JPS5824491B2 - Processing material transport control method in catenary furnace - Google Patents

Processing material transport control method in catenary furnace

Info

Publication number
JPS5824491B2
JPS5824491B2 JP9780680A JP9780680A JPS5824491B2 JP S5824491 B2 JPS5824491 B2 JP S5824491B2 JP 9780680 A JP9780680 A JP 9780680A JP 9780680 A JP9780680 A JP 9780680A JP S5824491 B2 JPS5824491 B2 JP S5824491B2
Authority
JP
Japan
Prior art keywords
furnace
catenary
tension
treated
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9780680A
Other languages
Japanese (ja)
Other versions
JPS5723029A (en
Inventor
田辺正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP9780680A priority Critical patent/JPS5824491B2/en
Publication of JPS5723029A publication Critical patent/JPS5723029A/en
Publication of JPS5824491B2 publication Critical patent/JPS5824491B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は、カテナリー型炉の処理材搬送制御方法、特に
、異なる材料を接続した処理材の接続部の炉内通過時の
処理材搬送制御方法に関するもの。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the conveyance of treated materials in a catenary furnace, and particularly to a method for controlling the conveyance of treated materials when a connecting portion of the treated materials connecting different materials passes through the furnace.

である。It is.

カテナリー型炉では、処理材が入・出側支持ローラによ
り懸垂状態となって炉内を搬送され、その搬送ラインの
上下に沿って設けたノズルからの噴出流体の伝熱により
熱処理される。
In a catenary furnace, the material to be treated is transported through the furnace in a suspended state by input and exit support rollers, and is heat-treated by heat transfer of fluid ejected from nozzles provided along the upper and lower sides of the transport line.

したがって1、炉内での処理材のたわみ量は、ノズルと
の接触を防止するうえにも重要である。
Therefore, 1. The amount of deflection of the treated material in the furnace is also important for preventing contact with the nozzle.

しかしながら、処理材のたわみ量の制御については、高
温である炉内で使用できる検出器がないため、オペレー
タの判断のみにより、搬送条件の設定変更を行ってい、
□るのが現状で、特に異なる材料を接続した接続部での
たわみ量は複雑であり、たわみ量の調節にはかなりの誤
差を有していた。
However, in order to control the amount of deflection of the processed material, there is no detector that can be used inside the high-temperature furnace, so the settings of the conveyance conditions are changed only based on the judgment of the operator.
At present, the amount of deflection is complicated, especially at joints where different materials are connected, and there is considerable error in adjusting the amount of deflection.

そのため、処理材を挾んで対向する流体噴出ノズル間隔
は±400mm以上としており、省エネルギーの観点か
ら不利であった。
Therefore, the interval between the fluid ejecting nozzles that face each other with the treated material in between is set at ±400 mm or more, which is disadvantageous from the viewpoint of energy saving.

したがってノズル間隔の縮少、すなわち処理材の正確な
たわみ量制御が望まれていた。
Therefore, it has been desired to reduce the nozzle spacing, that is, to accurately control the amount of deflection of the processed material.

本発明は、前記従来の問題点および要望にもとづいてな
されたもので、その目的は安価で、効率のよい装置の実
現を可能とするカテナリー型炉の・ライン搬送制御方法
を提供することにある。
The present invention has been made based on the above-mentioned conventional problems and demands, and its purpose is to provide a method for controlling the line conveyance of a catenary type furnace, which makes it possible to realize an inexpensive and efficient device. .

次に、本発明を一実施例である図面にしたがって説明す
る。
Next, the present invention will be explained with reference to the drawings, which are one embodiment.

第1図は、本発明に係る方法を適用するカテナリー型炉
の搬送部を示している。
FIG. 1 shows the transport section of a catenary furnace to which the method according to the invention is applied.

図において1は炉で 炉1内には入側支持ローラ2と出
側支持ローラ3とによりカテナリー状に支持された処理
材4が、図中左から右へ移動している。
In the figure, reference numeral 1 denotes a furnace. Inside the furnace 1, a processed material 4 supported in a catenary-like manner by an inlet side support roller 2 and an outlet side support roller 3 moves from left to right in the figure.

処理材4は、接続部Pにて第1処理材4aと第2処理材
4bとが接続されたものであり、炉1内に上・下2列に
設けた複数個の噴出ノズル5の間を通過している。
The treated material 4 is a first treated material 4a and a second treated material 4b connected at a connecting part P, and is formed between a plurality of jet nozzles 5 provided in two rows, upper and lower, in the furnace 1. is passing through.

さらに、処理材4は、適宜張力調整により、前記各ノズ
ル列から等距離を保っている。
Further, the processing material 4 is maintained at an equal distance from each nozzle row by appropriately adjusting the tension.

なお、ここで、入側支持ローラ2と出側支持ローラ3と
の間の水平距離をS。
Note that here, the horizontal distance between the input side support roller 2 and the output side support roller 3 is S.

、その間の処理材4の長さをS。, the length of the treated material 4 between them is S.

′、出側支持ローラ3に対する処理材4のたわみ量をり
', the amount of deflection of the treated material 4 with respect to the output side support roller 3.

とする。図示のように、板厚、板中等の異なる2種の処
理材4a、4bの接続部Pが炉1内を通過する際には、
処理材4の張力Tを接続部Pの炉1内への侵入距離Sに
応じて制御しなければ前記たわみ量Doで代表されるカ
テナリー形状、すなわち処理材4と噴出ノズル5との間
隔を常に一定に保つことができない。
shall be. As shown in the figure, when the connecting portion P of two types of treated materials 4a and 4b having different plate thicknesses, plates, etc. passes through the furnace 1,
If the tension T of the treated material 4 is not controlled according to the penetration distance S of the connection part P into the furnace 1, the catenary shape represented by the deflection amount Do, that is, the distance between the treated material 4 and the jet nozzle 5 will always be maintained. cannot be kept constant.

すなわち接続部Pの炉1内への侵入度(S/So′)に
対して第2図の曲線6に示すように第1、第2処理材4
a、4bに対する単独の場合の所要張力T1.T2の間
を高次関数曲線に沿って変化させる必要がある。
That is, as shown in curve 6 in FIG. 2, the first and second treated materials 4 are
Required tension T1 for a, 4b alone. It is necessary to change the time between T2 along a high-order function curve.

しかしながらこのような制御は複雑であり、無駄の多い
ものとなる。
However, such control is complicated and wasteful.

そこで、本発明は、前記のような高次関数を使用せずに
、計算の容易な低次の関数式により算出できる補正値に
よって修正した次式によって求められる張力Tに対応し
て、接続部が炉内を通過中は制御しようとするものであ
る。
Therefore, the present invention does not use the above-mentioned high-order functions, but instead calculates the tension at the connection portion in response to the tension T obtained by the following equation modified by a correction value that can be calculated using a low-order functional equation that is easy to calculate. The objective is to control the amount of water passing through the furnace.

T=Tt+(T2Tt ) ・(S/So )+(T2
Tl )Y・・・(1) ここで T=tXwXσ (kg) 11 T 2 = t 2 X W2 Xσ (kg)
t、・T2:それぞれ第1、第2処理材4a、4顔版厚
W1°W2: 板巾〃 σ : 搬送条件(ユニット張力 kg/ma)S/S
o:接続点の侵入度による補正値、Y : 各処理材の
板厚、板巾、単位張力およびS / Soに基づく補正
値、 とする。
T=Tt+(T2Tt) ・(S/So)+(T2
Tl )Y...(1) Here, T=tXwXσ (kg) 11 T 2 = t 2 X W2 Xσ (kg)
t,・T2: First and second treated materials 4a and 4 face plate thickness W1°W2: Board width σ: Conveyance conditions (unit tension kg/ma) S/S
o: Correction value based on the degree of penetration of the connection point, Y: Correction value based on the plate thickness, plate width, unit tension, and S/So of each treated material.

そしてこの補正値を算出する具体的な1例として次のも
のを使用する。
The following is used as a specific example of calculating this correction value.

S : 炉内への接続点の侵入長。S: Penetration length of the connection point into the furnace.

Soz カテナリースパン。Soz catenary span.

そしてXEは、張力Tの基線に対する反転位置に関する
値であり、 で求められ、第2図において座標(0,T1)。
And XE is a value related to the reversal position of the tension T with respect to the base line, and is determined by the coordinates (0, T1) in FIG.

(1、T2 X結ぶ基線7と曲線6との交点の横軸座標
である。
(1, T2 is the horizontal axis coordinate of the intersection of the base line 7 and the curve 6, which are connected by X.

である。It is.

そして、ここで、tl、t22w29w2.H2So1
は2種の新旧材料が接続される前ζこ設定又は測定で
きる値であり、Sはパルスカウンタ等により測定できる
And here, tl, t22w29w2. H2So1
is a value that can be set or measured before the two types of old and new materials are connected, and S can be measured with a pulse counter or the like.

そのため補正値S / S o′、Yは簡単に算出でき
る。
Therefore, the correction values S/S o', Y can be easily calculated.

もし、より正確なノズル間距離を保持する必要があると
きは、補正値Yを算出する式をもつと高次のべき関数に
すればよいことはもちろんである。
If it is necessary to maintain a more accurate inter-nozzle distance, it goes without saying that the formula for calculating the correction value Y may be a higher-order power function.

以上の説明より明らかなように、本発明によれば、炉内
の処理材のカテナリー曲線を一定に保つのに、直接炉内
の処理材のたわみ量を検出する必要はなく、処理材の形
状およびその移動距離等の関数として表わした数式に基
づいて張力を制御すればよい。
As is clear from the above explanation, according to the present invention, in order to keep the catenary curve of the treated material in the furnace constant, it is not necessary to directly detect the amount of deflection of the treated material in the furnace, and the shape of the treated material is The tension may be controlled based on a mathematical expression expressed as a function of the movement distance and the like.

したがって、異なる処理材についての搬送条件の設定が
容易にできるとともに、マイクロ・コンピュータにて制
御できるため、安価な設備費で、生産硅、品質の向上お
よび省力化が可能となる。
Therefore, the conveyance conditions for different materials to be treated can be easily set and can be controlled by a microcomputer, making it possible to improve production size, quality, and save labor at low equipment costs.

さらに、カテナリー曲線を一定に保つことにより、流体
噴出ノズル間隔を縮めることができ(±200+m以下
)、燃料費が節約できる等の効果を有する。
Furthermore, by keeping the catenary curve constant, the interval between the fluid jet nozzles can be shortened (±200+m or less), which has the effect of saving fuel costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る方法の適用対象であるカテナリ
ー型炉の搬送部の概略構成図、第2図は異なる2種の処
理材の接続部の炉内通過中における、接続部の侵入度に
対する処理材の張力の変化曲線図を示す。 1・・・・・・炉、4・・・・・・処理材、4a 、
4b・・・・・・第1、第2処理材、T・・・・・・張
力、S/So′・・・・・・侵入度、Do・・・・・・
たわみ量。
Fig. 1 is a schematic diagram of the conveyance section of a catenary furnace to which the method of the present invention is applied, and Fig. 2 shows the intrusion of the joint between two different types of treated materials during their passage through the furnace. Fig. 3 shows a curve diagram of the change in tension of the treated material with respect to the temperature. 1...furnace, 4...processing material, 4a,
4b...First and second treated materials, T...Tension, S/So'...Degree of penetration, Do...
amount of deflection.

Claims (1)

【特許請求の範囲】 1 カテナリー型炉において、異なる材料の接続部を炉
内に通過させるに際し、新旧2種の処理材のそれぞれの
板厚・板巾および単位張力に基づく補正値と、前記接続
部の炉内侵入度に基づく補正値とによって修正された張
力に対応させて張力を制御するようにしたことを特徴と
するカテナリー。 型炉の処理材搬送制御方法。
[Claims] 1. In a catenary furnace, when passing a joint of different materials into the furnace, correction values based on the plate thickness, plate width and unit tension of the two types of treated materials, old and new, and the connection The catenary is characterized in that the tension is controlled in accordance with the tension corrected by the correction value based on the degree of penetration into the furnace of the catenary. A method for controlling the conveyance of processed materials in a mold furnace.
JP9780680A 1980-07-16 1980-07-16 Processing material transport control method in catenary furnace Expired JPS5824491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9780680A JPS5824491B2 (en) 1980-07-16 1980-07-16 Processing material transport control method in catenary furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9780680A JPS5824491B2 (en) 1980-07-16 1980-07-16 Processing material transport control method in catenary furnace

Publications (2)

Publication Number Publication Date
JPS5723029A JPS5723029A (en) 1982-02-06
JPS5824491B2 true JPS5824491B2 (en) 1983-05-21

Family

ID=14202009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9780680A Expired JPS5824491B2 (en) 1980-07-16 1980-07-16 Processing material transport control method in catenary furnace

Country Status (1)

Country Link
JP (1) JPS5824491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965080A (en) * 1989-01-31 1990-10-23 Fuji Oil Company Limited Process for producing tofu-like food
JP4278990B2 (en) * 2003-01-14 2009-06-17 中外炉工業株式会社 Catenary furnace

Also Published As

Publication number Publication date
JPS5723029A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JPS62158825A (en) Method for cooling hot rolled steel plate
JPS6315329B2 (en)
JPS6035974B2 (en) Cooling method for high-temperature plate-shaped objects
US3629015A (en) Method for cooling thick steel plates
JPS5824491B2 (en) Processing material transport control method in catenary furnace
JP2610019B2 (en) Cooling method of hot steel plate
KR900002504B1 (en) Method of correcting warping of two-layer clad metal plate
JPS61253112A (en) Control method for cooling steel plate
JP2003105515A (en) Device and method for correcting steel plate shape
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPH0216372B2 (en)
JPS59232235A (en) Method for controlling cooling of hot rolled steel plate
JPS6152924A (en) Method and device for cooling steel material
JPS6293010A (en) Production of hot rolled steel plate
JP2000297331A (en) Gas jet cooling device
JPS61219412A (en) Uniform cooling method of hot steel plate and its apparatus
JPH0671328A (en) Controller for cooling hot rolled steel plate
JPS59129737A (en) Controlling method of temperature distribution in transverse direction of metallic strip
JPS61193717A (en) Uniform cooling method of steel plate
JPH0450369B2 (en)
JPH01205811A (en) Cooling method for steel plate
JPS56136215A (en) Method and apparatus for feedback control of water cooling for steel material in rolling line
JPS60166113A (en) Control device of slab-end heating
JP3284911B2 (en) High temperature steel plate cooling system
JPS59185501A (en) Method and device for hot rolling steel sheet without causing sheet camber