JPS5824632B2 - Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou - Google Patents

Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou

Info

Publication number
JPS5824632B2
JPS5824632B2 JP49069105A JP6910574A JPS5824632B2 JP S5824632 B2 JPS5824632 B2 JP S5824632B2 JP 49069105 A JP49069105 A JP 49069105A JP 6910574 A JP6910574 A JP 6910574A JP S5824632 B2 JPS5824632 B2 JP S5824632B2
Authority
JP
Japan
Prior art keywords
water level
reservoir
power plant
intermediate reservoir
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49069105A
Other languages
Japanese (ja)
Other versions
JPS50160633A (en
Inventor
角田佐智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP49069105A priority Critical patent/JPS5824632B2/en
Publication of JPS50160633A publication Critical patent/JPS50160633A/ja
Publication of JPS5824632B2 publication Critical patent/JPS5824632B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 本発明は上側発電所と下側発電所の中間に両発電所が共
用する小容量の中間貯水池を有する発電所で、中間貯水
池の水位を安定し且つ各発電所を安全に運転できる水力
発電所の運転制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a power plant that has a small-capacity intermediate reservoir between an upper power plant and a lower power plant that is shared by both power plants, and is capable of stabilizing the water level of the intermediate reservoir and Concerning a safe operation control method for a hydroelectric power plant.

水力発電所では、上部貯水池と下部貯水池との間に発電
所を建設し、両貯水池間における水位差からなる落差ま
たは揚程を利用することによって、発電または揚水の運
転を行なっている。
In a hydroelectric power plant, a power station is constructed between an upper reservoir and a lower reservoir, and power generation or pumping operation is performed by utilizing the head or lift formed by the water level difference between the two reservoirs.

しかし、地形または地質上の問題から所要の場所に発電
所を建設することが困難であったり、あるいは、落差ま
たは揚程が一発電析のみに適用するものとしては高すぎ
たりすることがある。
However, topographical or geological problems may make it difficult to construct a power plant in the required location, or the head or lift may be too high for single power analysis only.

このような場合、上部貯水池と下部貯水池との間で落差
または揚程を二分する地点に、小容量の中間貯水池を設
け、その上側および下側にそれぞれ別々に発電所を配置
して、各発電所で中間貯水池の水を共用することにより
、発電または揚水の運転を行なっている。
In such a case, a small-capacity intermediate reservoir is installed at a point where the head or head is divided into two between the upper and lower reservoirs, and power plants are placed separately above and below the reservoir. By sharing the water in the intermediate reservoir, power generation or pumping operations are carried out.

このような形態をとる水力発電所は、上側、下側と2個
の発電所を有するが、中間貯水池の水位などを通じて、
互いに他方の発電所における水力機械の運転制御に影響
を与えるので、電力系統との連けい運転に際しては1個
の発電所として取り扱われる。
A hydroelectric power plant with this type of structure has two power plants, an upper and a lower power plant, but through the water level of the intermediate reservoir, etc.
Since each power station influences the operation control of the hydraulic machines at the other power station, they are treated as one power station when operating in conjunction with the electric power system.

これは中間貯水池の貯水容量が小さいので、上側、下側
発電所が互いに連叶いなくして独立に運転されると、中
間貯水池がいつ水、かつ水してしまうからである。
This is because the water storage capacity of the intermediate reservoir is small, so if the upper and lower power plants are operated independently without being connected to each other, the intermediate reservoir will run out of water at any time.

したがって、このような形態の水力発電所の運転制御は
、如何に行なうのが最良であるのか、重要な問題となっ
てくる。
Therefore, the question of how best to control the operation of this type of hydroelectric power plant has become an important issue.

とくに、運転モードの複雑な揚水発電所では、安全性お
よび経済性の観点より、極めて重要な問題となる。
In particular, for pumped storage power plants with complex operation modes, this is an extremely important issue from the viewpoint of safety and economy.

たとえば、中央給電指令所から発電指令がきた場合、上
側、下側各発電所にどのような比率でその負荷量を分配
すべきか、安全性、経済性を考慮して決めなければなら
ない。
For example, when a power generation command is received from a central power dispatch center, it is necessary to decide in what ratio the load should be distributed to the upper and lower power plants, taking into account safety and economic efficiency.

安全性の観点からは、中間貯水池がいつ水、かつ水しな
いような制御が要求され、また経済性の観点からは、中
間貯水池の水位をどのように制御すれば、将来予想され
る運転が良好に経続できるのかの制御が要求される。
From a safety perspective, it is necessary to control when the intermediate reservoir fills and when it does not, and from an economic perspective, how to control the water level of the intermediate reservoir to ensure good operation expected in the future. Control is required to determine whether the system can continue.

揚水発電所の運転モードが複雑になるのは、この経済性
の観点を十分に考慮しなければならないからであり、ま
たとくに揚水、発電の相互の運転切り換え時における中
間貯水池の水位を、どのように決定し、制御するべきか
は重要な問題であり、その適正な制御が望まれてきた。
The operational mode of a pumped storage power plant is complicated because it is necessary to fully consider this economic aspect. It is an important issue whether to determine and control the situation, and appropriate control has been desired.

本発明の目的は、中間貯水池の水位を検出し、この水位
信号を共通な制御指令として上側、下側発電所の水力機
械に伝えて、水位が予め設定した規定範囲をいつ脱する
ときは、いずれかの水力機械の運転状態を変えることに
より、中間貯水池の水位を運転上望ましい水位に保ち、
安全にしかも経済的に各発電所を運転することの出来る
水力発電所の運転制御方法を提供することにある。
The purpose of the present invention is to detect the water level of the intermediate reservoir, transmit this water level signal as a common control command to the hydraulic machines of the upper and lower power plants, and detect when the water level is out of a preset range. By changing the operating status of one of the hydraulic machines, the water level of the intermediate reservoir is maintained at the desired level for operation,
An object of the present invention is to provide a method for controlling the operation of a hydroelectric power plant, which allows each power plant to be operated safely and economically.

以下本発明の一実施例を第1図及び第2図を参照して説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は中間貯水池を共用する水力発電所の水路系の概
要を示すもので、上部貯水池1と下部貯水池2との間に
、さらに中間貯水池3を設け、その上側および下側にそ
れぞれに上側発電所4、下側発電所5が別々に配置され
ている。
Figure 1 shows an overview of the waterway system of a hydroelectric power plant that shares an intermediate reservoir.An intermediate reservoir 3 is provided between the upper reservoir 1 and the lower reservoir 2, and upper and lower reservoirs are provided above and below, respectively. A power plant 4 and a lower power plant 5 are arranged separately.

上側発電所4は入口側水路6および出口側水路8によっ
て、それぞれ上部貯水池1および中間貯水池3へ連絡さ
れ、また下側発電所5は入口側水路7および出口側水路
9によって、それぞれ中間貯水池3および下部貯水池2
へ連絡されているにのような水力発電所方式の特徴は上
側および下側の各発電所が、それぞれ水路8および7を
通して中間貯水池3へ連絡されているので、そこの水を
共用するとともに、上部貯水池1と下部水洩2との間に
おける落差または揚程Hな二分したHlおよびH2から
なる落差または揚程のもとに、それぞれ運転されること
にある。
The upper power plant 4 is connected to the upper reservoir 1 and the intermediate reservoir 3 by an inlet channel 6 and an outlet channel 8, respectively, and the lower power plant 5 is connected to the intermediate reservoir 3 by an inlet channel 7 and an outlet channel 9, respectively. and lower reservoir 2
The characteristic of the hydroelectric power plant system is that the upper and lower power plants are connected to the intermediate reservoir 3 through waterways 8 and 7, respectively, so they share the water there and The system is operated under a head or head H between the upper reservoir 1 and the lower water leak 2, which is divided into two halves, H1 and H2.

まず上側発電所4および下側発電所5において、同時に
揚水運転が行なわれており、上側発電所4では揚程H1
のもとに揚水流量Qp+、また下側発電所5では揚程H
2のもとに揚水流量QP2の状態で、それぞれポンプ運
転が行なわれている場合を説明する。
First, the upper power plant 4 and the lower power plant 5 are simultaneously performing pumping operation, and the upper power plant 4 has a pumping height of H1.
Under the pumping flow rate Qp+, and in the lower power plant 5, the pumping head H
2, the case where the pumps are operated in a state where the pumped water flow rate is QP2 will be explained.

各揚水流量の関係がQPI>QP2の状態で運転されて
いる場合、中間貯水池3では、単位時間あたりに、△Q
p−Qp+−QP2に相当する水量が失われることにな
り、水位Xは時間とともに下降していくことになる。
When operating in a state where the relationship between each pumping flow rate is QPI>QP2, in the intermediate reservoir 3, △Q
The amount of water corresponding to p-Qp+-QP2 will be lost, and the water level X will fall with time.

とくに、この中間貯水池3の1は小さいので、この水位
変化は通常の貯水池に比べ、はるかに速い。
In particular, since the intermediate reservoir 3 is small, the water level changes much faster than in a normal reservoir.

この中間貯水池3の水位の変化状態は第2図に示すごと
く、中間貯水池3に設けた水位検出器11によって検知
され、この水位があらかじめ決められた水位範囲X1〜
X2 (以下、とのX1〜X2を規定水位範囲という
As shown in FIG. 2, the state of change in the water level of this intermediate reservoir 3 is detected by a water level detector 11 provided in the intermediate reservoir 3, and this water level is detected within a predetermined water level range X1 to X1.
X2 (Hereinafter, X1 to X2 will be referred to as the specified water level range.

)にあるかどうか判断される。) is determined.

規定水位範囲内にある時は比較器17が上側、下側発電
所4,5の夫々の運転制御系を構成する加算器13.1
5に水位信号XAを伝達する。
When the water level is within the specified range, the comparator 17 connects the adder 13.1 that constitutes the operation control system of the upper and lower power stations 4 and 5, respectively.
The water level signal XA is transmitted to 5.

規定水位範囲X、〜X2は安全性、経済性の双方を考慮
して決められる。
The prescribed water level ranges X, -X2 are determined in consideration of both safety and economy.

水位信号XAが出力されているときは、定常の状態であ
るので、前記加算器13,150夫々では上部貯水池1
の水位検出器10、下部貯水池2の水位検出器12にて
検知された水位y及びZと、中間貯水池3の水位Xとの
差を求め、夫々の水位差(H+ = y X )、(
H2= z −x )を制御信号として上側発電所4の
ガイドベーン制御装置14及び下側発電所5のガイドベ
ーン制御装置16に与え、夫々の発電所4,5を独立に
制御する。
When the water level signal
The difference between the water levels y and Z detected by the water level detector 10 of the lower reservoir 2 and the water level detector 12 of the lower reservoir 2 and the water level X of the intermediate reservoir 3 is determined, and the respective water level differences (H+ = y
H2=z-x) is given as a control signal to the guide vane control device 14 of the upper power plant 4 and the guide vane control device 16 of the lower power plant 5, and the respective power plants 4 and 5 are controlled independently.

上記の揚水運転において、中間貯水池3の水位Xが規定
水位範囲X1〜X2の下限値X2を下まわる事態になる
と、すなわち中間貯水池3の水が欠乏する事態や将来の
運転モードに適さない水位状態になると、水位検出器1
1の水位信号は比較器17において水位信号XBを前記
ガイドベーン制御装置14,16に直接伝達する。
In the above-mentioned pumping operation, if the water level When the water level detector 1
A comparator 17 transmits the water level signal XB directly to the guide vane controllers 14 and 16.

そして上部貯水池1及び下部貯水池2の水位y、zに関
係なく発電所4,5の水力機械の一方あるいは両方の機
器を制御する。
Then, regardless of the water levels y and z of the upper reservoir 1 and the lower reservoir 2, one or both of the hydraulic machines of the power plants 4 and 5 are controlled.

これによって各発電所4,5の揚水量の関係をQp s
> Qp 2からQp t < Qp 2の状態にか
えて中間貯水池3の水位がさらに低下しない様に各水力
機械を運転する。
As a result, the relationship between the amount of water pumped at each power station 4 and 5 is expressed as Qp s
> Qp 2 to Qp t < Qp 2 and each hydraulic machine is operated so that the water level of the intermediate reservoir 3 does not fall further.

次に、揚水流量の関係がQp 1<Qp2の状態で運転
されている場合は、中間貯水池3では、単位時間あたり
、△Qp=Qp2 Qp+に相当する水量が増え、水位
Xは時間とともに上昇してい(ことになる。
Next, if the pumping flow rate relationship is Qp1<Qp2, the intermediate reservoir 3 will have an increase in water volume corresponding to ΔQp=Qp2 Qp+ per unit time, and the water level X will rise over time. It's going to happen.

したがって中間貯水池3の水位Xが規定水位範囲X1〜
X2の上限値X1をも上まわると、すなわちオーバーフ
ローなどの危険な事態や将来の運転モードに適さない水
位状態になると水位検出器11の水位信号が比較器11
の働きで水位信号X3を各発電所4,5の水力機械のガ
イドベーン制御装置14,16に伝達し各発電所4,5
のいづれか一方または両方における水力機械のガイドベ
ーン開度を制御するかあるいは下側発電所5における水
力機械を停止制御するなどによって各揚水量の関係をQ
PI<QP2からQp 1>Qp2の状態に変え、中間
貯水池3の水位がさらに上がらないようにして、安全で
かつ経済的な状態で機器運転を行なう。
Therefore, the water level X of the intermediate reservoir 3 is within the specified water level range
When the water level signal from the water level detector 11 exceeds the upper limit X1 of
transmits the water level signal
By controlling the guide vane opening degree of the hydraulic machine in one or both of the above, or by controlling the stoppage of the hydraulic machine in the lower power station 5, the relationship between the respective pumped water amounts can be
The state is changed from PI<QP2 to Qp1>Qp2 to prevent the water level of the intermediate reservoir 3 from rising further, and the equipment is operated in a safe and economical state.

つづいて発電所4および5において、発電運転が同時に
行なわれており、発電所4では落差H1のもとに発電流
量QTIまた発電所5では落差H2のもとに発電流量Q
T2の状態で、それぞれ水車運転が行なわれている場合
を考察する。
Subsequently, power generation operations are carried out simultaneously at power stations 4 and 5. At power station 4, the amount of power generated is QTI under the head difference H1, and at power station 5, the amount of power generated is QTI under the head difference H2.
Let us consider the case where each water turbine is operated in the state of T2.

各発電所流量の関係がQT 1> QT2の場合、中間
貯水池3では単位時間あたり△QT−QT1−QT2に
相当する水量が増え、水位Xは時間とともに上昇してい
く。
When the relationship between the flow rates of each power plant is QT1>QT2, the amount of water corresponding to ΔQT-QT1-QT2 increases per unit time in the intermediate reservoir 3, and the water level X rises with time.

また、各発電流量の関係がQTI<QT2の場合は、逆
に、単位時間あたり△QT=QT2−QT+に相当する
水量が中間貯水池3で失われ、水位Xは時間とともに下
降していく。
Moreover, when the relationship between the respective power generation flow rates is QTI<QT2, on the contrary, the amount of water corresponding to ΔQT=QT2−QT+ per unit time is lost in the intermediate reservoir 3, and the water level X decreases with time.

すなわち、このように発電運転の場合でも、中間貯水池
3において、前記の揚水運転時の場合と同様に、水のオ
ーバーフローや経済的な運転の継続ができない水位ある
いは水の欠乏などの危険な事態に落ち入ることにもなる
In other words, even in the case of power generation operation in this way, as in the case of pumping operation described above, dangerous situations such as water overflow, water level that makes it impossible to continue economical operation, or water shortage can occur in the intermediate reservoir 3. It will also make you feel depressed.

したがって、このような場合に対しても、前述の揚水運
転の場合と同様に中間貯水池3の水位Xを共通な制御信
号XBとして各発電所4,5の水力機械に伝え、中間貯
水池3の水位Xが規定の水位範囲X1〜X2をいつ脱し
た場合は中間貯水池3の水位信号によって、各発電所の
いづれか一方または両方の水力機械においてガイドベー
ン開度制御あるいは水力機械の停止を行なう。
Therefore, in such a case, the water level X of the intermediate reservoir 3 is transmitted as a common control signal When X leaves the specified water level range X1 to X2, the guide vane opening degree is controlled or the hydraulic machine is stopped in one or both of the hydraulic machines in each power plant based on the water level signal from the intermediate reservoir 3.

これによって、中間貯水池3の水位Xが運転上望ましく
ない状態に落ち入ることを防ぎ安全でしかも経済的な運
転を行なうことが出来る。
This prevents the water level X of the intermediate reservoir 3 from dropping to a state undesirable for operation, making it possible to perform safe and economical operation.

以上説明したように、本発明によれば上側発電所及び下
側発電所の中間にあって、互いに共用する小容量の中間
貯水池の水位は安全な領域に維持され上側発電所及び下
側発電所を安全に運転することが出来る。
As explained above, according to the present invention, the water level of the small-capacity intermediate reservoir, which is located between the upper power plant and the lower power plant and is shared with each other, is maintained in a safe area. I can drive safely.

また、中間貯水池の水位が予め設定された規定範囲内に
あるように制御できるので、たとえば運転モードの切換
時において、次に行なわれる運転制御に適した水位で前
の運転が終了するように規定水位範囲X1〜X2を設定
することも可能である。
In addition, since the water level in the intermediate reservoir can be controlled to be within a preset range, for example, when switching operation modes, the previous operation can be specified to end at a water level suitable for the next operation control. It is also possible to set a water level range X1 to X2.

これによって、各発電所では高効率の経済的な運転を行
なえるとともに、長時間運転を行なった場合でも水位が
ほぼ所望の規定位置に保持されているので、水力機械の
停止後においても、必要な時期に随時問題なく水力機械
の運転が行なえる。
As a result, each power plant can operate efficiently and economically, and even after long periods of operation, the water level is maintained at approximately the desired specified position, so even after the hydraulic machinery has stopped, the required Hydraulic machinery can be operated at any time without any problems.

このことは揚水発電所のように、運転モードが複雑でし
かも機器運転上とくに連応性および機動性が要求される
ような場合でも、問題なく機器の運転を行うこと力司j
来る。
This means that even in cases such as pumped storage power plants, where the operation modes are complex and require particular coordination and maneuverability in equipment operation, the equipment can be operated without problems.
come.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される中間貯水池を有する水力発
電所の水路系図、第2図は本発明による制御方法を説明
するブロック図である。 1−・・・・・上部貯水池、2・・・・・・下部貯水池
、3・・・・・・中間貯水池、4・・・・・・上側発電
所、5・・・・・・下側発電所、10,11,12・・
・・・・水位検出器、13゜15・・・・・・加算器、
14,16・・・・・・ガイドベーン制御装置、17・
・・・・比較器。
FIG. 1 is a waterway system diagram of a hydroelectric power plant having an intermediate reservoir to which the present invention is applied, and FIG. 2 is a block diagram illustrating the control method according to the present invention. 1-... Upper reservoir, 2... Lower reservoir, 3... Intermediate reservoir, 4... Upper power plant, 5... Lower side. Power plant, 10, 11, 12...
...Water level detector, 13゜15...Adder,
14, 16... Guide vane control device, 17.
... Comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 上部貯水池と下部貯水池との中間に、内部の水を共
用する小容量の中間貯水池を設け、前記上部貯水池と前
記中間貯水池の間に上側発電所を、前記中間貯水池と前
記下部貯水池の間に下側発電所をそれぞれ設けた水力発
電所の制御方法において、前記各々の貯水池の水位信号
を検出し、前記中間貯水池の水位信号が予め定められた
規定水位範囲にあるときは、前記上部貯水池の水位信号
と前記中間貯水池の水位信号とから前記上側発電所を、
前記中間貯水池の水位信号と前記下部貯水池の水位信号
とから前記下側発電所をそれぞれ制御し、前記中間貯水
池の水位信号が前記規定水位範囲を逸脱したものである
ときは、前記中間貯水池の水位信号に基いて、前記中間
貯水池の水位が前記規定水位範囲に復帰するように前記
上側および下側発電所をそれぞれ制御することを特徴と
する水力発電所の運転制御方法。
1 A small-capacity intermediate reservoir that shares internal water is provided between the upper reservoir and the lower reservoir, an upper power plant is installed between the upper reservoir and the intermediate reservoir, and an upper power plant is installed between the intermediate reservoir and the lower reservoir. In a method of controlling a hydroelectric power plant having lower power plants, the water level signal of each of the reservoirs is detected, and when the water level signal of the intermediate reservoir is within a predetermined water level range, the water level signal of the upper reservoir is detected. from the water level signal and the water level signal of the intermediate reservoir,
The lower power plant is controlled based on the water level signal of the intermediate reservoir and the water level signal of the lower reservoir, and when the water level signal of the intermediate reservoir deviates from the specified water level range, the water level of the intermediate reservoir is controlled. A method for controlling the operation of a hydroelectric power plant, characterized in that the upper and lower power plants are each controlled based on a signal so that the water level of the intermediate reservoir returns to the specified water level range.
JP49069105A 1974-06-19 1974-06-19 Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou Expired JPS5824632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49069105A JPS5824632B2 (en) 1974-06-19 1974-06-19 Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49069105A JPS5824632B2 (en) 1974-06-19 1974-06-19 Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou

Publications (2)

Publication Number Publication Date
JPS50160633A JPS50160633A (en) 1975-12-26
JPS5824632B2 true JPS5824632B2 (en) 1983-05-23

Family

ID=13393003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49069105A Expired JPS5824632B2 (en) 1974-06-19 1974-06-19 Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou

Country Status (1)

Country Link
JP (1) JPS5824632B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961535A (en) * 1972-09-04 1974-06-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961535A (en) * 1972-09-04 1974-06-14

Also Published As

Publication number Publication date
JPS50160633A (en) 1975-12-26

Similar Documents

Publication Publication Date Title
DE112009000707B4 (en) Controller for hybrid construction equipment
US2820148A (en) Wave motor and associated mechanism
CN106499005B (en) A kind of water supply pump station feedback control system
CN107208674B (en) The hydraulic oil energy regenerating regenerating unit of Work machine
CN102959159A (en) Hybrid construction machine
EP3387191B1 (en) Ship lock system for a canal
CN110529373B (en) Control method, system and device for water pumping energy-saving peak regulation
JPS6158666B2 (en)
CN203184622U (en) Servo system of die-casting machine
CN102493523A (en) Novel excavator current-limiting control system
JPS5824632B2 (en) Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou
GB1455679A (en) Hydraulic power transmission systems
CN206385606U (en) A kind of constant pressure water supply spray irrigation system based on PLC
CN114335647A (en) Shutdown protection system and method for liquid flow energy storage system
CN105293257A (en) Numerically-control hydraulic muting type household elevator
CN103669463A (en) Acceleration control method and device of rotary hydraulic system and excavator
CN105473874A (en) Construction machine
CN115864541A (en) Capacity optimization configuration method and device for multi-pumped storage power station
CN214994342U (en) Constant pressure frequency conversion water supply system based on ACS510 frequency converter
CN103206433B (en) A kind of hydraulic pressure group control energy-saving system
CN115305879A (en) Reservoir dispatching and hydroelectric generation integrated control method and storage medium
CN210265310U (en) Multi-pump confluence hydraulic station device
JPS6044514B2 (en) Hydroelectric power plant operation control method
CN108374748A (en) A kind of stable operation control system of pump-storage generator
CN108054788B (en) A kind of peak load shifting apparatus control method