JPS6044514B2 - Hydroelectric power plant operation control method - Google Patents

Hydroelectric power plant operation control method

Info

Publication number
JPS6044514B2
JPS6044514B2 JP50116362A JP11636275A JPS6044514B2 JP S6044514 B2 JPS6044514 B2 JP S6044514B2 JP 50116362 A JP50116362 A JP 50116362A JP 11636275 A JP11636275 A JP 11636275A JP S6044514 B2 JPS6044514 B2 JP S6044514B2
Authority
JP
Japan
Prior art keywords
water level
reservoir
power plant
intermediate reservoir
power station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50116362A
Other languages
Japanese (ja)
Other versions
JPS5241821A (en
Inventor
佐智雄 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50116362A priority Critical patent/JPS6044514B2/en
Publication of JPS5241821A publication Critical patent/JPS5241821A/en
Publication of JPS6044514B2 publication Critical patent/JPS6044514B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 本発明は上部発電所と下部発電所の中間に両発電所が共
用する中間貯水池を有する水力発電所の運転制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operation control method for a hydroelectric power plant that has an intermediate reservoir between an upper power plant and a lower power plant that is shared by both power plants.

水力発電所では、上部貯水池と下部貯水池との間に発電
所を建設し、両貯水池間における水位差からなる落差ま
たは揚程を利用することによつて、発電または揚水の運
転を行なつている。
In a hydroelectric power plant, a power station is constructed between an upper reservoir and a lower reservoir, and power generation or pumping operation is performed by utilizing the head or lift formed by the water level difference between the two reservoirs.

しかし地形または地質上の問題から所要の場所に発電所
を建設することが困難であつたり、あるいは落差または
揚程が一発電所のみに適用するものとしては高すぎたり
する場合などには、上部貯水池と下部貯水池との間で落
差または揚程を二分する地点にさらに中間貯水池を設け
、その上側および下側にそれぞれ別々の発電所を配置し
て、各発電所で中間貯水池の水を共用することにより発
電または揚水の運転を行なつている。このように配置さ
れた各発電所ては、中間貯水池の水位などを通じて互い
に他方の発電所における機器運転に影響を・与えること
になる。とくに中間貯水池の貯水容量が小さい場合には
、機器運転により水位が変化しやすくなるので、互いに
影響を受ける度合が強くなる。したがつてこのように相
互に影響を受けやすいフ関係にある各発電所の機器運転
を安全性および経済性の観点より如何に行なうかという
ことが重要な問題となつてくる。
However, if it is difficult to construct a power plant in the required location due to topographical or geological problems, or if the head or lift is too high to be applied to only one power plant, an upper reservoir may be used. By installing an intermediate reservoir at the point where the head or head is divided into two between the lower reservoir and the lower reservoir, and placing separate power plants above and below the reservoir, each power plant can share the water from the intermediate reservoir. Electric power generation or water pumping operations are performed. Each of the power plants arranged in this manner influences the operation of equipment at the other power plant through the water level of the intermediate reservoir, etc. Particularly when the water storage capacity of the intermediate reservoir is small, the water level changes easily due to equipment operation, so the degree to which they are influenced by each other becomes stronger. Therefore, it becomes an important issue how to operate the equipment of each power plant, which is mutually susceptible to each other, from the viewpoint of safety and economy.

とくに運転モードが複雑な揚水発電所では、極めて重要
な問題となる。一方原子力発電所あるいは火力発電所の
負荷調夕整を目的とする揚水発電所の必要性と立地難な
どを考慮すると、中間貯水池を共有する揚水発電所の建
設が増える傾向もある。一般に水車またはポンプあるい
はポンプ水車などの機器の運転状態の制御は、各機器に
付設されたガイドベーンの開度を制御して流量調整する
ことにより行なわれる。そこて上記の中間貯水池を共用
する水力発電所の水路系の概要を第1図によつて説明す
ると、上部貯水池1と下部貯水池(河川をも含む)2と
の間に、さらに中間貯水池3を設け、その上側および下
側にそれぞれ上部発電所4及び下部発電所5が別々に配
置されている。上部発電所4は入口側水路6および出口
側水路8によつてそれぞれ上部貯水池1および中間貯水
池3へ連絡され、また下部発電所5は入口側水路7およ
び出口側水路9によつてそれぞれ中間貯水池3および下
部貯水池2へ連絡されている。このような水力発電所の
特徴は上部発電所4及び下部発電所5が、それぞれ水路
8および7を通して中間貯水池3へ連絡されているので
、そこの水を共有するとともに、上部貯水池1と下部貯
水池2との間における落差または揚程Hを二分したH1
およびH2からなる落差または揚程のもとにそれぞれ運
転されることにある。すなわち上部発電所4及び下部発
電所5における機器の運転状態は、中間貯水池3の水位
xを量じて、互いに他方の発電所における機器の運転状
態の影響を受けることになる。このような中間貯水池を
共用する発電所において、水位によつて機器のガイドベ
ーン開度を制御する場合、従来では、各貯水池における
水位変化を各機器に作用する落差または揚程として把え
、これらによつてそれぞれ各機でガイドベーン開度を制
御する方法である。
This is an extremely important issue, especially for pumped storage power plants with complex operation modes. On the other hand, considering the necessity and location difficulties of pumped storage power plants for the purpose of load adjustment at nuclear power plants or thermal power plants, there is a tendency to increase the construction of pumped storage power plants that share intermediate reservoirs. Generally, the operating state of equipment such as water turbines, pumps, and pump water turbines is controlled by controlling the opening degree of guide vanes attached to each equipment to adjust the flow rate. Therefore, to explain the outline of the waterway system of a hydroelectric power plant that shares the above-mentioned intermediate reservoir with reference to Fig. 1, an intermediate reservoir 3 is added between the upper reservoir 1 and the lower reservoir (including the river) 2. An upper power station 4 and a lower power station 5 are separately arranged above and below the power station. The upper power plant 4 is connected to the upper reservoir 1 and the intermediate reservoir 3 by an inlet water channel 6 and an outlet water channel 8, respectively, and the lower power plant 5 is connected to the intermediate reservoir by an inlet water channel 7 and an outlet water channel 9, respectively. 3 and the lower reservoir 2. A feature of such a hydroelectric power plant is that the upper power plant 4 and the lower power plant 5 are connected to the intermediate reservoir 3 through waterways 8 and 7, respectively, so that they share the water there and also share the water between the upper and lower power plants. H1, which is obtained by dividing the head or head H between 2 and 2 into two.
and H2, respectively. In other words, the operating conditions of the equipment in the upper power station 4 and the lower power station 5 are influenced by the operating conditions of the equipment in the other power station by measuring the water level x of the intermediate reservoir 3. In power plants that share such intermediate reservoirs, when controlling the opening of the guide vanes of equipment depending on the water level, conventionally, changes in the water level in each reservoir are understood as the head or lift acting on each equipment, and these are Therefore, this is a method in which the guide vane opening degree is controlled for each machine.

すなわち従来の運転制御.方法を第2図を参照して説明
すると以下のようになる。ます中間貯水池3の水位xは
水位検出器11によつて検知され、上部発電所4及び下
部発電所5の夫々の運転制御系を構成する減算器13,
15に伝達される。この夫々の減算器13,153では
上部貯水池1の水位検出器10、下部貯水池2の水位検
出器12によつて夫々検出された水位yおよびzと中間
貯水池3の水位Xとの差を求め、夫々水位差y−X,z
−xを主制御信号として上部発電所のガイドベーン制御
装置14及び下ダ部発電所5のガイドベーン制御装置1
6に与え、夫々の発電所を互に独立に制御していた。し
たがつて、このような従来の制御方法にもとづいて、各
発電所の機器を運転する場合、中間貯水池の水位がたと
え異常な水位になつても、各機器の落差または揚程が運
転許容範囲にあれば、運転が続行されることになるので
、場合によつては、中間貯水池において水のオーバーフ
ローあるいは欠乏などの異常事態が発生することにもな
り、機器および水路にとつてきわめて危険である。
In other words, conventional operation control. The method will be explained below with reference to FIG. The water level x of the intermediate reservoir 3 is detected by the water level detector 11, and the subtractor 13, which constitutes the operation control system of the upper power station 4 and the lower power station 5, respectively.
15. The subtracters 13 and 153 calculate the difference between the water levels y and z detected by the water level detector 10 of the upper reservoir 1 and the water level detector 12 of the lower reservoir 2, respectively, and the water level X of the intermediate reservoir 3, Water level difference y-X,z respectively
The guide vane control device 14 of the upper power plant and the guide vane control device 1 of the lower power plant 5 use −x as the main control signal.
6, and each power plant was controlled independently from each other. Therefore, when operating equipment at each power plant based on such conventional control methods, even if the water level in the intermediate reservoir becomes abnormal, the head or head of each equipment will be within the operating tolerance range. If so, the operation will continue, and in some cases, an abnormal situation such as overflow or shortage of water may occur in the intermediate reservoir, which is extremely dangerous for the equipment and the waterway.

さらに、中間貯水池の水位如何によつては、機器の運転
が制約されることにもなるので、とくに揚水発電所の場
合には複雑な電力の需要関係に)対応して、速応性およ
び機動性のある機器運転が難しくなる。本発明は、中間
貯水池の水を共用することにより、水車またはポンプあ
るいはポンプ水車などの機器運転状態で互いに他方の影
響を受けやすい関;係にある水力発電所において、中間
貯水池の水位および水位変化速度によつて水車、あるい
はポンプ水車を制御することにより中間貯水池の水位を
安全な領域に維持し、安全にしかも経済的に各発電所の
機器を運転することのできる水力発電所の運転制御方法
を提供することを目的とする。
Furthermore, depending on the water level of the intermediate reservoir, the operation of equipment may be restricted, so in the case of pumped storage power plants in particular, it is necessary to respond quickly and maneuverably in response to complex power demand relationships. It becomes difficult to operate certain equipment. The present invention provides water level and water level changes in the intermediate reservoir in a hydroelectric power plant where water turbines, pumps, or pump-turbine equipment are in a relationship where each other is susceptible to the influence of the other by sharing water in the intermediate reservoir. A method for controlling the operation of a hydroelectric power plant, which maintains the water level of an intermediate reservoir within a safe range by controlling a water wheel or a pump-turbine depending on its speed, and allows each power plant equipment to be operated safely and economically. The purpose is to provide

上記の目的を達成するため本発明は、上部貯水池および
下部貯水池を連絡する水路系の途中に中間貯水池を設け
、かつ上部貯水池と中間貯水池の間に上部水力発電所を
、また中間貯水池と下部貯水池の間に下部水力発電所を
夫々設置した水力発電所において、中間貯水池の水位変
化速度の大きさ及び方向性を検出し、その水位変位速度
の大きさが短時間で中間貯水池を異状事態に陥らせない
ように設定した規定値以下であれば、上部貯水池と中間
貯水池間の水位差に応じた主制御信号により上部発電所
のガイドベーン開度を適正開度に制御するとともに、中
間貯水池と下部発電所の水位差に応じた主制御信号によ
り下部発電所のガイドベーン開度を適正開度に制御し、
一方前記水位変位速度の大きさが短時間で中間貯水池を
異状事態に陥らせないように設定した規定値を超えると
きは、その水位変位速度の大きさに比例しその方向性に
対応した補助制御信号により上部発電所及び下部発電所
のいずれか一方または両方のガイドベーン開度を制御し
て中間貯水池への入出水量を制御するようにしたもので
あり、これにより中間貯水池の水位を規定値以下の安全
な領域に維持できるので、各発電所の機器を安全に運転
することができる。次に各発電所の使用流量と中間池水
位の変位速度との関係から説明する。
In order to achieve the above object, the present invention provides an intermediate reservoir in the middle of a waterway system that connects the upper reservoir and the lower reservoir, an upper hydroelectric power plant between the upper reservoir and the intermediate reservoir, and an intermediate reservoir and the lower reservoir. In a hydroelectric power plant where a lower hydroelectric power plant is installed between 1 and 2, the magnitude and direction of the water level change rate in the intermediate reservoir are detected, and the magnitude and direction of the water level change rate in the intermediate reservoir can be detected to prevent the intermediate reservoir from falling into an abnormal situation in a short period of time. If the water level is below the predetermined value, the main control signal according to the water level difference between the upper and intermediate reservoirs will control the guide vane opening of the upper power plant to an appropriate opening, and The guide vane opening degree of the lower power station is controlled to the appropriate opening degree using the main control signal according to the water level difference in the power station.
On the other hand, when the magnitude of the water level displacement speed exceeds a specified value set to prevent the intermediate reservoir from falling into an abnormal situation for a short time, auxiliary control is carried out in proportion to the magnitude of the water level displacement speed and corresponding to its direction. The signal controls the opening of the guide vanes of either or both of the upper and lower power plants to control the amount of water flowing into and out of the intermediate reservoir, thereby keeping the water level in the intermediate reservoir below a specified value. This allows the equipment at each power plant to be operated safely. Next, the relationship between the flow rate used by each power plant and the displacement rate of the intermediate pond water level will be explained.

まず上部発電所4及び下部発電所5において、同時に発
電運転が行なわれており、上部発電所4では落差H1の
もとに発電流量QTlまたは下部発電所5では落差H2
のもとに発電流量QT2の状態で、それぞれ発電水車運
転が行なわれている場合を説明する。各発電流量QTl
とQT9と中間貯水池3において流入または流出する流
量ΔQTとの関係は次のようになる(流れの連続式)。
一方中間貯水池3の水位Xの変位速度すなわち水位xの
時間tに関する第一次微分値相当量をΔx/Δtとし、
水位x相当位置における中間貯水池3の有効水平断面積
をAとすれば次式が成立する。
First, the upper power station 4 and the lower power station 5 simultaneously perform power generation operation, and the upper power station 4 generates a power generation flow rate QTl based on the head H1, or the lower power station 5 generates a power generation flow QTl based on the head H2.
A case will be described in which the power generation water turbine operation is performed under the conditions of the power generation flow rate QT2. Each power generation flow rate QTl
The relationship between QT9 and the flow rate ΔQT flowing into or out of the intermediate reservoir 3 is as follows (flow continuity equation).
On the other hand, the displacement speed of the water level X of the intermediate reservoir 3, that is, the amount equivalent to the first derivative value of the water level
If A is the effective horizontal cross-sectional area of the intermediate reservoir 3 at a position corresponding to water level x, the following equation holds true.

また式(1)を式(2)に代人して次式を得る。Also, by substituting equation (1) into equation (2), the following equation is obtained.

ここに各諸量の単位は次の通りとする。QTl、QT2
〜ΔQT: 〔Dlsec〕x: 〔m〕Δx/Δt:
〔M,ノSec〕 A: 〔d〕 これより、中間貯水池3の水位変位速度Δx/Δtを検
知し、その水位変位の方向すなわちΔx/Δtの正負を
検出するだけΔQTの正負つまりはQTlとQT2の大
小関係が容易に与えられることになる。
Here, the units of each quantity are as follows. QTl, QT2
~ΔQT: [Dlsec]x: [m]Δx/Δt:
[M, Sec] A: [d] From this, the water level displacement speed Δx/Δt of the intermediate reservoir 3 is detected, and the direction of the water level displacement, that is, the positive or negative of Δx/Δt is detected. The magnitude relationship of QT2 can be easily given.

いま各発電流量の関係がQ,l〉Q,2の状態で運転さ
れているとするとΔx/Δt〉0となり、中間貯水池3
では、単位時間あたりに、ΔQTに相当する水量が増加
していくことになり、水位xは時間とともに上昇してい
くことになる。これに対して各発電流量の関係がQTl
〈QT2の状態で運転されているとするとΔx/Δt<
Oとなり、中間貯水池3では、単位時間あたりにΔQァ
、に相当する水量が失われていくことになり、水位xは
時間とともに下降していくことになる。いづれの場合も
中間貯水池3の容量が小さいときは水位Xの変化が速く
なる。次に第3図に示す本発明の一実施例の構成図につ
いて説明する。
If we assume that the operation is currently in a state where the relationship between each power generation flow is Q, l> Q, 2, then Δx/Δt>0, and the intermediate reservoir 3
Then, the amount of water corresponding to ΔQT will increase per unit time, and the water level x will rise with time. On the other hand, the relationship between each power generation flow rate is QTl
〈Assuming that it is operated in the state of QT2, ∆x/∆t<
0, and in the intermediate reservoir 3, the amount of water corresponding to ΔQa is lost per unit time, and the water level x decreases with time. In either case, when the capacity of the intermediate reservoir 3 is small, the water level X changes quickly. Next, a configuration diagram of an embodiment of the present invention shown in FIG. 3 will be explained.

第3図において中間貯水池3の水位xは水位検出器11
によつて検知され、発電所4,5の夫々の運転制御系を
構成する減算器13,15に伝達される。前記減算器1
3,15のそれぞれでは上部貯水池1の水位検出器10
、下部貯水池2の水位検出器12によつてそれぞれ検出
された水位yおよびzと中間貯水池3の水位xとの差を
求め、夫々水位差y−X..z−xを主制御信号として
上部発電所4のガイドベーン制御装置14および下部発
電所5のガイドベーン制御装置16に与え、夫々の発電
所4,5を互に独立に制御し得るように構成する。本発
明の制御装置では、前記水位差y−X..z一xからな
る主制御信号の他に、前記中間池水位xの変位速度の方
向性および大きさを検知し、これを補助制御信号として
前記ガイドベーン制御装置14,16に与えるように構
成する。
In FIG. 3, the water level x of the intermediate reservoir 3 is determined by the water level detector 11.
and is transmitted to subtracters 13 and 15 that constitute the operation control systems of power plants 4 and 5, respectively. The subtractor 1
3 and 15, the water level detector 10 of the upper reservoir 1
, the difference between the water levels y and z respectively detected by the water level detector 12 of the lower reservoir 2 and the water level x of the intermediate reservoir 3 is determined, and the water level difference y-X. .. z-x is applied as a main control signal to the guide vane control device 14 of the upper power plant 4 and the guide vane control device 16 of the lower power plant 5, so that the power plants 4 and 5 can be controlled independently of each other. do. In the control device of the present invention, the water level difference y−X. .. In addition to the main control signal consisting of z - x, the directionality and magnitude of the displacement speed of the intermediate pond water level x are detected, and this is configured to be provided to the guide vane control devices 14 and 16 as an auxiliary control signal. .

17がこのために設けた補助制御信号作成部である。17 is an auxiliary control signal generation section provided for this purpose.

第4図は補助制御信号作成部の詳細構成図である。まず
前記中間池3の水位xの信号を微分回路18に与え、こ
こで水位xの変位速度Δx/Δtを検知し、これをさら
に極性判別器19に導入して増加方向(+Δx/Δt)
であるが減少方向(−Δx/Δt)であるかを判定する
。更にこの極性判別器19の出力信号レベル検出器20
に導入し、その大きさが短時間で中間貯水池を異状事態
に陥らせないようにあらかじめ決められた規定値を超え
るときは前記ガイドベーン制御装置14または16に対
して、前記信号Δx/Δtの大きさに比例する補助制御
信号Xdl又はXd2を与える。21はノ発電運転と揚
水運転に応じて補助制御信号回路を切替える切替スイッ
チである。
FIG. 4 is a detailed configuration diagram of the auxiliary control signal generation section. First, a signal of the water level x of the intermediate pond 3 is given to the differentiating circuit 18, which detects the displacement speed Δx/Δt of the water level x, which is further introduced into the polarity discriminator 19 to determine the increasing direction (+Δx/Δt).
However, it is determined whether it is in the decreasing direction (-Δx/Δt). Furthermore, an output signal level detector 20 of this polarity discriminator 19
and when the magnitude exceeds a predetermined value to prevent the intermediate reservoir from falling into an abnormal situation in a short period of time, the signal Δx/Δt is sent to the guide vane control device 14 or 16. An auxiliary control signal Xdl or Xd2 proportional to the magnitude is provided. Reference numeral 21 denotes a changeover switch that switches the auxiliary control signal circuit according to the power generation operation and the pumping operation.

なお22,23は補助制御信号Xdl,Xd2が極端に
大きく、このまま運転を継続した場合にプラントの運転
に支障をきたす恐れのあるとき動作し、それぞれ発電所
機器7を緊急停止させたり、警報を出したりする異常検
出器である。次に本発明の動作について説明する。
Note that 22 and 23 operate when the auxiliary control signals Xdl and Xd2 are extremely large and may impede the plant operation if the operation continues, and they respectively cause an emergency stop of the power plant equipment 7 or issue an alarm. It is an anomaly detector that detects Next, the operation of the present invention will be explained.

上部発電所4及び下部発電所5で発電運転が同時に行な
われており、各発電所の流量関係が一時QTl〉QT2
フの状態にある場合を考察する。微分回路18を通じて
極性判別器19では、前記式(3)の関係から、正極性
のΔx/Δtが検知され、その大きさが前記レベル検出
器20で定めた規定値以下であれば、補助制御信号Xd
lは発信されない。結局前記ガイドベーン制御装置14
,16の双方は第5図に例示するように、水位差に対し
てあらかじめ設定されている適性ガイドベーン開度A。
の状態で、夫々の水位差y−X..z−xの制御信号の
もとに独立して制御される。この場合中間貯水池3の水
位変位速度Δx/Δtの大きさが規定値以下なので、前
記式(3)の関係より明らかに中間貯水池3に流入また
は流出する流量ΔQT(=QTl−QT2)は小さな値
となり、その結果中間貯水池3の水位は短時間でオーバ
ーフローあるいは欠乏などの異状事態に陥らない安全な
領域に維持する。しかし、前記Δx/Δtの大きさが前
記規定値を超えるときは、レベル検出器20からは、Δ
x/Δtの大きさに比例した大きさの正極性の補助制御
信号Xdlをガイドベーン制御装置14に伝達する。前
記ガイドベーン制御装置14では、第5図に例示するよ
うに、補助制御信号Xdlの大きさに応じてΔaだけガ
イドベーン開度A。に対して閉制御し、与えられた水位
差y−xに対してはもよりも開度の小さいj−△aから
なるガイドベーン開度の状態で発電所4の機器を運転す
る。このように上部発電所4では、補助制御信号1d1
によつて機器が小開のガイドベーン開度の状態で運転制
御されることになり発電流量QTlは漸次減少してくる
。したがつて各発電所の流量関係は、当初のQTl〉Q
T2からQTlをQT2に近づけることによりQTl=
Q,2の状態へ移行していくことになる。
The upper power station 4 and the lower power station 5 are running power generation at the same time, and the flow rate relationship of each power station is temporarily QTl>QT2.
Let's consider the case where the state is f. The polarity discriminator 19 detects the positive polarity Δx/Δt from the relationship of equation (3) through the differentiation circuit 18, and if the magnitude is less than the specified value determined by the level detector 20, the auxiliary control is performed. Signal Xd
l is not transmitted. After all, the guide vane control device 14
, 16 are appropriate guide vane opening degrees A that are preset for the water level difference, as illustrated in FIG.
In the state of , each water level difference y−X. .. It is independently controlled under the z-x control signals. In this case, since the magnitude of the water level displacement rate Δx/Δt of the intermediate reservoir 3 is less than the specified value, it is clear from the relationship in equation (3) that the flow rate ΔQT (=QTl−QT2) flowing into or out of the intermediate reservoir 3 is a small value. As a result, the water level of the intermediate reservoir 3 is maintained within a safe range that does not cause abnormal situations such as overflow or shortage in a short period of time. However, when the magnitude of Δx/Δt exceeds the specified value, the level detector 20 detects Δ
A positive auxiliary control signal Xdl having a magnitude proportional to x/Δt is transmitted to the guide vane control device 14. In the guide vane control device 14, as illustrated in FIG. 5, the guide vane opening degree A is adjusted by Δa depending on the magnitude of the auxiliary control signal Xdl. The equipment of the power plant 4 is operated with the guide vane opening being j-Δa, which is smaller than the opening for a given water level difference y-x. In this way, in the upper power plant 4, the auxiliary control signal 1d1
As a result, the operation of the equipment is controlled with the guide vane slightly opened, and the power generation flow rate QTl gradually decreases. Therefore, the flow rate relationship at each power plant is the initial QTl〉Q
By bringing QTl closer to QT2 from T2, QTl=
This will lead to a transition to state Q.2.

このことは、前記式(3)の関係からΔx/Δtの値を
小さくし、中間貯水池3の水位を安全な領域に移行さ.
せることを意味する。上記の過程で補助制御沌信号Xd
lが極端に大きい場合は、異常検出器22が制御して上
部発電所4の機器を停止するなどして、急速に発電流量
Q1を減少させる制御を行なう。次に、各発電所の流量
関係がQ,lくQT2の発電運転状態にある場合を考察
する。
This reduces the value of Δx/Δt from the relationship in equation (3) above, and shifts the water level of the intermediate reservoir 3 to a safe area.
It means to make. In the above process, auxiliary control chaos signal Xd
If l is extremely large, the abnormality detector 22 controls to stop the equipment in the upper power plant 4, thereby rapidly reducing the power generation flow rate Q1. Next, consider a case where the flow rate relationship of each power station is Q, l and the power generation operation state is QT2.

この場合は、負極性のΔx/Δtが検知されるのでこの
補助制御信号Xd2を下部発電所5のオイドベーン制御
装置16に伝えて、前記した正極性の場合と同様な制(
御を下部発電所5の機器に対して行なう。なお以上の説
明は、補助制御信号Xdlが出力される場合ガイドベー
ン制御装置14の働きにより上部発電所4のガイドベー
ンの開度を絞るようにしたが、逆にガイドベーン制御装
置16を動作させて下部水力発電所5のガイドベーン開
度を開くようにしてもよい。
In this case, since Δx/Δt of negative polarity is detected, this auxiliary control signal
Control is performed on the equipment of the lower power station 5. In the above explanation, when the auxiliary control signal Xdl is output, the opening degree of the guide vanes of the upper power station 4 is narrowed by the function of the guide vane control device 14, but conversely, the guide vane control device 16 is operated. The guide vane opening degree of the lower hydroelectric power plant 5 may be opened by

同様に補助制御信号Xd2が出力された場合は、下部水
力発電所5のガイドベーン開度を絞る代りに、上部発電
所4のガイドベーン開度を開けるようにしてもよい。ま
た上部発電所4と下部発電所5のガイドベーン開度制御
を同時に行なうようにしてもよい。次に、上部発電所4
及び下部発電所5においノて、同時に揚水運転が行なわ
れており、上部発電所4では揚程H1のもとに揚水流量
Q,lまた下部発電所5では揚程H2のもとに揚水流量
QP2の状態で、それぞれ揚水ポンプ運転が行なわれて
いる場合を考察する。
Similarly, when the auxiliary control signal Xd2 is output, instead of narrowing down the guide vane opening of the lower hydroelectric power station 5, the guide vane opening of the upper power station 4 may be increased. Further, the guide vane openings of the upper power station 4 and the lower power station 5 may be controlled at the same time. Next, upper power station 4
Pumping operation is performed at the same time in the upper power station 4 and the lower power station 5, and in the upper power station 4, the pumping flow rate Q,l is performed under the pumping head H1, and in the lower power station 5, the pumping flow rate QP2 is performed under the pumping head H2. Let us consider the case where the water pump is operating in each state.

揚水運転の場合は、前述の発電運転の場合と逆になり、
中間貯水池3において、流入する流量は発電所5の揚水
流量QP2でありまた流出する流量は上部発電所4の揚
水流量QPlである。
In the case of pumped storage operation, it is the opposite of the case of power generation operation mentioned above.
In the intermediate reservoir 3, the inflow flow rate is the pumped water flow rate QP2 of the power station 5, and the outflow flow rate is the pumped water flow rate QPl of the upper power station 4.

従つて前式(3)において、QTlをQPl、QT2を
QP2として置”換する場合もQPl〉QP2のとき中
間池の水位変化率はDx/Dt<Oとなつて水位の減少
を意味しQPlくQ,2のときはDx/Dt〉0となつ
て水位の上昇を意味する。揚水運転時には切替スイッチ
21を発電側から揚水側に切替える。
Therefore, in the previous equation (3), even when QTl is replaced by QPl and QT2 by QP2, when QPl>QP2, the rate of change in the water level of the intermediate pond becomes Dx/Dt<O, which means a decrease in the water level, and QPl When Q, 2, Dx/Dt>0, which means the water level is rising.During pumping operation, the selector switch 21 is switched from the power generation side to the pumping side.

この切替えにより、レベル検出器20の出力を負のとき
(Dx2のとき)は出力信号は上部発電所4のガイドベ
ーン制御装置14に導入され、逆にDXlは下部発電所
5のガイドベーン制御装置16に導入される。すなわち
、この揚水運転の場合についても、前述の発電運転の場
合と同様に、中間貯水池3の水位Xの変位速度Δx/Δ
t及び変位方向を上部発電所4及び下部発電所5の機器
への共通な制御信号として微分回路18を通じて極性判
別器19て検知し、、前記変位速度Δx/Δtの大きさ
がレベル検出器20であらかじめ決められた規定値を超
える場合にはレベル検出器20から前記Δx/Δtの補
助制御信号を前記ガイドベーン制御装置14,16の夫
々に極性に応じて伝達し、水位Xの変位方向がΔx/Δ
t〈0すなわちQPl〉QP2のときは上部発電所4の
機器がガイドベーン開度を閉方向に制御して部分開度運
転をするかあるいは警報器22,23の動作により機器
を停止するなどの制御を行なうことによりQPlをQP
2に近づけてΔx/Δtの値を減速させ、水位xを安全
な領域に維持する。次に、水位Xの変位方向Δx/Δt
〉0すなわちQ,KQ,2のときは発電所5の機器に対
して前述のΔx/Δt<Oの場合と同様な水位Xの変位
速度に連動した制御を行なつてQP2をQPlに近づけ
て水位Xを安全な領域に維持する。この揚水運転の場合
も、補助制御信号Xdlが出たら、上部水力発電所4の
ガイドベーン開度を絞る代わりに下部水力発電所5のガ
イドベーン開度を開くように制御してもよい。
By this switching, when the output of the level detector 20 is negative (Dx2), the output signal is introduced into the guide vane control device 14 of the upper power station 4, and conversely, DXl is introduced into the guide vane control device of the lower power station 5. 16 will be introduced. That is, in the case of this pumping operation, as in the case of the above-mentioned power generation operation, the displacement rate Δx/Δ of the water level
t and the displacement direction are detected by a polarity discriminator 19 through a differentiation circuit 18 as a common control signal to the equipment of the upper power station 4 and lower power station 5, and the magnitude of the displacement speed Δx/Δt is detected by a level detector 20. If the water level exceeds a predetermined value, the level detector 20 transmits the auxiliary control signal of Δx/Δt to each of the guide vane control devices 14 and 16 according to the polarity, so that the direction of displacement of the water level Δx/Δ
When t<0, that is, QPl>QP2, the equipment in the upper power plant 4 controls the guide vane opening in the closing direction to perform partial opening operation, or the equipment is stopped by operating the alarms 22 and 23. By controlling QPl to QP
2 to slow down the value of Δx/Δt to maintain the water level x in a safe region. Next, the displacement direction Δx/Δt of water level
〉0, that is, Q, KQ, 2, the equipment of power plant 5 is controlled in conjunction with the displacement speed of water level Maintain water level X in a safe area. In the case of this pumping operation as well, when the auxiliary control signal Xdl is output, the guide vane opening of the lower hydroelectric power station 5 may be controlled to be opened instead of narrowing the guide vane opening of the upper hydroelectric power station 4.

同様に補助制御信号Xd2が出たら下部水力発電所5の
ガイドベーン開度を絞る代わりに上部水力発電所4のガ
イドベーン開度を開くように制御してもよい。また上部
発電所4と下部発電所5のガイドベーン開度制御を同時
に行なうようにしてもよい。以上説明したように、本発
明によれば上側発電所及ひ下側発電所の中間にあつて、
互いに共用する中間貯水池の水位は異常な状態に落ち入
ることがなく安全な領域に維持され上部発電所および下
部発電所を安全に連結することができる。
Similarly, when the auxiliary control signal Xd2 is output, the guide vane opening of the upper hydraulic power station 4 may be controlled to be opened instead of narrowing down the opening of the guide vane of the lower hydraulic power station 5. Further, the guide vane openings of the upper power station 4 and the lower power station 5 may be controlled at the same time. As explained above, according to the present invention, between the upper power station and the lower power station,
The water level of the intermediate reservoir shared with each other is maintained in a safe area without falling into an abnormal state, and the upper power plant and the lower power plant can be safely connected.

また中間貯水池の水位変位速度が規定値以下の場合は、
上部発電所及び下部発電所を最適に制御てきるので水力
発電所の総合的な運転効率の向上を図ることもできる。
In addition, if the water level displacement speed of the intermediate reservoir is below the specified value,
Since the upper power plant and the lower power plant can be optimally controlled, it is also possible to improve the overall operating efficiency of the hydroelectric power plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される中間貯水池を有する水力発
電所を示す概念図、第2図は従来の水力発電所の運転制
御方法を示す概念図、第3図は本発明の一実施例を示す
概要図、第4図は第3図中補助制御信号作成部の一例を
示すブロック図、第5図は水位差とガイドベーン開度の
関係を表わす特性図である。 1・・・・・・上部貯水池、2・・・・・・下部貯水池
、3・・・・・中間貯水池、4・・・・・・上部水力発
電所、5・・・・・・下部水力発電所、10,11,1
2・・・・・・水位検出器、14,16・・・・・・水
口制御装置、17・・・・・補助制御信号作成部、22
,23・・・・・・異常検出器。
Fig. 1 is a conceptual diagram showing a hydroelectric power plant having an intermediate reservoir to which the present invention is applied, Fig. 2 is a conceptual diagram showing a conventional operation control method of a hydroelectric power plant, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a block diagram showing an example of the auxiliary control signal generation section in FIG. 3, and FIG. 5 is a characteristic diagram showing the relationship between the water level difference and the guide vane opening. 1...Upper reservoir, 2...Lower reservoir, 3...Intermediate reservoir, 4...Upper hydroelectric power plant, 5...Lower hydroelectric power plant power plant, 10, 11, 1
2... Water level detector, 14, 16... Water mouth control device, 17... Auxiliary control signal creation section, 22
, 23... Abnormality detector.

Claims (1)

【特許請求の範囲】[Claims] 1 上部貯水池および下部貯水池を連絡する水路系の途
中に中間貯水池を設け、かつ上部貯水池と中間貯水池の
間に上部水力発電所を、また中間貯水池と下部貯水池の
間に下部水力発電所を夫々設置した水力発電所において
、中間貯水池の水位変位速度の大きさ及び方向性を検出
し、その水位変位速度の大きさが短時間で中間貯水池を
異状事態に陥らせないように設定した規定値以下であれ
ば、上部貯水池と中間貯水池間の水位差に応じた主制御
信号により上部発電所のガイドベーン開度を適正開度に
制御するとともに、中間貯水池と下部貯水池の水位差に
応じた主制御信号により下部発電所のガイドベーン開度
を適正開度に制御し、一方前記水位変位速度の大きさが
短時間で中間貯水池を異状事態に陥らせないように設定
した規定値を越えるときは、その水位変位速度の大きさ
に比例しその方向性に対応した補助制御信号により上部
発電所及び下部発電所のいずれか一方または両方のガイ
ドベーン開度を制御して中間貯水池への入出水量を制御
するようにしたことを特徴とする水力発電所の運転制御
方法。
1 An intermediate reservoir is installed in the middle of the waterway system connecting the upper reservoir and the lower reservoir, and an upper hydroelectric power station is installed between the upper reservoir and the intermediate reservoir, and a lower hydroelectric power station is installed between the intermediate reservoir and the lower reservoir. At a hydroelectric power plant, the magnitude and direction of the water level displacement speed of the intermediate reservoir are detected, and the magnitude and direction of the water level displacement speed are determined to be below a specified value set to prevent the intermediate reservoir from falling into an abnormal situation in a short period of time. If so, the guide vane opening degree of the upper power plant is controlled to an appropriate opening degree using a main control signal according to the water level difference between the upper reservoir and the intermediate reservoir, and the main control signal according to the water level difference between the intermediate reservoir and the lower reservoir. The guide vane opening degree of the lower power station is controlled to an appropriate opening degree, and when the magnitude of the water level displacement speed exceeds a specified value set to prevent the intermediate reservoir from falling into an abnormal situation in a short time, The amount of water flowing into and out of the intermediate reservoir is controlled by controlling the guide vane opening degree of either or both of the upper power station and the lower power station using an auxiliary control signal that is proportional to the magnitude of the water level displacement speed and corresponds to its direction. A method for controlling the operation of a hydroelectric power plant, characterized in that:
JP50116362A 1975-09-29 1975-09-29 Hydroelectric power plant operation control method Expired JPS6044514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50116362A JPS6044514B2 (en) 1975-09-29 1975-09-29 Hydroelectric power plant operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50116362A JPS6044514B2 (en) 1975-09-29 1975-09-29 Hydroelectric power plant operation control method

Publications (2)

Publication Number Publication Date
JPS5241821A JPS5241821A (en) 1977-03-31
JPS6044514B2 true JPS6044514B2 (en) 1985-10-03

Family

ID=14685075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50116362A Expired JPS6044514B2 (en) 1975-09-29 1975-09-29 Hydroelectric power plant operation control method

Country Status (1)

Country Link
JP (1) JPS6044514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294718U (en) * 1985-12-04 1987-06-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603474A (en) * 1983-06-21 1985-01-09 Yanmar Diesel Engine Co Ltd Fuel injection quantity regulator for vertical shaft type diesel engine
JP5571526B2 (en) * 2010-10-26 2014-08-13 株式会社日立製作所 Water level control device and water level control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294718U (en) * 1985-12-04 1987-06-17

Also Published As

Publication number Publication date
JPS5241821A (en) 1977-03-31

Similar Documents

Publication Publication Date Title
CN108181940B (en) Gate regulating and controlling method suitable for downstream emergency water cut-off condition of series channel
JPS6044514B2 (en) Hydroelectric power plant operation control method
JPH10141203A (en) Method for preventing inundation in hydraulic power plant
JPS6153559B2 (en)
JP3141641B2 (en) Operating device of turbine generator with different capacity
JPH044472B2 (en)
SU615170A1 (en) Device for regulating water level in hydraulic engineering structure race
JPS5824631B2 (en) Suishiya Pump Mataha Pump Suishyano Untenseigiyohouhou
JP2695838B2 (en) How to control hydropower equipment
JPH0370805B2 (en)
JPS62291310A (en) Automatic operation system for sluice
JPH08575Y2 (en) Water supply controller for drum type boiler
JPS5544602A (en) Gate opening data check method
JP2766501B2 (en) Water level adjustment device for dam type hydroelectric power plant
JP2001100845A (en) Conduit/hydraulic iron pipe water charging/discharging control system
JPS6116799Y2 (en)
JPH04278608A (en) Control method for hydraulic power plant facilities having discharge valve
JPS6215497Y2 (en)
JPH03154905A (en) Diagnosing device for level abnormality of water tank
JPS621109B2 (en)
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
JPH03241206A (en) Water supplying control device
JPH023205B2 (en)
JP2752075B2 (en) Control devices for hydraulic machines
JPS6285820A (en) Flow rate monitoring device for hydraulic power generation system