JPS5823927B2 - hand tai souchi no seizou houhou - Google Patents

hand tai souchi no seizou houhou

Info

Publication number
JPS5823927B2
JPS5823927B2 JP13975475A JP13975475A JPS5823927B2 JP S5823927 B2 JPS5823927 B2 JP S5823927B2 JP 13975475 A JP13975475 A JP 13975475A JP 13975475 A JP13975475 A JP 13975475A JP S5823927 B2 JPS5823927 B2 JP S5823927B2
Authority
JP
Japan
Prior art keywords
diffusion
drive
depth
semiconductor substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13975475A
Other languages
Japanese (ja)
Other versions
JPS5264270A (en
Inventor
福田猛
門馬義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13975475A priority Critical patent/JPS5823927B2/en
Publication of JPS5264270A publication Critical patent/JPS5264270A/en
Publication of JPS5823927B2 publication Critical patent/JPS5823927B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、とくに不純物の
拡散方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for diffusing impurities.

半導体装置は、シリコンなどの半導体基板上に不純物を
選択的に導入して製造する。
Semiconductor devices are manufactured by selectively introducing impurities onto a semiconductor substrate such as silicon.

半導体基板に不純物を選択的に導入せしめる一つの方法
として、半導体基板上にマスク材となる二酸化シリコン
(S10□)膜を形成した後、不純物を拡散せしめる領
域の二酸化シリコン膜を除去して窓を作り、この窓から
不純物を拡散せしめる方法がある。
One method for selectively introducing impurities into a semiconductor substrate is to form a silicon dioxide (S10□) film as a mask material on the semiconductor substrate, and then remove the silicon dioxide film in the region where the impurities are to be diffused to form a window. There is a method of creating a window and diffusing impurities through this window.

ところで、トランジスタのベース拡散の如く、拡散層の
表面濃度をあまり大きくしないような不純物拡散には、
不純物を含む絶縁膜、例えばシリコン酸化膜からなる拡
散源を前記窓上に被着した後、該拡散源中に含まれる不
純物を半導体基板の中に拡散(以下ドライブ・インと称
する)する2段拡散法がとられる。
By the way, for impurity diffusion that does not increase the surface concentration of the diffusion layer, such as base diffusion of a transistor,
After depositing a diffusion source made of an insulating film containing impurities, such as a silicon oxide film, on the window, the impurities contained in the diffusion source are diffused into the semiconductor substrate (hereinafter referred to as drive-in) in two steps. Diffusion method is used.

また、最近は半導体装置の小型化が進められているので
、ベース拡散層も1500(人〕というように非常にシ
ャロウになってきた。
Furthermore, as semiconductor devices have recently become smaller, the base diffusion layer has also become very shallow, with a depth of 1,500 people.

前記2段拡散法によりこのようなシャロウな拡散層を形
成する場合、ドライブ・インを可成り低温で行なわなけ
ればならない。
When forming such a shallow diffusion layer by the two-stage diffusion method, drive-in must be performed at a considerably low temperature.

このように低温でドライブ・インを行なうと、拡散濃度
のプロファイルは、第1図のへ曲線で示すように、なだ
らかになり、かつこの曲線もA細線の場合もあり、また
A“曲線の場合もあるという具合に、再現性にとぼしく
、このような拡散を行なった半導体基板に8曲線で示す
ようなエミッタ拡散を行なってトランジスタを形成した
場合コミツク−ベース接合部分の不純物濃度がばらつく
ため、エミッターベース間の耐圧が一定値にならないと
いう欠点がある。
When drive-in is performed at low temperatures in this way, the diffusion concentration profile becomes gentle, as shown by the curve in Figure 1, and this curve may also be an A thin line or an A'' curve. However, reproducibility is poor, and if a transistor is formed by performing emitter diffusion as shown in curve 8 on a semiconductor substrate that has undergone such diffusion, the impurity concentration at the comic-base junction will vary; The drawback is that the breakdown voltage between the bases is not constant.

またベース抵抗も一定値にならず、その値も比較的に高
いものになるので、トランジスタのスイッチングスピー
ドも一定値にならずくそのスピードも遅くなるという欠
点もある。
Furthermore, since the base resistance does not have a constant value and its value is relatively high, there is also a drawback that the switching speed of the transistor does not maintain a constant value and becomes slow.

本発明は上述の如き従来の欠点を改善した新規な発明で
あり、その目的はベース領域の不純物濃度分布の再現性
がよく、かつ不純物濃度もその深さ方向に対してあまり
変化が生じないような不純物拡散方法を提供することに
ある。
The present invention is a novel invention that improves the conventional drawbacks as described above, and its purpose is to improve the reproducibility of the impurity concentration distribution in the base region and to ensure that the impurity concentration does not change much in the depth direction. The object of the present invention is to provide a method for diffusing impurities.

その目的を達成せしめるため、本発明の半導体装置の製
造方法は、半導体基板上に不純物を含む酸化膜からなる
拡散源を選択的に被着した後、該拡散源に含まれた不純
物を半導体基板に拡散せしめる半導体装置の製造方法に
おいて、前記拡散源の被着工程を終了した後、ドライブ
・インを行なつてから前記拡散源を除去し、その後、さ
らにドライブ・インを1回以上繰り返すことを特徴とす
るもので、以下実施例について詳細に説明する。
In order to achieve the object, the method for manufacturing a semiconductor device of the present invention selectively deposits a diffusion source made of an oxide film containing impurities on a semiconductor substrate, and then transfers the impurities contained in the diffusion source to the semiconductor substrate. In the method for manufacturing a semiconductor device in which the diffusion source is diffused into the semiconductor device, after the step of depositing the diffusion source is completed, a drive-in is performed, the diffusion source is removed, and then the drive-in is further repeated one or more times. This is a characteristic feature, and examples will be described in detail below.

半導体基板中のN型コレクタ領域に、P型ベース層を従
来のボロンBの拡散で形成する際に、2段拡散方法を用
いると、半導体基板上に不純物としてのボロンBを含む
酸化膜を被着し、ドライブ・インにより拡散される不純
物の拡散の深さは、拡散で内部に侵入していくその深さ
と、ドライブ・インの際の加熱により拡散源としての酸
化膜の成長で半導体表面から削られて行く深さの差にな
る。
When forming a P-type base layer in the N-type collector region of a semiconductor substrate by conventional diffusion of boron B, if a two-step diffusion method is used, an oxide film containing boron B as an impurity is coated on the semiconductor substrate. The depth of diffusion of impurities deposited and diffused by drive-in is determined by the depth at which impurities penetrate into the interior through diffusion, and the growth of an oxide film that acts as a diffusion source due to heating during drive-in, which increases the diffusion depth from the semiconductor surface. The difference lies in the depth of the scraping.

普通の高温によるドライブ・イン工程をとる場合には、
不純物が半導体基板内に侵入して行くスピードが早いの
で後者を無視することができるけれども、浅い拡散を得
ようとしてドライブ・イン工程の温度を低くした場合に
は無視できず、ある一定のドライブ・インの条件によっ
ては、酸化の深さが拡散の深さの増加を越えるようにな
る、つまりドライブ・インの時間を長くすればするほど
拡散の深さが浅くなることになる。
When using a normal high temperature drive-in process,
The latter can be ignored because the speed at which impurities penetrate into the semiconductor substrate is fast, but if the temperature of the drive-in process is lowered to achieve shallow diffusion, it cannot be ignored and a certain level of drive-in Depending on the in conditions, the oxidation depth will exceed the increase in diffusion depth, ie, the longer the drive-in time, the shallower the diffusion depth.

今ドライブ・イ。ンの条件を適当に選べば、拡散の深さ
はそれほど変化せず、不純物の分布プロファイルだけを
変化させ、同一の不純物濃度を有する部分を深さ方向に
拡げることができる。
Now drive i. If the conditions for the diffusion are appropriately selected, the depth of diffusion does not change much, only the impurity distribution profile changes, and the portion having the same impurity concentration can be expanded in the depth direction.

しかし酸化膜がある程度成長すれば必ず拡散の深さは大
きくなるから、−1定の深さを得るためには、この酸化
膜を除去して次のドライブ・インを行なわなければなら
ない。
However, once the oxide film grows to a certain extent, the depth of diffusion inevitably increases, so in order to obtain a constant -1 depth, this oxide film must be removed before the next drive-in.

つまり不純物拡散源としての酸化膜の被着に続く(ドラ
イブ・イン+酸化膜除去)という工程を少なくとも1回
以上繰返して行なうことにより、不。
In other words, by repeating the process of depositing an oxide film as an impurity diffusion source and then (drive-in + removing the oxide film) at least once, it is possible to eliminate the problem.

細物拡散の深さがシャロウであり、かつ不純物濃度もそ
の深さ方向に対してあまり変化のない不純物分布を得る
ことができる。
It is possible to obtain an impurity distribution in which the depth of fine diffusion is shallow and the impurity concentration does not change much in the depth direction.

実施例 シリコン半導体基板上にN型のエビクキシャル。Example N-type evixial on a silicon semiconductor substrate.

層を成長させ、該エピタキシャル層上にマスク材となる
熱酸化膜を形成し、ベース領域となる部分の熱酸化膜に
窓あけを行なったものを拡散炉の中に入れ、酸素(02
)ガス、窒素(N2)ガス中に不純物としての臭化はう
素(BBrs)を含むガスを拡散炉に流しながらシリコ
ン半導体基板を約800〔C〕に保って25分間加熱し
、シリコン半導体基板上にほう素Bを含む絶縁膜(この
場合ボロシリケートガラス)を被着形成する。
The epitaxial layer is grown, a thermal oxide film is formed as a mask material on the epitaxial layer, and the thermal oxide film in the portion that will become the base region is opened in a diffusion furnace, and oxygen (02
) gas, nitrogen (N2) gas containing boron bromide (BBrs) as an impurity was flowed through a diffusion furnace, and the silicon semiconductor substrate was kept at about 800 [C] and heated for 25 minutes. An insulating film containing boron B (borosilicate glass in this case) is deposited thereon.

この不純物源の沈着により、ベース領域の表面濃度は第
2図に曲線■で示すように、約3×1020〔個/cr
it )程度になり、また、この表面濃度も、拡散深さ
も一定値とはならず、ロフトによりばらつく。
Due to the deposition of this impurity source, the surface concentration in the base region is approximately 3 x 1020 particles/cr, as shown by the curve ■ in Figure 2.
The surface concentration and the diffusion depth are not constant, but vary depending on the loft.

次にこの工程を経たシリコン半導体基板を拡散炉から取
り出して加熱炉に移し、湿性酸素雰囲気中で約30〔分
〕間950 (’C)に加熱して不純物をエピタキシャ
ル層中にドライブ・インする。
Next, the silicon semiconductor substrate that has undergone this process is taken out of the diffusion furnace, transferred to a heating furnace, and heated to 950 ('C) for about 30 minutes in a humid oxygen atmosphere to drive impurities into the epitaxial layer. .

このドライブ・イン工程により、不純物分布は第2図の
曲線■の如く、その表面最大不純物濃度は約5X101
9(個/d〕に低下するとともに、拡散深さも約150
0 (幻程度になる。
Through this drive-in process, the impurity distribution is as shown in curve 2 in Figure 2, and the maximum impurity concentration on the surface is approximately 5X101.
9 (number/d), and the diffusion depth is also approximately 150.
0 (becomes an illusion.

次にシリコン半導体基板を加熱炉から取り出した後、不
純物源としての酸化膜およびドライブ・イン工程時に、
被拡散領域表面に生じた酸化膜をエツチング除去する。
Next, after taking out the silicon semiconductor substrate from the heating furnace, the oxide film as an impurity source and the drive-in process are removed.
The oxide film formed on the surface of the region to be diffused is removed by etching.

不純物源の酸化膜及びドライブ・イン工程時に生じた酸
化膜を除去したシリコン半導体基板をさらに加熱炉に入
れて、前記ドライブ・インと同じ条件で再びドライブ・
インを行なう。
The silicon semiconductor substrate from which the impurity source oxide film and the oxide film generated during the drive-in process have been removed is further placed in a heating furnace and subjected to drive-in again under the same conditions as the drive-in process.
Do an in.

この工程により、シリコン半導体基板に拡散した不純物
は、生成する酸化膜に一部吸収されるが、はとんど大部
分はシリコン半導体基板へ拡散していく。
Through this step, the impurities diffused into the silicon semiconductor substrate are partially absorbed by the generated oxide film, but most of them are diffused into the silicon semiconductor substrate.

しかし拡散の深さはほとんど深くならず、その不純物分
布は第2図曲線■の如くなる。
However, the depth of diffusion is almost not deep, and the impurity distribution becomes as shown by curve 2 in Figure 2.

このように、ドライブ・イン+酸化膜除去の工程をさら
に2回繰返して行ったところ、第2図の曲線■で示すよ
うに、表面最大不純物濃度は約1×1019陣/cI?
L〕で、深さx、ooo(,4)までほとんど平たんな
不純物濃度分布を有し、拡散深さも約L 500 CA
’)というシャロウなP型の拡散層を得ることができた
In this way, when the process of drive-in + oxide film removal was repeated two more times, the maximum impurity concentration on the surface was approximately 1 x 1019 groups/cI, as shown by the curve ■ in Figure 2.
L], it has an almost flat impurity concentration distribution up to depth x, ooo(,4), and the diffusion depth is also about L 500 CA
'), we were able to obtain a shallow P-type diffusion layer.

以上説明したように、本発明は従来の2段階拡散法を改
良し、これにドライブ・イン+酸化膜除去という工程を
加えたので、低温によるドライブ・インにもかかわらず
、拡散層の深さはシャロウで、再現性もよく、しかも拡
散層の内部まで不純物濃度が均一な拡散層を得ることが
できる。
As explained above, the present invention improves the conventional two-step diffusion method and adds the steps of drive-in and oxide film removal to this, so that the depth of the diffusion layer can be reduced even though the drive-in is performed at a low temperature. It is possible to obtain a shallow diffusion layer with good reproducibility and a uniform impurity concentration even inside the diffusion layer.

したがって、この拡散層をトランジスタのベース層とし
て用いた場合、エミッターベース間の耐圧特性が均一で
しかもその値も比較的大きく、且つ高速動作が可能なト
ランジスタを得ることができる。
Therefore, when this diffusion layer is used as a base layer of a transistor, it is possible to obtain a transistor that has uniform emitter-base breakdown voltage characteristics, has a relatively large value, and is capable of high-speed operation.

なお、本発明のドライブ・イン工程において、高圧水蒸
気酸化を行なうと、拡散層の深さを上記実施例のものよ
り浅くすることができる。
In addition, in the drive-in process of the present invention, if high-pressure steam oxidation is performed, the depth of the diffusion layer can be made shallower than that of the above embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法による不純物拡散方法による不純物濃
度分布を示す図、第2図は本発明に係る方法の一実施例
の不純物濃度分布を示す図である。 図において曲線I−Vは不純物濃度分布の変化を示す曲
線である。
FIG. 1 is a diagram showing an impurity concentration distribution according to a conventional impurity diffusion method, and FIG. 2 is a diagram showing an impurity concentration distribution according to an embodiment of the method according to the present invention. In the figure, a curve IV indicates a change in impurity concentration distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に不純物を含む酸化膜からなる拡散源
を選択的に被着した後、該拡散源に含まれた不純物を半
導体基板に拡散せしめる半導体装置の製造方法において
、前記拡散源の被着工程を終了した後、ドライブ・イン
を行なってから前記拡散源を除去し、その後、さらにド
ライブ・インを1回以上繰り返すことを特徴とする半導
体装置の製造方法。
1. A method for manufacturing a semiconductor device in which a diffusion source made of an oxide film containing impurities is selectively deposited on a semiconductor substrate, and then the impurities contained in the diffusion source are diffused into the semiconductor substrate. 1. A method of manufacturing a semiconductor device, which comprises performing a drive-in after completing a process, removing the diffusion source, and then repeating the drive-in one or more times.
JP13975475A 1975-11-22 1975-11-22 hand tai souchi no seizou houhou Expired JPS5823927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13975475A JPS5823927B2 (en) 1975-11-22 1975-11-22 hand tai souchi no seizou houhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13975475A JPS5823927B2 (en) 1975-11-22 1975-11-22 hand tai souchi no seizou houhou

Publications (2)

Publication Number Publication Date
JPS5264270A JPS5264270A (en) 1977-05-27
JPS5823927B2 true JPS5823927B2 (en) 1983-05-18

Family

ID=15252599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13975475A Expired JPS5823927B2 (en) 1975-11-22 1975-11-22 hand tai souchi no seizou houhou

Country Status (1)

Country Link
JP (1) JPS5823927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160036U (en) * 1986-04-01 1987-10-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236217B2 (en) * 1972-05-26 1977-09-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160036U (en) * 1986-04-01 1987-10-12

Also Published As

Publication number Publication date
JPS5264270A (en) 1977-05-27

Similar Documents

Publication Publication Date Title
US3980507A (en) Method of making a semiconductor device
JPH0473619B2 (en)
JP3079575B2 (en) Method for manufacturing semiconductor device
US5308789A (en) Method of preparing diffused silicon device substrate
US3575742A (en) Method of making a semiconductor device
JPS5823927B2 (en) hand tai souchi no seizou houhou
JPS5812732B2 (en) Manufacturing method for semiconductor devices
US4105476A (en) Method of manufacturing semiconductors
JP3086836B2 (en) Method for manufacturing semiconductor device
JPH0160932B2 (en)
JPS5544701A (en) Manufacturing transistor
KR960015929B1 (en) Method for manufacturing bipolar transistor
JP2583962B2 (en) Method for manufacturing semiconductor device
JPS5856462A (en) Manufacture of semiconductor device
JP2578880B2 (en) Method for manufacturing semiconductor device
JP2000040702A (en) Manufacture of semiconductor element
JPH04283935A (en) Manufacture of semiconductor device
JPS62266831A (en) Formation of pattern for mask alignment
JPH0116019B2 (en)
JPS5961922A (en) Semiconductor impurity diffusing method
JPH04328845A (en) Manufacture of semiconductor device
JPS6255689B2 (en)
JPS6474754A (en) Semiconductor device
JPS60160119A (en) Manufacture of semiconductor device
JPS60169135A (en) Formation of polysilicon electrode