JPS5823914A - High-tenacity polyester yarn having improved thermal dimensional stability and chemical - Google Patents

High-tenacity polyester yarn having improved thermal dimensional stability and chemical

Info

Publication number
JPS5823914A
JPS5823914A JP11961481A JP11961481A JPS5823914A JP S5823914 A JPS5823914 A JP S5823914A JP 11961481 A JP11961481 A JP 11961481A JP 11961481 A JP11961481 A JP 11961481A JP S5823914 A JPS5823914 A JP S5823914A
Authority
JP
Japan
Prior art keywords
yarn
less
denier
inch
inches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11961481A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yabuki
和之 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUYOUBOU PET KOODE KK
Original Assignee
TOUYOUBOU PET KOODE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUYOUBOU PET KOODE KK filed Critical TOUYOUBOU PET KOODE KK
Priority to JP11961481A priority Critical patent/JPS5823914A/en
Publication of JPS5823914A publication Critical patent/JPS5823914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The titled high-tenacity yarns, capable of giving drawn yarns having specific characteristics prepared by melt spinning, cooling and drawing the solidified yarns, and exhibiting specific characteristics after a specific heat treatment, having a low shrinkage and work loss, and well handled. CONSTITUTION:Polyester yarns, capable of giving drawn yarns having an intrinsic viscosity >=0.7, a diethylene glycol content <=1.5mol%, based on terephthalic acid residues, and a carboxylic group content >=20 equivalents/10<6>g, an average birefringence of 0.165-0.190, a fineness per fiber <=5.0 deniers, a dry heat shrinkage (175 deg.C for 30min) of 7.0-10.0%, and a work loss (sample length of 10 inches, strain speed of 0.5 inches/min at 150 deg.C and a stress between 0.6g/denier and 0.05g/denier) of 0.0240-0.035 inch.pound/1,000 deniers. The tenacity retention in the dry heat treatment at 240 deg.C for 1min at a constant length is >=95%, and the dry heat shrinkage is <=3.0% with the work loss <=0.0200 inch.pound.

Description

【発明の詳細な説明】 本発明は熱寸法安定性および化学安定性にすぐれたポリ
エステル高強力糸に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyester high tenacity yarn with excellent thermal dimensional stability and chemical stability.

ポリエステルタイヤコードに代表されるポリエステル高
強力糸は物性面でのバランスにすぐれた有m11m!維
であり、近年産業用縁線として広く大量に使用さnるに
至った。
Polyester high-strength yarn, represented by polyester tire cord, has a length of 11 m with excellent balance in terms of physical properties! In recent years, it has come to be widely used in large quantities as industrial edge wire.

ざらに近年、特に有機繊維の原料の価格上昇が著しい中
にあって、ポリエステル特にポリエチレンテレフタレー
トの原料コストは、他の有機繊維例えばナイロン等に比
べ上昇率が低く、将来にわ次って価格面で優位性を保ち
得るという予測251表され、プリエステル高強力糸は
さらに使用量が増加すると考えられている。
In recent years, the price of raw materials for organic fibers in particular has risen significantly, and raw material costs for polyester, especially polyethylene terephthalate, have been increasing at a lower rate than for other organic fibers such as nylon, and the price will continue to rise in the future. It is predicted that the preester high tenacity yarn will maintain its superiority in the industry, and it is thought that the usage of preester high tenacity yarn will further increase.

しかしながら用途によっては、熱寸法安定性や化学安υ
性、さらVCはt五等の被補強材との接着性の向上が要
望されているのも事実である0幽然こうし九賛!!に対
し、檜々の改良が提案されてお〕、熱寸法安定性の改良
に関しては比較的低い極限粘度を有するポリエステル繊
維(例えば特開昭!$3−3$11152号公報)や高
配向未延伸糸c所11POY)l延伸する方法によるポ
リエステル繊維(例えばU F4 P 4.tea、o
ss ) $11kll[レテいる。
However, depending on the application, thermal dimensional stability and chemical stability
Furthermore, it is a fact that VC is required to have improved adhesion to reinforced materials such as T5. ! However, improvements in the thermal dimensional stability have been proposed, such as polyester fibers with a relatively low intrinsic viscosity (for example, Japanese Patent Application Laid-Open No. 3-3-3, 11152) and highly oriented non-polyester fibers. Drawn yarn c 11 POY) l Polyester fiber by drawing method (e.g. U F4 P 4. tea, o
ss) $11kll [Retei.

また化学安定性の改良に関してはポリエステル中のカル
ボキシル基量を低下させる方法C例えば特開昭56−1
16816号会報)等の提案がなされている。
Regarding improvement of chemical stability, method C of reducing the amount of carboxyl groups in polyester, for example, JP-A-56-1
16816) and other proposals have been made.

場らfCfムとの接着性の改良に関してはエポキシ系や
インシアネート系の旭環剤で紡糸延伸工程中に処理する
方法(例えば4$会昭47−497111号公報)が提
案されている0これらの提案は個々の改良の要望に関し
ては一応成果を上けていると考えられる〇 ところが近年の石油価格の高騰により世界的に省エネル
ギー技術の味見に一段と拍車がかかり、製造工@におけ
るロス率の低下を目的とした素材のエニ7オミティの向
上−強く要望されるに至つた0かかる時代背景の中で、
ポリエステル高強力糸の改良目標を考えると、上記の熱
化学安定性の改良に加えて品質のa=フォ電ティ向上が
必要とな、てくると予測される。
Regarding the improvement of adhesion with FCF film, a method of treating with an epoxy-based or incyanate-based Asahi ring agent during the spinning and drawing process (for example, Japanese Patent Publication No. 47-497111) has been proposed. The proposal is considered to have achieved some results in terms of requests for individual improvements.However, the recent rise in oil prices has spurred the world to try out energy-saving technologies, and the loss rate in manufacturing workers has decreased. Improvement of any7omity of materials for the purpose of
Considering the goal of improving polyester high-strength yarns, it is predicted that in addition to the above-mentioned improvement in thermochemical stability, it will be necessary to improve the quality (a=photonity).

こうし念コンテキストの中で上記先行技術について検討
を加えると、まず極限粘度を低下させ寸法安定性を向上
させる方法は、該繊#Iが使用され ゛・る状態での糸
強力と耐疲労性が低いばかりで4なく、例えば接着剤処
理工程においてがムとの接着往管向上させるため高温処
理を施すと、固有粘度が低い霞めにはなはだしい場合に
は一部のコードが溶断する事故が発生する等ユニフォミ
ティに問題を生じやすい。
Considering the above-mentioned prior art in this context, the first method to reduce the intrinsic viscosity and improve dimensional stability is to improve the yarn strength and fatigue resistance in the state in which the fiber #I is used. Not only is it low, but for example, when high temperature treatment is applied in the adhesive treatment process to improve adhesion to the wire, some cords may melt and break if exposed to haze, which has a low intrinsic viscosity. This tends to cause problems with uniformity.

F OY ’t[ItルU RP 4.195.052
 (D方法で得られた繊維は極限粘度會低下嘔せた場合
と較ぺ糸強力や耐疲労性をほとんど低下させることなく
熱寸法安定性を向上させることに成功しているものの、
原糸(熱処理前糸)の熱処理時の収縮率が低(、発生テ
シン冒ンが低埴ためディフシ!シンによってはトラプル
を生ずることがあり、さらに、かかる方法で得らt′L
7を繊維は単糸の内外層で分子鎖の配向度に大きな差が
必然的に発門するため、単糸の内層での分子4鋤性が大
きく、力学損失正接(tlnδ)ft測建すると、α吸
収ピーク温度が従来法で得られ次同種の高強力糸に比べ
約10υ程度低下して2す、水、アさンあるいはアルカ
リ等の単繊維内への拡散がすみやか゛であり、従来法で
得られ!t、同種の高強力糸VC比べ化学安だ性が劣る
化学安定性を向上させたポリエステルタイヤコードは、
研究室レベルで社顯着に化学安定性か向上改良されてい
ないため拘−性に問題が生じ晶い〇接着性改良タイメの
ポリエステルタイヤコードも同様である0 本発明者はかかる点に艦み鋭意研究を行なった結果、上
記の問題点を解決するものとして以下に記述する熱寸法
安定性および化学安定性にすぐれたf9エステル高強力
糸を発明するに至った。
F OY 't [It Le U RP 4.195.052
(Although the fibers obtained by method D have succeeded in improving the thermal dimensional stability with almost no decrease in yarn strength or fatigue resistance compared to the case where the intrinsic viscosity is lowered,
The shrinkage rate of the raw yarn (yarn before heat treatment) during heat treatment is low (due to the low shrinkage of the generated tesin, troubles may occur depending on the diffusi! yarn, and the t'L
7. In fibers, there is inevitably a large difference in the degree of molecular chain orientation between the inner and outer layers of a single yarn, so the molecular 4-polarization in the inner layer of a single yarn is large, and when the mechanical loss tangent (tlnδ) is measured, The α absorption peak temperature obtained by the conventional method is approximately 10υ lower than that of the same type of high-strength yarn, and the diffusion of water, acetic acid, alkali, etc. into the single fiber is quick, and Obtained by law! t.Polyester tire cord with improved chemical stability is inferior in chemical stability compared to the same type of high-strength yarn VC.
Since the chemical stability has not been thoroughly improved at the laboratory level, problems with adhesiveness occur.The same is true of polyester tire cords with improved adhesion.The present inventor has focused on this point. As a result of intensive research, we have come to invent the f9 ester high strength yarn described below which has excellent thermal dimensional stability and chemical stability as a solution to the above problems.

すなわち本発明のポリエステル高強力糸は、ポリエチレ
ンプレフタレートを主成分とするポリエステルff1l
融紡出し、次いで冷却固化し、ざらに延伸することによ
って得らnfc延伸糸であって、次の特性を有し、 (1)  *@粘度0.7以上 (1)  テレフタル酸残基に対するジエチレングリコ
ール含量1.5モル−以下 (町 カルボキシル基量20当惜/10@f以下Q/、
  平均複屈折0.165ないし0.190(V)  
単糸デニーh5.0デニール以下(−175℃で30分
間フリー熱処理した時の乾熱収縮率が7.0チないし1
0J1挾手6/I  試長lOインチ、歪速匿0.5イ
ンチ/分、温度150℃の条件下にQ、67/dと0.
05 Ji’/dの間の応力でヒステリシスルーゾを測
定し得られ大仕事損失が1000デニール当り0.02
40〜0.035インチ11ボンF ざらに咳延伸糸K 240℃で1分間足長で乾熱処理を
施したとき、次の臀性管示すに至るポリエステル高強力
糸である。
That is, the polyester high strength yarn of the present invention is a polyester ff1l containing polyethylene prephthalate as a main component.
NFC drawn yarn obtained by melt spinning, then cooling and solidifying, and rough drawing, and has the following properties: (1) *@viscosity 0.7 or more (1) Diethylene glycol to terephthalic acid residue Content: 1.5 mol or less (machi carboxyl group amount: 20 equivalents/10@f or less Q/,
Average birefringence 0.165 to 0.190 (V)
Single yarn denier h5.0 denier or less (dry heat shrinkage rate of 7.0 inches to 1 when free heat treated at -175℃ for 30 minutes)
0J1 Clamp 6/I Test length 10 inch, strain rate 0.5 inch/min, temperature 150°C Q, 67/d and 0.
Hysteresis Luzo was measured at a stress between 0.05 Ji'/d and the large work loss was 0.02 per 1000 denier.
40-0.035 inches 11 Bon F Roughly Cough Stretched Yarn K This is a polyester high-strength yarn that exhibits the following gluteal tube properties when subjected to dry heat treatment at 240° C. for 1 minute.

(1)  上記乾熱処理による強力保持率・S−以上(
b)  175℃で30分間フリー熱麩環し大時の乾熱
収縮率がS、O−以下 (0)  試長10インチ、歪速度・、Sインチ7分、
温J[150℃の条件下にo、s P/dと0.(15
/−/dの間の応力でヒステリシスループtm定し、得
られた仕事損失が1000デニール癲90.0200 
インチΦポンV以下 tた咳高強力糸のカルボキシル基含量が11蟲量/10
” f以下であること中、皺高強方糸か紡糸延伸工程中
でエポキシ化金物および又はインシアネート化合物によ
る表面処ml施されてiることは、該高強力糸をゴム補
強剤として使用する場合さらに好ましい。
(1) Strong retention rate due to the above dry heat treatment: S- or higher (
b) Free heat shrinkage at 175℃ for 30 minutes, dry heat shrinkage of S, O- or less (0) Sample length: 10 inches, strain rate: S inches, 7 minutes.
Temperature J [o, s P/d and 0. (15
The hysteresis loop tm is determined by the stress between /-/d, and the work loss obtained is 90.0200 for 1000 denier.
Carboxyl group content of high tenacity yarn less than inch Φ V is 11/10
When using the high-strength yarn as a rubber reinforcing agent, the wrinkled high-strength yarn must be surface-treated with an epoxidized metal material and/or an incyanate compound during the spinning and drawing process. More preferred.

次にかかる4リ工ステル高強カ糸とその製造方法K”)
Aて理論的背景を含めて説−する・本発明者らの最近の
研究の結果、次の知見が得られていゐ@すなわち、!麟
解祈KsPvhて結晶回折が細測されない程度の秩序状
態をアモルファス(無定形)と定義するならば、アモル
ファスでありながら分子鎖の配向がある程度進んだ状態
(例えば複屈折値で定量的に表現するならばポリエチレ
ンテレフタレートの場合10XIO””以上)の未菖伸
糸を延伸して得られた繊維は、無配向アモルファス未延
伸糸(無配向を複屈折で定量的に表現するならば5 X
 1 G −”  以下)を延伸して得られたえ場合)
熱収縮率が小さくなる。すなわち、ある程度C配向結晶
化を惹起しない1度)分子配向を進め九アモルファス未
延伸糸を延伸し九場合は。
The following 4-reproduced stell high-strength yarn and its manufacturing method K")
A will be explained including the theoretical background. As a result of recent research by the present inventors, the following findings have been obtained. If we define an amorphous state as an ordered state in which crystal diffraction cannot be measured in detail, then we can define a state in which the orientation of the molecular chains has advanced to a certain extent (for example, expressed quantitatively by the birefringence value) even though it is amorphous. In this case, the fiber obtained by drawing an undrawn yarn of 10XIO'' or more in the case of polyethylene terephthalate is a non-oriented amorphous undrawn yarn (5
1 G-” or less))
Thermal shrinkage rate becomes smaller. That is, in the case where an amorphous undrawn yarn is drawn to advance the molecular orientation (1 degree) without causing C-oriented crystallization to some extent.

無配向アモルファス未延伸糸を延伸し九場合に較べ延伸
糸の本質的な延伸歪が小さいと推測される。
It is presumed that the essential stretching strain of the drawn yarn is smaller than that in the case where non-oriented amorphous undrawn yarn is drawn.

一方溶融紡糸における紡出糸の分子配向は固化点での糸
条にかかる張力により決定されゐことが貸出らによって
(例えば貸出ほか、繊維学会誌34、P−20(197
8))示されている0本発明者はかかる理論的背景に基
づき、結電延伸につ−て鋭意検討を行なつ7t!11果
On the other hand, the molecular orientation of the spun yarn in melt spinning is determined by the tension applied to the yarn at the solidification point, according to Rentsur et al.
8)) Based on this theoretical background, the present inventor has conducted extensive studies on electroconductive stretching. 11 fruits.

(へ)単孔吐出量【低下させる、紡速を上げろ、紡糸口
金から吐出後の糸条にクエンチ風が癲る地点をノズルに
近づける等の方法により比較的高い張力下で紡出糸条装
置化せしめることがで!!ゐこと、 (至)高い張力下で糸条上置化せしめる溶融結果条件下
では1本のフィラメントの内外層の温度差が太きI47
tめ伸長粘度差が太きくep、その結果固化点でのフィ
ラメントの内外1の張力差管生じフィツメントの内外層
の複屈折差が大きく表る・このため延伸時に配向の進ん
でいる表面層が最大延伸倍率を決定する所となり、高強
力が得られ難く、今まで高強力糸用の未延伸糸としであ
る程度配向の進んだアモルファス状態の糸が使用されな
か−)た。
(f) Single-hole discharge rate [lower, increase the spinning speed, move the point where the quench wind blows closer to the nozzle after being discharged from the spinneret, etc. to the spinning yarn device under relatively high tension. You can turn it into something! ! (To) The temperature difference between the inner and outer layers of one filament is large under the melting conditions where the yarn is placed on top under high tension.I47
The difference in elongation viscosity becomes larger ep, resulting in a tension difference between the inner and outer layers of the filament at the solidification point, resulting in a large birefringence difference between the inner and outer layers of the filament.Thus, during drawing, the surface layer, which is highly oriented, Since the maximum drawing ratio is determined, it is difficult to obtain high strength, and until now, amorphous yarns with a certain degree of orientation have not been used as undrawn yarns for high strength yarns.

ところが単孔吐出量を小さくする事により未延伸糸の表
面層と中心との複屈折差(δΔn)を平均複屈折(λT
1)で除し尺値が小さくなり、高強力を得易くなること 岬を発見した。
However, by reducing the single-hole discharge rate, the birefringence difference (δΔn) between the surface layer and the center of the undrawn yarn can be reduced to the average birefringence (λT
It was discovered that in 1), the dividing scale value becomes smaller, making it easier to obtain high strength.

次に、本発明のぼりエステル高強力糸とその紡糸延伸◆
件について具体的に説明する。
Next, the Nobori ester high tenacity yarn of the present invention and its spinning drawing◆
I will explain the matter in detail.

本発明におけるポリエステルは主として産業用の高強力
繊維として供給することを目的とするため、少々くとも
構成単位の95モル−以上がポリエチレンテレフタレー
ト単位からなり、該/ IJエステル繊細の極限粘度(
フェノール/テトラクロルエタン−674の1lIII
II&中30’Oで115jl、以下同じ)Vlo、7
0以上であることが必要である。
Since the polyester in the present invention is mainly intended to be supplied as a high-strength fiber for industrial use, at least 95 moles or more of the constituent units are polyethylene terephthalate units, and the IJ ester has a delicate intrinsic viscosity (
1lIII of phenol/tetrachloroethane-674
II & middle 30'O 115jl, same below) Vlo, 7
It needs to be 0 or more.

本発明による高強力糸はその使用目的から融点近い熱処
mt施場れる場合かあるが、ポリエステルの融点はジエ
チレングリコール含量の増加と共に低下するので、該高
強力糸のジエチレングリコール含量は重畳であり、テレ
フタル酸残基に対して1.1sモル饅以下であることt
必要とするOまた一述した如く、本発明による高強力糸
は、カルボ中7h墓を低下させることにより着しく化学
安定性か向上する仁とから繊−の力Aメヤシル基含量は
2・当量/10’f以下、と(Kl 2当量/LO@P
以下であることが望壇しいので、例えば紡糸用レジン管
固相でエフ哀+ルーl−等に供給する場合該しソンの極
限粘度Fi0.7 S以上、カルボキシル基含量は14
当量710@f以下とくに、6轟量/LO@f以下であ
ることが画壇し%6゜ま几カルボΦ゛シル基會量がざら
に多い重合体を用いる場合にはエクストルーダー中にト
リフェニルホスフィン等のトリアリールホスフィンある
いはトリアルキ鳥ホスフィンを触媒として重合体の0.
01 vs−以上Q、j% vt−以下添加し、ざらに
フェニルグリシジルエーテル等のエポ中ナイドを重合体
のg、2vt−以上g、Q vl−以下添加することに
よりカルボキシル基末端の封鎖を行う必要がある。
The high-strength yarn according to the present invention may be subjected to heat treatment close to its melting point due to its purpose of use, but since the melting point of polyester decreases as the diethylene glycol content increases, the diethylene glycol content of the high-strength yarn is superimposed, and the terephthalate Must be 1.1 s mol or less per acid residue
In addition, as mentioned above, the high tenacity yarn according to the present invention has a fiber strength A of 2.0 equivalents, which improves chemical stability by lowering the carbon content. /10'f or less, and (Kl 2 equivalents/LO@P
It is desirable that the following is true, so for example, when supplying a solid phase resin tube for spinning to F-A+L-1-, etc., the intrinsic viscosity of the filament should be 0.7 S or more, and the carboxyl group content should be 14
It is well known that the equivalent weight is less than 710@f, especially less than 6%/LO@f, and when using a polymer with a large amount of carboxylic groups, triphenyl is added to the extruder. A polymer with a triarylphosphine such as phosphine or a triarylphosphine as a catalyst is used as a catalyst.
01 vs- or more Q, j% vt- or less is added, and the carboxyl group terminals are blocked by adding an epoxy nide such as phenyl glycidyl ether, 2vt- or more g, Q vl- or less of the polymer. There is a need.

かかる重合体管層融状−で紡糸口金から押出し。The polymer tube is extruded from a spinneret in a molten state.

いわゆる加熱ta′に用いることなく、直ちに−しくに
保温筒中を糸条が通過した後、!O〜110Ga/−e
Cの風速と2ト10℃の温tt有する冷却風により糸条
固化AtでtP9I却する0ノズル面から崗化点書での
距lIlはおおむね単孔吐出量に依存する0固化点での
糸条張力が紡出糸の複屈折の直を与えるので、同化点で
の糸条張力は重要である。tた固化後の糸条張力/l′
i空気jIi婦による張力により単調に増加するが、糸
条の分子鎖の配向には無関係゛であるので、本発明の如
く紡出糸条の複屈折か重畳となる場合には同化点の張力
をコントロールする事が技婉的なポイントとなる。固化
点張力を決足する王な)1クターは、単孔吐出量、ノズ
ルから冷却風が糸条に当るまでの距離および紡速である
ので、必要な固化点張力を与えるように適^な紡糸条件
を与えjLば良いが、本発明では1.6XIO’dyn
e/sF  からy、s X 1 of dyne/−
の間に有するようにすbことが望ましく、ざらに好まし
くは、2.OX 10 ’ dyn@/rs”から6.
5 X 10’ dyne/lo間に有b ヨうにする
ことが望ましい〇 かくすることにより後述する如く、タイヤコードとして
使用する際施こす接着剤処理工程中の熱固定にエリ者し
く低い熱収縮率を有する繊維管与える高配向未延伸糸C
所5B’oy)を得ることができる0尚第1図に固化点
張力と未延伸糸*m折の値の関係を示す。
Immediately after the thread passes through the heat-insulating cylinder without using the so-called heating ta'! O~110Ga/-e
The yarn is solidified at tP9I by the cooling air having a wind speed of C and a temperature of 10℃. Yarn tension at the assimilation point is important because yarn tension dictates the birefringence of the spun yarn. Yarn tension after solidification/l'
Although it increases monotonically due to the tension caused by the air, it is unrelated to the orientation of the molecular chains of the yarn. Therefore, in the case of birefringence or superposition of the spun yarn as in the present invention, the tension at the assimilation point increases. Controlling this is the key to skill. The factors that determine the solidification point tension are the single hole discharge rate, the distance from the nozzle to the point where the cooling air hits the yarn, and the spinning speed. It is sufficient if the spinning conditions are given as jL, but in the present invention, 1.6XIO'dyn
e/sF to y, s X 1 of dyne/-
It is desirable to have between 2.b, most preferably 2. OX 10' dyn@/rs” to 6.
It is desirable to have a 5 x 10' dyne/lo gap. By doing so, as will be described later, a low heat shrinkage rate that is advantageous for heat setting during the adhesive treatment process when used as a tire cord is achieved. Highly oriented undrawn yarn C giving a fiber tube with
Figure 1 shows the relationship between the tension at the solidification point and the value of undrawn yarn*m-fold.

かくして得られ大助出糸を直ちKToるいは一度捲き取
−)た舞、延伸すゐ0延伸社加熱o−hを用いていわゆ
るネック延伸を施す場合は紡出糸がすでに配向が進んだ
状態であるので、従来技術で与えられる温度で糸条を加
熱すると結晶化を惹起するので、未延伸糸の極限粘度I
IV、平均複屈折をAnpoyで表わした場合、ローラ
ー表面温度は(90+ (ff −0,11) X 4
.5− bynpcyrX冨io3℃以下とすることが
重要である。かかる−一う−等による接触延伸につ−て
嬬従来技術と実質的な差はない◎壇た、延伸は加熱水蒸
気を用いて一段延伸により高強力糸を得る方法(Uli
P !1.!IL111?)Kよ。
When the thus-obtained Daisuke yarn is directly wound or once rolled and then stretched, the spun yarn is already oriented in the state where it is subjected to so-called neck stretching using heating. Therefore, heating the yarn at the temperature given by the prior art causes crystallization, so the intrinsic viscosity I of the undrawn yarn
IV, when the average birefringence is expressed in Anpoy, the roller surface temperature is (90+ (ff -0,11) x 4
.. It is important to keep the 5-bynpcyrX concentration below 3°C. There is no substantial difference from the conventional technology in terms of contact drawing by such methods.
P! 1. ! IL111? )K.

ても行うことができるか、この場合加熱水蒸気の温度F
imioυ以上610℃以下であることが望壇しいO かくして得られゐ本発明のぼりエステル高強力糸は先に
述べたようKFOYの状態ですでにフイツメントの内外
で配向度の差が生じているので、延伸後の繊維も分子鎖
の配向度の差が生じている。
In this case, the temperature of the heated steam F
It is desirable that the temperature is higher than or equal to imioυ and lower than or equal to 610°C.As mentioned above, the high tenacity ester yarn of the present invention already has a difference in orientation between the outside and outside of the fixture in the KFOY state. The fibers after stretching also have a difference in the degree of orientation of molecular chains.

従って延伸11OIll錨の平均複屈折は、従来技術に
よる同種の繊維に比べ複屈折としては低い値とな大 る。平均複屈折が“0.110よりIとなると延伸時に
糸切れ回数が多くなり生産性の立場から好ましくない・
オた0、1@Iより小であると高強力が得られなiので
、延伸後の繊維の平均複屈折はLllili以上o、i
@o以下である必要かある。
Therefore, the average birefringence of the drawn 11OIll anchor is a lower birefringence than that of the same type of fiber according to the prior art. If the average birefringence becomes I than 0.110, the number of yarn breakages during stretching will increase, which is undesirable from a productivity standpoint.
If the value is less than 0,1@I, high strength cannot be obtained, so the average birefringence of the fiber after drawing should be less than 0,1
Does it have to be less than @o?

本発明の高強力糸の単糸デニールは本発明の重要な構成
要票の一つである。すなわち、単糸デニールが大となる
と、フィラメント内の分子鎖の配向度の表面部と中心部
との差が大きくな〕高強力が得られ難くなるので、単糸
デニールはS、O以下であることが必要となる0本発明
者かすでに08P 4164114 K開示した如く、
tム補強繊維として使用される高強力糸のllI特性な
かんずく力学的性質はディツノ後の熱gmを施された状
■での値が重要である。ディフシ前の値は製造工程の差
により比較的大きな差が発現して−る場合でも、ディツ
ノ後の値はその差が僅小となるからである。
The single yarn denier of the high tenacity yarn of the present invention is one of the important constituent features of the present invention. In other words, when the single yarn denier becomes large, the difference in the degree of orientation of the molecular chains in the filament between the surface area and the center area increases, making it difficult to obtain high strength. As already disclosed by the inventor in 08P 4164114K,
For the llI properties, especially the mechanical properties, of the high-strength yarn used as the TM reinforcing fiber, the value in the state after being subjected to heat gm after dilution is important. This is because even if there is a relatively large difference in the values before defrosting due to differences in manufacturing processes, the difference in values after defrosting is very small.

本発明の場合も同様であり、低収縮、低仕事損失と云っ
た特性は繊維が使用される状■で必要となるのであって
、ディップ前K1−1低収縮、低仕事損失である必要は
無−〇むしろ低収縮に過ぎる場合は、ディップマシンに
よつてはトラブルを生じる場合%ああ。
The same applies to the present invention, and the characteristics such as low shrinkage and low work loss are required in the state in which the fiber is used, and it is not necessary for K1-1 to have low shrinkage and low work loss before dipping. No-〇 If the shrinkage is too low, it may cause trouble depending on the dip machine.

しかして本発明の如く、熱II&理前の延伸糸が17!
1℃で30分間フリー熱熱還した時の乾熱収縮率が7−
以上10−以下であり、試料長10インチ、歪速度0.
1インチ/分、温度!■℃の条件下にo、s P/dと
L(HP/dの間の応力でヒステリシスルーゾを測定し
、得られた仕事損失が10009”ニール当り0.0!
40−0.031  インチ・−ンドあり、(測定方法
はURP4xssos*に準ずゐ)かつ鋏延伸糸を24
0℃で1分間定長で乾熱地理した場合Cディ、ゾ麩理工
程を想定)、乾熱処理後の糸強力が熱処理前の強力の9
8−以上であり、171110で30分間フリー熱処理
した時の乾熱収縮率が3.091G以下であp、試長!
・インチ、歪速度0.5インチ/分、温度110℃の条
件下に0.6 t/dと0.05 ?/dの間の応力で
ヒステリシスルー!を測定し、得られた仕事損失−1’
1000デニール当り0.0200 イン゛チ・ボンド
以下であれば、低収縮、低仕事損契の繊維でありながら
、前述の如き欠点か生じな−、ハンドリングの良好なポ
リエステル高強力糸となる。本発明の高強力糸はタイヤ
、■ベルト、コンベアベルト等の♂ム補強材として特に
有用である。
However, as in the present invention, the drawn yarn of heat II & pre-treatment is 17!
The dry heat shrinkage rate when heated at 1℃ for 30 minutes was 7-
The sample length is 10 inches and the strain rate is 0.
1 inch/minute, temperature! ■Hysteresis luzo was measured at stress between o, s P/d and L (HP/d) under the condition of ℃, and the work loss obtained was 0.0 per 10009''neel!
40-0.031 inch -nd (measurement method follows URP4xssos*) and scissor-drawn yarn is 24
When dry-heating at 0°C for 1 minute at a constant length (assuming the process of C and Z), the yarn strength after dry-heat treatment is 9, which is the strength before heat treatment.
If it is 8- or more, and the dry heat shrinkage rate is 3.091G or less when free heat treated with 171110 for 30 minutes, it is p, trial length!
・0.6 t/d and 0.05 inch, strain rate 0.5 inch/min, temperature 110°C Hysteresis through with stress between /d! The work loss obtained by measuring -1'
If the bond is less than 0.0200 inch bond per 1000 denier, the polyester high tenacity yarn will have low shrinkage and low work loss, but will not have the above-mentioned defects and will have good handling. The high strength yarn of the present invention is particularly useful as a reinforcing material for tires, belts, conveyor belts, etc.

次いで実施例に基づき本発明について説明する。Next, the present invention will be explained based on Examples.

実施例1 極限粘度1.11ジエチレングリコール含量1.Oモh
−、カルボキシル基含量10尚量71o@tのポリエチ
レン餐しフタレートを、表IK示す条件・  で潜融紡
糸延伸して得られた延伸糸へ〜夛は、表IK示す如く、
従来技術による比較例1に比し、著しく熱安定性が勝れ
ていることが認められる0表  1 − 一 − − − レ 「 「 − − − − 「 − [− [ [ [ [ − 実施例2 実I例1と同一のポリエチレンテレフタレート重合体を
用いて溶融時にポリエチレンテレフタレートにn L 
) 13 yエニルホスフィンt O,I Wt −>
よびフェニルグリシジルエーテルを1.□ vt−添加
して霞融紡糸延伸した本発明による繊維と、同一条件で
紡糸延伸したカルボキシル基含量28a量/10・?の
繊維C比較列りおよび前記実施例1の比較例1と同一条
件で紡糸延伸したカルボキシル基量鵞8当量/10・?
の繊維C比較例3)と、化学安定性を比較すると表2の
如くなる〇化学安定性は耐加水分解性と耐アンモニア分
解性により評価し九〇 耐加水分解性1j121υの加熱水蒸気中で48時間劣
化させた後の強力の保持率訃よびエステル結合の解離率
を全エステル結合に対する割合として次式を用いて求め
た・ 上記中〔η〕finlllFi劣化後の繊維の極限粘度
、〔ダ〕1niti□1は劣化前の繊維の極限粘度であ
る〇なお、本式算出は、ツエノーに/テトラクロロエタ
ン=@/4の溶媒中!謬℃で欄定を尺極限帖度〔ダ)P
/f’(J−いと数平均分子量4の関係式%式% 耐アンモニア分解性は188″Oのアン毫ニアガス雰囲
気中(アンモニアガス流量206a/分)で2時間劣化
させた後の強力の保持率およびエステル結合の解離率を
全エステル結合に対する割合として上式を用いて求めた
◎なお紡糸延伸条件は実施例1−ムと同じであ−Jた〇 表   3 表2の比較例意と1からFOYVt延伸した比較例2の
ポリエステル繊−は、従米晶C比較例3)に比べ化学安
定性か劣ゐことが■められる。おそらくこれは第2図に
示す如(tamJ−T曲線Kllれる非晶鎖の吸収ピー
ク温度がP (J Y t@由したポリエステル繊維の
ものの場合は従来技術による繊維に比べ約10υ程度近
iことに起因すると推定場れる0しかるに本実施例の如
(PC)Yt−経由したポリエステル繊維であつてもカ
ルボキシル基量を低下せしめることによりかかあ欠点は
解消された。従)て本発1jIIKよる低収縮ポリエス
テル繊維は寸法安定性と共に熱化学安矩性を向上させる
為に轄カルボキシル基含量の低下が重畳であることが壜
解される。。
Example 1 Intrinsic viscosity 1.11 Diethylene glycol content 1. Omoh
The drawn yarn obtained by latent-melt spinning and drawing polyethylene phthalate having a carboxyl group content of 10 and an equivalent weight of 71 o@t under the conditions shown in Table IK is as shown in Table IK.
It is recognized that the thermal stability is significantly superior to Comparative Example 1 using the conventional technology. Example I Using the same polyethylene terephthalate polymer as in Example 1, n L was added to polyethylene terephthalate during melting.
) 13 yenylphosphine t O,I Wt −>
and phenyl glycidyl ether in 1. □ Carboxyl group content 28a amount/10. Comparative row of fibers C and carboxyl group weight 8 equivalents/10.?
Comparing the chemical stability with Fiber C Comparative Example 3), the results are as shown in Table 2. Chemical stability was evaluated by hydrolysis resistance and ammonia decomposition resistance. The strong retention rate after aging and the dissociation rate of ester bonds were calculated as a proportion to the total ester bonds using the following formula. □1 is the intrinsic viscosity of the fiber before deterioration 〇This formula is calculated in the solvent of Zeno/tetrachloroethane=@/4! The column is determined by the error degree [da) P
/f' (J-number average molecular weight 4 relational expression % formula % Ammonia decomposition resistance is strong retention after 2 hours of deterioration in an ammonia gas atmosphere of 188"O (ammonia gas flow rate 206a/min) The dissociation rate and the dissociation rate of ester bonds were determined as a proportion to the total ester bonds using the above formula.The spinning and drawing conditions were the same as in Example 1. It can be seen that the polyester fiber of Comparative Example 2, which was drawn from FOYVt from FOYVt, has inferior chemical stability compared to Comparative Example 3). It is estimated that this is due to the fact that the absorption peak temperature of the amorphous chain is about 10υ in the case of the polyester fiber based on P (J Y t@) compared to the conventional fiber. Even in the case of Yt-mediated polyester fibers, the shortcomings were eliminated by reducing the amount of carboxyl groups.Accordingly, the low shrinkage polyester fibers made from the 1jIIK of the present invention have improved dimensional stability as well as thermochemical stability. It is understood that the reduction in the content of carboxyl groups is a superimposition for the purpose of this.

実施例島 極限粘度IJ、zFエチレングリコール含量0.・モル
−1力A&中ン身基含量11蟲量/10”Pのポリエチ
レンテレフタレートtfIII融紡糸するに際し、エク
ストルーダーの溶融部に、トリデチルホスツインto、
osl量1、オ身ンフェニルフェノ−ルダリシシルエー
テk t−0,5重量−圧送添加し、ポリオ一温度30
1℃、単孔吐出量1.48?/分、ノズ^ホーfi−数
500で溶融体を押し出し、ノズルクエシチ距離sa&
で風速0.6 m/ sea 、温度101)の冷却風
により糸条を冷却し、糸条にエポキシ化グリセリン20
wt−添加した紡糸油剤を付着せしめた後ztgom/
eの速度で第1ゴデフ)El−ルに糸条を供給した0こ
の時の紡出糸の複屈折はo、o s sであった。咳紡
出糸を直ちに44!I’Oの加熱水蒸気を用いて2.3
倍に延伸し、5014m、4の速度で捲き取つた。
Example island intrinsic viscosity IJ, zF ethylene glycol content 0.・When melt-spinning polyethylene terephthalate tfIII with mole-1 force A & filler group content 11/10”P, tridecylphostin to,
osl amount 1, olefin phenylphenol dicyl ether k t-0.5 weight-pumping added, polio-temperature 30
1℃, single hole discharge rate 1.48? /min, extrude the melt at a nozzle number of 500, and set the nozzle distance sa &
The yarn was cooled with cooling air at a speed of 0.6 m/sea and a temperature of 101), and the yarn was coated with 20% epoxidized glycerin.
wt - After applying the added spinning oil, ztgom/
The birefringence of the spun yarn at this time was o, o s s. Cough spun thread immediately 44! 2.3 using heated steam of I'O
It was stretched to double its original size and rolled up at a speed of 4,014 m.

比較例4として、極限粘度1.(1、ゾエチレングリー
ール含量意、sモに9G、力にポ命シル基含量12重量
/10@Pのポリエチレンテレフタレートを本実施例と
同一条件でfIII融紡糸した0これらのIIm艙の諸
畳性を表3に示す・ かくして得られた肉繊維を、撚p数40 X 4G(T
/lo(至))の双糸コードとなし、し・戸ルシンーホ
ルマリンーツテックスから成る−わゆる一浴ディッゾ処
ll(処理温度240℃)t−施してディッゾコーF4
1性並びK11着力を比較した。結果を表4に示す。
As Comparative Example 4, the intrinsic viscosity was 1. (1) Polyethylene terephthalate with a zoethylene glycol content of 9G and a polyacyl group content of 12 weight/10@P was melt-spun fIII under the same conditions as in this example. The various tatami properties are shown in Table 3. The meat fibers thus obtained were twisted in a number of twists of 40 x 4G (T
/ lo (to)) twin thread cord and pear, made of linseed and formalin roots tex - so-called one-bath dizzo treatment (processing temperature 240°C) t - dizzo coat F4
We compared the K11 landing strength of the 1st grade. The results are shown in Table 4.

表  4 繊維調造時にエボ今サイドでシリコートした実施例3の
コードは棗好な接着力が得られること、およびジエチレ
ングリコール含量の多i比較例4はディツノ後強力が劣
ることがわかるO従つて本発明による低収縮ポリエステ
ル繊維は寸法安定性と共に熱化学安定性を向上させるた
めにはジエチレングリコール含量の低下が重要であるこ
とが理解される。
Table 4 It can be seen that the cord of Example 3, which was silicated with EVO side during fiber preparation, had good adhesive strength, and that Comparative Example 4, which had a high diethylene glycol content, had inferior strength after diluting. It is understood that in order to improve the thermochemical stability as well as the dimensional stability of the low shrinkage polyester fiber according to the invention, it is important to reduce the diethylene glycol content.

【図面の簡単な説明】[Brief explanation of the drawing]

gi図は固化点張力と未延伸糸複屈折Δnとの関係を示
すグラフ、第2図は力学的損失正接(tanδ)一温度
(T)曲liIを示すグラフである。
The gi diagram is a graph showing the relationship between the solidification point tension and the undrawn yarn birefringence Δn, and FIG. 2 is a graph showing the mechanical loss tangent (tan δ)-temperature (T) curve liI.

Claims (1)

【特許請求の範囲】 1、  &ジエチレンテレ2タレートを主成分とする4
リエステルtS融紡出し、次いで冷却固化し、さらに延
伸することによって得られ危延伸糸であって、下記(1
)〜(ロ)の特性を有し、さらに該延伸糸K 24@”
0で1分間定長で乾熱処理を施したとき、下記C13〜
(0)の特性を示すに至ること管特徴とする熱寸法安定
性訃よび化学安定性にすぐれたポリエステル高強力糸。 (ロ)  mi@粘度0.7以上 (1)  テレフタル酸残基に対するジエチレングリコ
ール含量1.5モル−以下 (旬 カルボキシルI&番量2o尚量/10・?以下←
) 平絢複屈折0.1115ないしo、is。 (■ 単糸デニール器、oデニール以下(v9 17s
υで30分間フリー熱地理したときのIE熱15Ui率
7.o すvs L 10.0 %(ロ)試長10イン
チ、歪速度0.Iインチ/分、温度150℃の条件下に
OJ P/d トo、osy/aの間の応力でヒスデリ
シスルーゾtllVL4られた仕事損失がtoooデニ
ール轟り0.0240〜o、o s sインチ・ボンド (亀)  上記定長乾熱処理による強力保持率9sts
以上 (b)  17 I 13で30分間フリー熱処還し次
ときの乾熱収縮率3.0−以下 (0)  試長10インチ、歪速度0.3インチ/分、
温度156℃の条件下に0.6 p/dと0.0fJF
/dの間の応力でヒステリシスルーゾ管一定し得られた
仕事損失が1000デエーA当り0.(1!00インチ
・ボンド以下 2、カルボキシル基食量が1!嶺量/ t o” を以
下である轡許請求の範囲第1項記載のポリエステル高強
力糸。 3、紡糸延伸工程中でエポキシ化合物および/またはイ
ンシアネート化合物による表面魁理を施された、tム補
強用(適した特許請求の範MINI項ま72:は第意項
記載のポリエステル高強力糸。
[Claims] 1. &4 whose main component is diethylene tere-2-thalerate
Liester tS melt-spun, then cooled and solidified, and further stretched to obtain a dangerously drawn yarn, as shown below (1
) to (b), and furthermore, the drawn yarn K24@”
When dry heat treatment was performed at a constant temperature of 0 for 1 minute, the following C13~
(0) High strength polyester yarn with excellent thermal dimensional stability and chemical stability. (b) mi @ viscosity 0.7 or more (1) Diethylene glycol content relative to terephthalic acid residue 1.5 mol or less (carboxyl I&number 2o equivalent amount/10.? or less ←
) Hirayan birefringence 0.1115 o, is. (■ Single yarn denier, o denier or less (v9 17s
IE heat 15Ui rate when doing free heat geography for 30 minutes at υ7. o S vs L 10.0% (b) Sample length 10 inches, strain rate 0. Under the conditions of I inch/min and temperature of 150°C, the work loss caused by hysteresis at stress between OJ P/d and osy/a is too denier 0.0240 to o, o s. S inch bond (tortoise) Strong retention rate 9sts due to the above fixed length dry heat treatment
Above (b) After free heat treatment at 17 I 13 for 30 minutes, the dry heat shrinkage rate was 3.0- or less (0), sample length 10 inches, strain rate 0.3 inches/min,
0.6 p/d and 0.0 fJF at a temperature of 156°C
With a stress between /d and a constant hysteresis of the Luso tube, the resulting work loss is 0.0. (The polyester high-strength yarn according to claim 1, in which the carboxyl group erosion amount is 1!00 inch bond or less2, and the amount of carboxyl group is less than or equal to 1!00 inch bond).3. and/or a polyester high-strength yarn as described in claim 72 for reinforcement of TM, which has been surface-treated with an incyanate compound.
JP11961481A 1981-07-30 1981-07-30 High-tenacity polyester yarn having improved thermal dimensional stability and chemical Pending JPS5823914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11961481A JPS5823914A (en) 1981-07-30 1981-07-30 High-tenacity polyester yarn having improved thermal dimensional stability and chemical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11961481A JPS5823914A (en) 1981-07-30 1981-07-30 High-tenacity polyester yarn having improved thermal dimensional stability and chemical

Publications (1)

Publication Number Publication Date
JPS5823914A true JPS5823914A (en) 1983-02-12

Family

ID=14765772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11961481A Pending JPS5823914A (en) 1981-07-30 1981-07-30 High-tenacity polyester yarn having improved thermal dimensional stability and chemical

Country Status (1)

Country Link
JP (1) JPS5823914A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898419A (en) * 1981-12-02 1983-06-11 Touyoubou Pet Koode Kk Polyester fiber of high strength with high thermal dimensional stability as well as chemical stability
JPS58115117A (en) * 1981-12-25 1983-07-08 Asahi Chem Ind Co Ltd Polyester yarn and its preparation
JPS58186607A (en) * 1982-04-20 1983-10-31 Asahi Chem Ind Co Ltd Preparation of polyester filamentary yarn having high tenacity
JPS59168119A (en) * 1983-03-15 1984-09-21 Touyoubou Pet Koode Kk Preparation of polyester yarn having improved thermal dimensional stability and high strength
JPS60106706A (en) * 1983-11-14 1985-06-12 Teijin Ltd Polyester fiber for warp of conveyor belt and method of its fabrication
JPS63256715A (en) * 1987-04-10 1988-10-24 Toyobo Co Ltd High-orientation and low crystalline polyester yarn and production thereof
JPS6414334A (en) * 1987-07-01 1989-01-18 Bridgestone Corp Pneumatic radial tire
JPH01162820A (en) * 1987-12-21 1989-06-27 Toyobo Co Ltd Direct spinning and drawing for polyester fiber
US4973657A (en) * 1984-08-30 1990-11-27 Hoechst Aktiengesellschaft High-strength polyester yarn and process for its preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921260A (en) * 1972-06-19 1974-02-25
JPS5358032A (en) * 1976-10-26 1978-05-25 Celanese Corp Manufacture of high strength improved polyester filament having especially stable internal structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921260A (en) * 1972-06-19 1974-02-25
JPS5358032A (en) * 1976-10-26 1978-05-25 Celanese Corp Manufacture of high strength improved polyester filament having especially stable internal structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898419A (en) * 1981-12-02 1983-06-11 Touyoubou Pet Koode Kk Polyester fiber of high strength with high thermal dimensional stability as well as chemical stability
JPH0128127B2 (en) * 1981-12-02 1989-06-01 Toyo Boseki
JPS58115117A (en) * 1981-12-25 1983-07-08 Asahi Chem Ind Co Ltd Polyester yarn and its preparation
JPS58186607A (en) * 1982-04-20 1983-10-31 Asahi Chem Ind Co Ltd Preparation of polyester filamentary yarn having high tenacity
JPS59168119A (en) * 1983-03-15 1984-09-21 Touyoubou Pet Koode Kk Preparation of polyester yarn having improved thermal dimensional stability and high strength
JPH0321647B2 (en) * 1983-03-15 1991-03-25 Toyo Boseki
JPS60106706A (en) * 1983-11-14 1985-06-12 Teijin Ltd Polyester fiber for warp of conveyor belt and method of its fabrication
JPH0372751B2 (en) * 1983-11-14 1991-11-19 Teijin Ltd
US4973657A (en) * 1984-08-30 1990-11-27 Hoechst Aktiengesellschaft High-strength polyester yarn and process for its preparation
JPS63256715A (en) * 1987-04-10 1988-10-24 Toyobo Co Ltd High-orientation and low crystalline polyester yarn and production thereof
JPS6414334A (en) * 1987-07-01 1989-01-18 Bridgestone Corp Pneumatic radial tire
JPH01162820A (en) * 1987-12-21 1989-06-27 Toyobo Co Ltd Direct spinning and drawing for polyester fiber

Similar Documents

Publication Publication Date Title
JPS5898419A (en) Polyester fiber of high strength with high thermal dimensional stability as well as chemical stability
JPH01282306A (en) Industrial polyester fiber
JP3886360B2 (en) Method for producing polyester multifilament yarn
JPS5823914A (en) High-tenacity polyester yarn having improved thermal dimensional stability and chemical
CN1225954A (en) Nylon 6 chip and production of nylon 6 yarn and film and of further industrial articles from nylon 6
KR101602385B1 (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
JPH0663128B2 (en) Polyester fiber for reinforcing rubber structure and method for producing the same
KR20180079533A (en) Dimensionally stable polyethyleneterephthalate tire cord, method of manufacturing the same and tire including the same
JP5087949B2 (en) Polyamide fiber
JP2013204164A (en) Tensile strength body
JPS5953736A (en) Polyester tire cord and production thereof
KR101551425B1 (en) High tenacity polyester filament and process for preparing polyester tire cord
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
KR101878780B1 (en) A Hybrid Dipped Cord Having Excellent Fatigue Resistance and Radial Tire Using the Same
JPS60185833A (en) Polyester fiber dip code for reinforcing rubber
JPH0450407B2 (en)
JPH0197212A (en) High-strength composite fiber
KR101838490B1 (en) A High Tenacity Tire Cord using Polyethyleneterephthalate and Aramid, and Radial Tires Produced by the Same
EP3095899B1 (en) Polyester tire cord with excellent dimensional stability and method for manufacturing same
JPS63315608A (en) Polyester fiber
JPH02147328A (en) Cord for reinforcing resin hose
WO2022039033A1 (en) Polyamide multifilament, and method for manufacturing same
JPH0949139A (en) Cord and dip cord
KR101007331B1 (en) Method for preparing polyether filament yarn, and polyester filament yarn prepared therefrom, and polyester tire cord the comprising the same
JP2013253328A (en) Short fiber for rubber reinforcement, method for producing the same, and molding including the same