 0.5 seconds, and when the supply of the temperature signal from the temperature detector 6 is finished, the multiplexer 7 supplies the temperature signals from the temperature detectors 1 to 6 to the amplifier linearizer 8 again at intervals of, for example, 0.5 seconds. The temperature signal from the detector 1 is supplied to the amplifier linearizer 8, and this process is repeated thereafter. The amplifier linearizer 8 amplifies and linearizes the supplied temperature signals and supplies them to the 1A/D converter 9. The A/D converter 9 converts the supplied temperature signal into a digital temperature signal and supplies it to the microcomputer 10.

マイクロコンピュータ10は、スタート信号発生装置1
1カスタード信号をマイクロコンピュータ10に供給し
た後、タイマ12が一定時間経過ごとに発生する指令信
号が供給されるごとに・チャンネル数セレクタ13によ
って選択されたディジグル温度信号、例えば温度検出器
2.3’N 6の温度信号に対応するものを読込み、こ
れらと基準温度設定器14に設定された基準温度、活性
エネルギ設定器15に設定された活性エネルギを既述し
た(1)式または(2)式に代入し1温度検出器2.3
.6の設置位置の温度に対応する反応量を算出する。な
お1チャンネル数士レクタ13は、温度検出器1のみの
組合せから温度検出器1乃至6の組合せまでの(26−
1)個の組合せを選択できる。
The microcomputer 10 includes a start signal generator 1
After supplying one custard signal to the microcomputer 10, the timer 12 generates a command signal that is generated every predetermined period of time.Whenever a command signal is supplied, the digital signal selected by the channel number selector 13, e.g., the temperature detector 2.3 'N 6 temperature signal is read, and these, the reference temperature set in the reference temperature setting device 14, and the activation energy set in the activation energy setting device 15 are calculated using the equation (1) or (2) described above. Substitute into the equation 1 temperature sensor 2.3
.. 6. Calculate the reaction amount corresponding to the temperature at the installation position. Note that the 1-channel mathematic detector 13 has a combination of temperature detectors 1 and 6 (26-
1) You can select a combination of items.

なおスタート信号発生装置11としては第2図に示すよ
うなものを使用する。これは抵抗器16を介してコンデ
ンサ17に充電されている電荷を1押釦スイツチ18、
金型が閉じられたとき閉成するリミットスイッチ19ま
たは金型が閉じられたとき同時にパルス信号を発生する
パフレス信号発生器(図示せず)により放電させること
によってコンデンサ17の両’t?A間に生じた電圧変
化をインバータ20によって反転させてスタート信号を
発生するものである。なお1このスタート信号が反応量
計算中に供給されると、マイクロコンピュータ10はそ
れまで測定してきたデータを全て消去し、新たなデータ
により反応量の演算をするようにプログラムされている
As the start signal generating device 11, one shown in FIG. 2 is used. This transfers the charge stored in the capacitor 17 via the resistor 16 to the one-button switch 18.
Both capacitors 17 are connected by discharging by a limit switch 19 that closes when the mold is closed or by a puffless signal generator (not shown) that simultaneously generates a pulse signal when the mold is closed. A start signal is generated by inverting the voltage change occurring between A and A by an inverter 20. Note that when this start signal is supplied during reaction amount calculation, the microcomputer 10 is programmed to erase all the data measured up to that point and calculate the reaction amount using new data.

マイクロコンピュータ10は、セレクタスイッチ21の
選択に応じて1演算した各反応量の算術平均値の算出、
各演算した反応量のうち最大値または最小値の透析ある
いは各演算した反応系のうち所定のもの(セレクタスイ
ッチ2]−で選択した測定点のみの反応量)の選択を行
なう。
The microcomputer 10 calculates the arithmetic mean value of each reaction amount calculated in accordance with the selection of the selector switch 21;
The maximum value or minimum value of dialysis among the calculated reaction amounts, or a predetermined value of the calculated reaction systems (the reaction amount only at the measurement point selected with the selector switch 2) is selected.

さらに、マイクロコンピュータ10は、反応@設′定器
22に設定されている加硫90%の際の反応用及び加1
流100%の際の反応用″と、上記算術平均値、最大値
、最小値または選択されたものとを比較し、加硫90%
の際の反応量に一致またはそねよりも大きくなったとき
出力信号を予終了装置23に、加硫100%の際の反応
量うこ一致寸たはそれよりも大きくなったとき出力信号
を終了装置24にそれぞれ供給するようにプログラムさ
れている。予終了装置23は例えばタイヤのように金型
開放後にも反応がかなり進行する場合に1予め早目に金
型を開放させるためのものである。
Furthermore, the microcomputer 10 is configured to use the reaction and
Compare the above arithmetic mean value, maximum value, minimum value or selected value with the above arithmetic mean value, maximum value, minimum value or selected one, and vulcanization is 90%.
The output signal is sent to the pre-termination device 23 when the reaction amount matches or exceeds the reaction amount at 100% vulcanization, and the output signal is terminated when the reaction amount matches or exceeds the reaction amount at 100% vulcanization. device 24 respectively. The pre-termination device 23 is used to open the mold early in advance when the reaction progresses considerably even after the mold is opened, such as in the case of tires.

予終了装置23はX例えば第3図に示すように構成すれ
ており、マイクロコンピュータ10から供給された出力
信号をイ□ンバーグ25で反転させ、この反転出力でト
ランジスタ26を導通させてリレー27を作動させ、接
点28を閉じて発光ダイオ−#:29を点灯させると共
にX接点30を閉じて金型を開くための信号を発生させ
る。=!た1この信号をパルス発生装着(図示せず)に
供給してパルスを発生させてもよい。また、発光ダイオ
ード29が点灯したことにより手動で金型を開いてもよ
い。終了装置24も予終了装置23と同様に構成されて
おり、加硫100%になった際に発光ダイオード(図示
せず)が点灯し、同時に発生した信号によって自動的に
金型から反応物を取り出すことができる。また発光ダイ
オードが点灯したことにより手動で金型からタイヤを取
り出すこともできる。従って、例えばゴム加硫反応の場
合、90%の加硫状態になったことにより手動または自
動で金型を開き、100%の加硫状態になったことによ
り手動または自動的に金型からタイヤを取り出すことが
でき、非常に正確に反応用を制御できる。
The pre-termination device 23 is configured as shown in FIG. When activated, the contact 28 is closed to light up the light emitting diode #:29, and the X contact 30 is closed to generate a signal for opening the mold. =! This signal may also be applied to a pulse generating device (not shown) to generate pulses. Alternatively, the mold may be opened manually when the light emitting diode 29 is turned on. The termination device 24 is configured similarly to the pre-termination device 23, and a light emitting diode (not shown) lights up when vulcanization reaches 100%, and a signal generated at the same time automatically removes the reactant from the mold. It can be taken out. The tire can also be manually removed from the mold when the light emitting diode lights up. Therefore, for example, in the case of a rubber vulcanization reaction, the mold is opened manually or automatically when the 90% vulcanization state is reached, and the tire is removed from the mold manually or automatically when the 100% vulcanization state is reached. can be extracted and the reaction volume can be controlled very precisely.

なお、反応量が演算されるごとに1反応量表示器31に
反応量が、時間表示器32に反応開始時からの時間が1
温度表示器33に温度がそれぞれ表示されるように、マ
イクロコンピュータ10はプログラムされている。なお
、これら表示を表示ストップ(9) 装置33によって停止させることができるようにもプロ
グラムされている。表示ストップ装置33は第4図に示
すようにスタート信号発生装置11とほぼ同様に構成さ
れている。異なるのは、リミットスイッチ19aの閉成
やパルス信宕・発生装着のパルス発生が、金型が開いた
ときあるいは金型からタイヤが取り出されたときに行な
われることである。
In addition, each time the reaction amount is calculated, the reaction amount is displayed on the reaction amount display 31, and the time from the start of the reaction is displayed on the time display 32.
The microcomputer 10 is programmed so that each temperature is displayed on the temperature display 33. It should be noted that it is also programmed so that these displays can be stopped by a display stop (9) device 33. The display stop device 33 is constructed almost the same as the start signal generator 11, as shown in FIG. The difference is that the closing of the limit switch 19a and the generation of pulses for pulse detection and generation are performed when the mold is opened or when the tire is taken out from the mold.

従って、金型が開いたときまたは金型からダイヤを取り
出したときまたは手動スイッチ18を閉成したときに各
表示器31.32.33の表示が停止する。
Therefore, each indicator 31, 32, 33 stops displaying when the mold is opened, when the diamond is removed from the mold, or when the manual switch 18 is closed.

表示の停止にかかわらず、マイクロコンピュータ10が
反応量の演算を行なっていることはいうまでもなく、リ
ミットスイッチ19 a X手動スイツキ18が開放さ
れたとき、またはパルス信号発生装置nがパルスの発生
を停止したとき1各表示器31%32.33には現在の
反応量、温度、時間が表示される。
Needless to say, the microcomputer 10 continues to calculate the reaction amount regardless of whether the display has stopped or when the limit switch 19a or manual switch 18 is opened, or when the pulse signal generator n generates a pulse. When the reaction is stopped, the current reaction amount, temperature, and time are displayed on each display 31% 32.33.

またへ反応量及び測定温度はプリンタ34において印字
される。一般に温度測定及び演算頻度は多ければ多いほ
ど、測定及び制御の精度は高くなるが1プリンタ34に
はそれほど印字する必要がない(10) ので1回字回数設定器35に設定された回数、例えば今
「2」と設定しであるとすると、2回反応量の演算が行
なわれるごとに1回反応量と測定温度とを印字するよう
に構成しである。なお「1」を設定すると毎回印字され
ることはいうまでもない。
Furthermore, the reaction amount and the measured temperature are printed out by the printer 34. Generally, the higher the frequency of temperature measurement and calculation, the higher the accuracy of measurement and control, but it is not necessary to print as much on one printer 34 (10). If it is set to "2", the configuration is such that the reaction amount and measured temperature are printed once every time the reaction amount is calculated twice. It goes without saying that if "1" is set, it will be printed every time.

マタ、マイクロコンピュータ10には、下限温度設定器
37に設定されている下限温度信号が供給さ限温度信号
とを比較し、ディジタル温度信号が下限温度信号より低
い場合、その時点での反応量をOとするつまり反応量の
計算をしないようにプログラムされている。例えばタイ
ヤのようにカサの大きい反応量の場合、温度上昇に比較
的長い時間がかかり低温状態が長い。そこで、上記の(
1)式または(2)式で等価反応量を計算すると一比較
的低温度の場合、等価反応量は小さでが時間で累計して
いくため反応時間が長い場合、かなり誤差が大きくなる
ので、その誤差をなくするためディジタル温度信号が下
限温度信号以下のときそのときの反(11) なお、37はチャンネル数表示器で、チャンネル数セレ
クタ18によって選択されている温度表示器を表示する
ためのものである。
The microcomputer 10 is supplied with the lower limit temperature signal set in the lower limit temperature setting device 37. It compares the digital temperature signal with the limit temperature signal, and if the digital temperature signal is lower than the lower limit temperature signal, it determines the amount of reaction at that point. It is programmed to set O, that is, not to calculate the reaction amount. For example, in the case of a large reactor such as a tire, it takes a relatively long time for the temperature to rise, and the low temperature state is long. Therefore, the above (
When calculating the equivalent reaction amount using equation 1) or equation (2), the equivalent reaction amount is small at relatively low temperatures, but it accumulates over time, so if the reaction time is long, the error becomes quite large. In order to eliminate this error, when the digital temperature signal is less than the lower limit temperature signal, the inverse (11) at that time. It is something.

この反応用“測定制御装置は、所定It’5間経過ごと
に反応量を計算し、その反応量゛を予め設定した反応量
と比1咬しているので、高石11度に反応量を制御でき
る。特に計算した複数の反応用の算術平均と予め設定し
た反応量とを比1咬できるので、特願昭56−1234
62弼のように反応量がコ一つの場合に比べて反応量の
精度が晶くなり、反応制御、例えば加硫精度が高めらね
る。1だ複数の反応量°のうち最小値のものを設定反応
量と比較することもできるので、反応不足がなくなり、
品質が向上し、均一な反応を行える。さらに複数の反応
量のうち最大値のものを設定反応量と比1咬することも
できるので\物品のゲル状となる反応の臨界点が容易に
見つけられ・反応精度を高めらねる0 さらに、この反応量測定制御装置は、下限篇1度設定器
に設定した下限温度信号とディジタル温度(12) 信号とを反応量を計算するごとに比較し1デイジクル温
度信号が下限温度信号よりも小さいとき、そのときの反
応量を0として扱っているので誤差をなくすることがで
きる。すなわち、ディジタル温度信号が比較的小さい場
合、アレニウスの反応速度式またはその近似式によって
計算した等価反応量は非常に小さい値となるが、時間で
累計していくため反応時間tが長い場合、計算した等価
反応量はかなり誤差を含んでいるので\その誤差をなく
するためディジタル温度信号が下限温度信号以下のとき
、そのときの反応量をOとするのである。よって、高精
度に反応量を計算することができるので、反応量の制御
精度も高められる。
This reaction measurement control device calculates the reaction amount every time a predetermined period of 5 has elapsed, and the reaction amount is set at a ratio of 1 to the preset reaction amount, so the reaction amount is controlled at 11 degrees. In particular, it is possible to compare the calculated arithmetic mean for multiple reactions with the preset reaction amount, so it is possible to
Compared to the case where the reaction amount is only one as in the case of No. 62, the accuracy of the reaction amount becomes more accurate, and reaction control, for example, vulcanization accuracy, cannot be improved. It is also possible to compare the minimum value of multiple reaction amounts with the set reaction amount, eliminating insufficient reactions.
Improved quality and uniform reaction. Furthermore, since the maximum value among multiple reaction amounts can be set to a ratio of 1 to the set reaction amount, the critical point of the reaction that causes the product to become gel-like can be easily found and the reaction precision can be improved. This reaction amount measurement control device compares the lower limit temperature signal set in the lower limit 1 degree setting device and the digital temperature (12) signal every time the reaction amount is calculated, and when the 1 dicle temperature signal is smaller than the lower limit temperature signal. , since the reaction amount at that time is treated as 0, errors can be eliminated. In other words, if the digital temperature signal is relatively small, the equivalent reaction amount calculated using the Arrhenius reaction rate equation or its approximation will be a very small value, but since it is accumulated over time, if the reaction time t is long, the calculated Since the equivalent reaction amount obtained contains a considerable error, in order to eliminate the error, when the digital temperature signal is below the lower limit temperature signal, the reaction amount at that time is set to O. Therefore, since the reaction amount can be calculated with high precision, the control accuracy of the reaction amount can also be improved.

また上記の実施例では、スタート信号発生装置11を設
けであるので・加硫プレスが閉じられると自動的に測定
、計算及び制御を開始でき、スタート信号発生装置11
の押釦スイッチ18を閉成することによりそれまで測定
してきたデータ類を全て消去し、新たに温度測定、計算
及び制御を開始できる。さらにこの実施例では1回字回
数設定器35を(13) 設けであるので、測定、計算が行なわれたうち設定回数
おきに測定温度1反応量が印字される。
In addition, in the above embodiment, since the start signal generator 11 is provided, measurement, calculation and control can be automatically started when the vulcanizing press is closed, and the start signal generator 11
By closing the push button switch 18, all the data that has been measured up to that point can be erased and new temperature measurement, calculation and control can be started. Further, in this embodiment, since a one-time printing number setting device 35 is provided (13), the measured temperature and one reaction amount are printed every set number of times while measurements and calculations are performed.

上記の実施例では、温度検出器として熱電対を用いたが
、他に白金抵抗体等も使用できる。
In the above embodiment, a thermocouple was used as the temperature detector, but a platinum resistor or the like may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による反応量測定制御装置のブロック
図、第2図4ま同装置に用(ハるスタート信号発生装置
の回路図、第3図は同装置に用いる予終了装置の回路図
、第4図は表示ストップ装置の回路図である。 1乃至6・・・温度検出器、7・・・マルチプレックサ
、10自a11マイクロコンピユータ、11・−スター
ト信号発生装置、12・・・タイマ、13・・・チャン
ネル数セレクタ、211IIla士レクタスインチ、2
2−−・反応量設定器、34・−・プリンタ、351・
印字回数設定器138・・・下限温度設定器。 特許出願人 住友ゴム工業株式会社 代 理 人 清 水   哲 ほか2名(14) 才2 @ 23  固 傳4図
Fig. 1 is a block diagram of a reaction amount measurement control device according to the present invention, Fig. 2 is a circuit diagram of a halt start signal generating device used in the same device, and Fig. 3 is a circuit diagram of a pre-termination device used in the same device. , FIG. 4 is a circuit diagram of the display stop device. 1 to 6...Temperature detector, 7...Multiplexer, 10-A11 Microcomputer, 11.-Start signal generator, 12... Timer, 13...Channel number selector, 211 II la Rectus inch, 2
2--Reaction amount setting device, 34--Printer, 351-
Print count setter 138...lower limit temperature setter. Patent applicant Sumitomo Rubber Industries Co., Ltd. Representative Tetsu Shimizu and 2 others (14) Sai2 @ 23 Gunden 4

Claims (6)

【特許請求の範囲】[Claims] (1)反応系の内部、外表面または容器のそれぞれ異な
る複数位置の温度にそれぞれ対応した温度信号を検出す
る過程と、これら各温度信号に基づいてそれぞれ反応量
を演算する過程と、これら反応量の算術平均値、最大値
または最小値を求める過程と、上記反応量1算術平均値
、最大値または最小値が予め定めた設定反応量に一致ま
たは該設定反応量を超えたとき出力信号を発生する過程
とからなる反応量測定制御方法。
(1) A process of detecting temperature signals corresponding to the temperatures at multiple different positions inside the reaction system, on the outer surface, or in a container, a process of calculating reaction amounts based on each of these temperature signals, and a process of calculating each reaction amount based on each of these temperature signals. The process of determining the arithmetic mean value, maximum value, or minimum value of the reaction amount 1, and generating an output signal when the arithmetic mean value, maximum value, or minimum value of the reaction amount 1 matches or exceeds a predetermined set reaction amount. A reaction amount measurement control method comprising the steps of:
(2)  上記反応量の演算は、上記温度信号が予め定
めた下限温度以丁のとき行なわないことを特徴とする特
許請求の範囲第1項記載の反応量測定制御方法。
(2) The reaction amount measurement control method according to claim 1, wherein the calculation of the reaction amount is not performed when the temperature signal is less than or equal to a predetermined lower limit temperature.
(3)  反応系の内部、外表面または容器のそれぞれ
異なる位置に設けた複数の温度検出器と、これら温度検
出器からの温度信号を複数の機能を有する計算機に供給
するマルチプレックザと、」1記計算機に供給する上記
温度信号を選択する紹合せ十しクタと)上記各機能を選
択するセレクタスイッチとを具備し、上記計算機は、(
II給された上記温度信号に基づいて反応量を演算する
機能、これら反応量を算術平均する機能、これら反応量
の最大値を選択する機能、こJ]ら反応量1の最小値を
選択する機能及び反応量、算術竿均値、最大l17Tま
たは最小値が予め定めた設定反応量゛に一致擾たは該設
定反応量を超えたとき出方信号を発生する比1咬機能を
有し、上記セレクタスイッチは、」1記反応量演算機能
と比較機能、上記反応用・演算機能と最大値選択機能と
比較機能、上記反応量演算機能と最大値選択機能と比較
機能または」1記反応量演算機能と算術平均機能と比較
機能を選択するように構成されている反応量測定制御方
法。
(3) A plurality of temperature detectors installed at different positions inside the reaction system, on the outer surface, or on the container, and a multiplexer that supplies temperature signals from these temperature detectors to a computer with multiple functions. 1. The calculator is equipped with a selector switch for selecting the above-mentioned temperature signal to be supplied to the calculator, and a selector switch for selecting each of the above-mentioned functions.
A function to calculate the reaction amount based on the temperature signal supplied above, a function to arithmetic average these reaction amounts, a function to select the maximum value of these reaction amounts, and a function to select the minimum value of the reaction amount 1. Function and reaction amount, arithmetic rod average value, maximum l17T or minimum value matches a predetermined set reaction amount" or has a ratio 1 bite function that generates an exit signal when it exceeds the set reaction amount, The above selector switch has the following functions: 1) Reaction amount calculation function and comparison function, 1) Reaction amount calculation function, maximum value selection function and comparison function, 1) Reaction amount calculation function and maximum value selection function and comparison function, 1) Reaction amount A reaction amount measurement control method configured to select an arithmetic function, an arithmetic average function, and a comparison function.
(4)  上記計算機は作動開始用信号発生装置を有す
ることを特徴とする特許請求の範囲第3項記載の反応量
測定制御方法。
(4) The reaction amount measurement control method according to claim 3, wherein the computer has an operation start signal generating device.
(5)  上記計算機は順次演算された各反応量のうち
印字回数設定器の設定値おきのものを印字するように構
成したプリンタを有することを特徴とする特許請求の範
囲第3項及び第4項記載の反応量測定制御装置。
(5) Claims 3 and 4, characterized in that the above-mentioned calculator has a printer configured to print out the sequentially calculated reaction quantities at every set value of the printing number setting device. Reaction amount measurement control device as described in .
(6)  上記計算機は、上記温度信号が予め定めた下
限温度以下のとき上記演算機能を停止することを特徴と
する特許請求の範囲第3項乃至第5項記載の反応量測定
制御装置。
(6) The reaction amount measurement control device according to any one of claims 3 to 5, wherein the calculator stops the calculation function when the temperature signal is below a predetermined lower limit temperature.
JP17848881A 1981-08-05 1981-11-06 Measuring and controlling method for reacting amount and device thereof Granted JPS5824848A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17848881A JPS5824848A (en) 1981-11-06 1981-11-06 Measuring and controlling method for reacting amount and device thereof
EP82107094A EP0071988B1 (en) 1981-08-05 1982-08-05 Apparatus for automatically measuring and controlling chemical reaction amount
DE8282107094T DE3278458D1 (en) 1981-08-05 1982-08-05 Apparatus for automatically measuring and controlling chemical reaction amount
US06/706,317 US4589072A (en) 1981-08-05 1985-02-27 Apparatus for automatically measuring and controlling chemical reaction amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17848881A JPS5824848A (en) 1981-11-06 1981-11-06 Measuring and controlling method for reacting amount and device thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56123462A Division JPS5824847A (en) 1981-08-05 1981-08-05 Measuring and controlling device for reacting amount

Publications (2)

Publication Number Publication Date
JPS5824848A true JPS5824848A (en) 1983-02-14
JPH0241700B2 JPH0241700B2 (en) 1990-09-19

Family

ID=16049330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17848881A Granted JPS5824848A (en) 1981-08-05 1981-11-06 Measuring and controlling method for reacting amount and device thereof

Country Status (1)

Country Link
JP (1) JPS5824848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172036A (en) * 2019-04-08 2020-10-22 住友ゴム工業株式会社 Analysis method of plastic material and manufacturing method of plastic material
CN115007084A (en) * 2022-08-04 2022-09-06 安徽建筑大学 Reaction kettle reaction process temperature detection method and device, control method and reaction kettle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019151A (en) * 1973-06-25 1975-02-28
JPS5130588U (en) * 1974-08-21 1976-03-05
JPS55114953A (en) * 1979-02-28 1980-09-04 Sumitomo Rubber Ind Ltd Reaction quantity measuring unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130588B2 (en) * 1972-09-09 1976-09-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019151A (en) * 1973-06-25 1975-02-28
JPS5130588U (en) * 1974-08-21 1976-03-05
JPS55114953A (en) * 1979-02-28 1980-09-04 Sumitomo Rubber Ind Ltd Reaction quantity measuring unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172036A (en) * 2019-04-08 2020-10-22 住友ゴム工業株式会社 Analysis method of plastic material and manufacturing method of plastic material
CN115007084A (en) * 2022-08-04 2022-09-06 安徽建筑大学 Reaction kettle reaction process temperature detection method and device, control method and reaction kettle

Also Published As

Publication number Publication date
JPH0241700B2 (en) 1990-09-19

Similar Documents

Publication Publication Date Title
US4589072A (en) Apparatus for automatically measuring and controlling chemical reaction amount
US5889585A (en) Method and apparatus for the measurement of blood sugar
US4680958A (en) Apparatus for fast determination of the rheological properties of thermoplastics
EP0843167A1 (en) Temperature controller
EP0242946B1 (en) Calibration of combined oxygen and combustibles analyses
US3191441A (en) Weld quality monitoring device for welding machines
EP0138733A2 (en) Process of curing and testing rubber
EP0580110A1 (en) Smoke detecting apparatus for fire alarm
US4096739A (en) Processability tester
JPS5824848A (en) Measuring and controlling method for reacting amount and device thereof
JPH0229984B2 (en)
EP0072105B1 (en) Assessment of life of duct
JP7418225B2 (en) Pipette verification procedure
KR880000789B1 (en) Method and apparatus for measuring and controlling chemical reaction amount
JPH0432341B2 (en)
US4954719A (en) Sheet thickness gauging method and system with auto calibration
US4341117A (en) Electronic thermometer
US7175436B2 (en) Optical composite cure radiometer and method
JPS5880550A (en) Method and device for measuring reacting weight
JPS5880551A (en) Method and device for measuring reacting weight
JP2505562B2 (en) Sensor characteristic compensation type temperature control method and apparatus
JPH0247699B2 (en)
JPS62110743A (en) Control method for equivalent reaction amount
US4958062A (en) Driving control apparatus for an electric range with self-diagnosis function
JP3725683B2 (en) Extruder and temperature prediction method