JPS5823584B2 - buttaibutsukankansokuhou - Google Patents

buttaibutsukankansokuhou

Info

Publication number
JPS5823584B2
JPS5823584B2 JP49028795A JP2879574A JPS5823584B2 JP S5823584 B2 JPS5823584 B2 JP S5823584B2 JP 49028795 A JP49028795 A JP 49028795A JP 2879574 A JP2879574 A JP 2879574A JP S5823584 B2 JPS5823584 B2 JP S5823584B2
Authority
JP
Japan
Prior art keywords
defect
defects
observed
observation
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49028795A
Other languages
Japanese (ja)
Other versions
JPS50122981A (en
Inventor
稲垣雄史
池田弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP49028795A priority Critical patent/JPS5823584B2/en
Publication of JPS50122981A publication Critical patent/JPS50122981A/ja
Publication of JPS5823584B2 publication Critical patent/JPS5823584B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は透明物体の表面及び内部における欠陥の観測或
いは検査を行なう方法に関し、特に透明物体表面のうね
りや内部の屈折率分布等の巨視的欠陥と微細な凹凸や異
物等の微視的欠陥とを同時観測しうる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for observing or inspecting defects on the surface and inside of a transparent object, in particular macroscopic defects such as waviness on the surface of a transparent object and internal refractive index distribution, as well as minute irregularities and foreign objects. This invention relates to a method that allows simultaneous observation of microscopic defects such as

従来、透明物体表面或いは内部の凹凸、うねり、屈折率
分布、異物、気泡等の欠陥を観測する方法としては、目
視による直接的観測や顕微鏡による観測が用いられてい
たが、近時、被観測物体にコヒーレントfi平面波光を
投射し、その反射光或いは透過光を凸レンズ等で収束さ
せて得られるフーリエ変換パターンを観測して、被観測
物体の欠陥量の平均的値を測定する方法が提案されてい
る。
Traditionally, direct visual observation and observation using a microscope have been used to observe defects such as irregularities, waviness, refractive index distribution, foreign matter, and bubbles on the surface or inside of transparent objects. A method has been proposed in which the average value of the amount of defects in the observed object is measured by projecting coherent fi plane wave light onto the object and observing the Fourier transform pattern obtained by converging the reflected light or transmitted light with a convex lens, etc. ing.

しかしながら、この方法では、物体の成る領域内で例え
ば表面の凹凸等の欠陥が平均化されてしまうので、物体
表面に発生する大きなうねりの分布、或いは透明物体内
部での大きな屈折率分布、及び微細な凹凸或いは気泡等
の欠陥を個別に観測することは困難である。
However, with this method, defects such as surface irregularities are averaged out within the region of the object, so defects such as large undulations occurring on the object surface, large refractive index distribution inside a transparent object, and fine It is difficult to individually observe defects such as unevenness or bubbles.

本発明者等は以上の点に鑑み、被観測物体の凹凸等の微
細な表面状態と、うねり等の巨視的な表面状態を二次元
的に同時観測する方法として、特願昭48−36372
号に示される物体表面状態観測法を提案した。
In view of the above points, the present inventors proposed a method for two-dimensionally simultaneously observing minute surface conditions such as unevenness and macroscopic surface conditions such as waviness of an object to be observed, in Japanese Patent Application No. 48-36372.
We proposed a method for observing the surface state of objects, which is shown in the issue.

この方法はコヒーレントナ球面波光を被観測物体に投射
し、その反射光を二次元的に観測するものである。
This method projects coherent toner spherical wave light onto an observed object and observes the reflected light two-dimensionally.

この方法によれば、被観測物体表面のうねりや凹凸はそ
の回折パターンが観測されるので、小さなもの程大きく
拡大されて観測でき、又、うねりは線状のパターン、孤
立した凹凸は点状或いは円状のパターンとして観測でき
るので、微視的表面状態及び巨視的表面状態の同時観測
が可能である。
According to this method, the diffraction pattern of the undulations and irregularities on the surface of the object to be observed is observed, so the smaller the undulations, the larger the magnification. Since it can be observed as a circular pattern, it is possible to simultaneously observe the microscopic surface state and the macroscopic surface state.

本発明は上記の物体表面状態観測法の応用範囲をさらに
拡張しうる新規の物体欠陥観測法を提供することを目的
とするものである。
An object of the present invention is to provide a novel object defect observation method that can further expand the scope of application of the above-mentioned object surface state observation method.

本発明の具体的目的は、透明物体の表面における凹凸や
うねり等の欠陥及び内部における屈折率分布や異物等の
欠陥を観測或いは検査する方法を提供することである。
A specific object of the present invention is to provide a method for observing or inspecting defects such as unevenness and waviness on the surface of a transparent object, and defects such as refractive index distribution and foreign matter inside the transparent object.

本発明の物体欠陥観測法は、コヒーレントな球面波光を
被観測物体に照射し、その透過光で前記被観測物体にお
ける欠陥を二次元的に観測することを特徴とするもので
ある。
The object defect observation method of the present invention is characterized in that coherent spherical wave light is irradiated onto an observed object, and defects in the observed object are two-dimensionally observed using the transmitted light.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第1図a及びbは本発明による物体欠陥観測法を説明す
る図である。
FIGS. 1a and 1b are diagrams illustrating the object defect observation method according to the present invention.

第1図aはコヒーレントな球面波光の収束点1と観測面
2との間に被観測面3を配置した場合、第1図すはコヒ
ーレントな球面波光の収束点1の前方に被観測面3を配
置した。
Figure 1a shows that when the observed surface 3 is placed between the convergence point 1 of coherent spherical wave light and the observation surface 2, the observed surface 3 is placed in front of the convergence point 1 of coherent spherical wave light. was placed.

場合を示す。Indicate the case.

第1図において4は夫々観測すべき欠陥を示し、曲線5
,6は観測面における欠陥投影パターンの光強度分布を
示す。
In Fig. 1, 4 indicates each defect to be observed, and curve 5
, 6 show the light intensity distribution of the defect projection pattern on the observation plane.

ここで、欠陥4を有限幅dの光透過型障害物と考える。Here, the defect 4 is considered to be a light-transmitting obstacle with a finite width d.

この欠陥4を含む平面3に、発散或いは収束するコヒー
レントな球面波光を照射し、透過回折光を有限距離Zだ
け隔てて置かれた観測面2に投影する系を考える。
Consider a system in which a plane 3 including this defect 4 is irradiated with coherent spherical wave light that diverges or converges, and the transmitted diffracted light is projected onto an observation surface 2 placed a finite distance Z apart.

ここでみられる回折は、欠陥4を含む平面3から、球面
波光の発散(或いは収束)点1及び観測面2までの距離
が共に有限シあることから、フレネル回折と考えること
ができる。
The diffraction observed here can be considered to be Fresnel diffraction because the distances from the plane 3 including the defect 4 to the point 1 of divergence (or convergence) of the spherical wave light and the observation surface 2 are both finite.

その結果、回折現象を考えなければ観測面上に第1図中
の破線Tで示す幾何光学的な影が生ずるに過ぎないが、
実際は回折によって曲線5の如く、第1の極大値を含む
回折光の強度分布が現わ。
As a result, if we do not consider the diffraction phenomenon, only a geometrical optical shadow will appear on the observation surface, as indicated by the broken line T in Figure 1.
Actually, due to diffraction, an intensity distribution of the diffracted light appears as shown by curve 5, which includes the first maximum value.

れ、欠陥を拡大投影する効果を生み出す。This creates the effect of magnifying the defect.

即ち、実際に観測する場合には、例えば、光強度分布の
第1の極大値部分が欠陥投影パターンとして観測される
のである。
That is, when actually observing, for example, the first maximum value portion of the light intensity distribution is observed as a defective projection pattern.

欠陥投影寸法Yは、欠陥寸法d、球面波光の発散(或い
は収束)点1と被観測面3゜との距離(以下照明距離と
称する)X、被観測面3と観測面2との距離(以下観測
距離と称する)2及び使用する光の波長λによって決定
される。
The defect projection dimension Y is the defect dimension d, the distance between the divergence (or convergence) point 1 of the spherical wave light and the observed surface 3° (hereinafter referred to as illumination distance) X, and the distance between the observed surface 3 and the observed surface 2 ( (hereinafter referred to as observation distance) 2 and the wavelength λ of the light used.

尚、ここで、照明距離Xに関し、被観測面3に発散球面
波を照射する場合、即ち第1図aに示され。
Regarding the illumination distance X, the case where the observed surface 3 is irradiated with a diverging spherical wave is shown in FIG. 1a.

る構成の場合にはX〉0、収束球面波を照射する場合、
即ち第1図すに示される構成の場合にはXく0と定義す
る。
In the case of a configuration where
That is, in the case of the configuration shown in FIG. 1, it is defined as Xku0.

以下、これらのパラメータ間の関係を定量的に説明する
The relationship between these parameters will be quantitatively explained below.

被観測面3及び観測面2を夫々ξ軸、η軸と置き、被観
測面ξにおいてξくd/2の領域に障害物を置いた半無
限平面を考えると、そのフレネル回折パターンの強度分
布の第1の極大値(u=1.217)におけるξとηの
関係は回折理論により で表わすことができる。
If we consider a semi-infinite plane in which the observed plane 3 and the observed plane 2 are placed on the ξ axis and the η axis, respectively, and an obstacle is placed in the area of ξ × d/2 on the observed plane ξ, the intensity distribution of the Fresnel diffraction pattern is The relationship between ξ and η at the first maximum value (u=1.217) can be expressed by diffraction theory.

回折理論についての詳細は、例えば岩波書店より出版さ
れている書籍「波動光学」久保田広著の第237頁に説
明されている。
Details of the diffraction theory are explained, for example, on page 237 of the book "Wave Optics" by Hiroshi Kubota published by Iwanami Shoten.

ここで、欠陥4として考えた幅dの障害物を、被観測面
3上で−d/2くξくd/2と定義し、そのフレネル回
折パターンを考える場合、ξンーd/2及びξくd/2
という二つの半無限平面による夫々のフレネル回折パタ
ーンが観測面2において合成されたものと考えることが
できる。
Here, an obstacle of width d considered as defect 4 is defined as -d/2 x ξ d/2 on the observed surface 3, and when considering its Fresnel diffraction pattern, ξ - d/2 and ξ d/2
It can be considered that the respective Fresnel diffraction patterns of the two semi-infinite planes are synthesized on the observation surface 2.

(1)式より、欠陥投影寸法Yは照明距離Xの符号をも
考慮して、次式で与えられる。
From equation (1), the defect projection size Y is given by the following equation, also taking into account the sign of the illumination distance X.

但し X+Z>Oとする。However, X+Z>O.

(2)式において、右辺第1項は回折成分、同第2項は
幾何光学的投影成分を表わすもので、この式から明らか
なように、回折成分は欠陥寸法dに依存しない。
In equation (2), the first term on the right side represents a diffraction component, and the second term represents a geometrical optical projection component. As is clear from this equation, the diffraction component does not depend on the defect size d.

そして、この回折成分は正の値であり欠陥投影寸法Yを
幾何学的投影寸法より大きなものとする効果を有する。
This diffraction component has a positive value and has the effect of making the defect projected dimension Y larger than the geometric projected dimension.

従って、以上の如き物体欠陥観測法によれば、欠陥寸法
dが大きくなるに従って欠陥投影寸法Yが増大する一方
、欠陥拡大率Y/dは欠陥寸法dが小さくなる程増大す
るので、物体の微視的欠陥及び巨視的欠陥の同時観測が
可能になる。
Therefore, according to the object defect observation method described above, as the defect size d increases, the defect projected size Y increases, while the defect magnification rate Y/d increases as the defect size d decreases. Simultaneous observation of visual defects and macroscopic defects becomes possible.

例として、波長λ−6,328X10−’(i→のHe
−Neレーザをコヒーレント光源として使用した場合に
ついて説明する。
As an example, the wavelength λ-6,328X10-' (i→He
A case will be described in which a -Ne laser is used as a coherent light source.

このλの値を(2)式に代入し、欠陥寸法dと欠陥投影
寸法Y及び欠陥拡大率M=Y/dとの関係を、X>O及
びX<Oの場合について夫々第2図a及びbに示す。
By substituting this value of λ into equation (2), the relationship between the defect size d, the defect projected size Y, and the defect expansion rate M=Y/d is shown in Figure 2a for the cases of X>O and X<O, respectively. and b.

即ち第2図a及びbは夫々第1図a及びbに対応した、
欠陥寸法dと欠陥投影寸法Y及び欠陥拡大率M=Y/d
との関係を示す。
That is, FIG. 2 a and b correspond to FIG. 1 a and b, respectively.
Defect size d, defect projection size Y, and defect expansion rate M=Y/d
Indicates the relationship between

第二図a及びbにおいて、曲線群Bは欠陥投影寸法Yを
示し、曲線群Aは欠陥拡大率Mを示すものであり、曲線
中の数字はいずれも照明距離X(単位: mrrt )
を示す。
In Figures 2 a and b, curve group B shows the defect projected size Y, curve group A shows the defect expansion rate M, and the numbers in the curves are the illumination distance X (unit: mrrt).
shows.

尚、ここで観測距離Zは500(mi)とした。Note that the observation distance Z here was 500 (mi).

第2図から明らかなように、本発明の物体欠陥観測法に
よれば、微視的欠陥とを異なる拡大率にて同時観測する
こともでき、さらに適宜照明距離Xを調整することによ
り、所望の拡大率にて欠陥を観測することができるので
ある。
As is clear from FIG. 2, according to the object defect observation method of the present invention, it is possible to simultaneously observe microscopic defects at different magnifications, and by adjusting the illumination distance Defects can be observed at a magnification of .

本発明者の行なった実験の欠陥寸法と欠陥投影寸法との
関係は、第2図に示される理論値と一致した。
The relationship between the defect size and the defect projected size in the experiment conducted by the present inventors matched the theoretical value shown in FIG.

以上の説明から明らかなように、本発明によれば透明物
体表面及び内部の微視的欠陥と巨視的欠陥を同時観測す
ることができ、例えば光学材料の欠陥検査等に本発明の
物体欠陥観測法は極めて有。
As is clear from the above description, according to the present invention, it is possible to simultaneously observe microscopic defects and macroscopic defects on the surface and inside of a transparent object. The law is very strong.

用なものと言える。It can be said that it is useful.

本発明の方法によって、物体内部の欠陥のみを観測或い
は検査したい場合には、先に本発明者が提案した物体表
面状態観測法を併用することもできる。
When it is desired to observe or inspect only defects inside an object using the method of the present invention, the object surface state observation method previously proposed by the present inventor can also be used.

即ち、本発明に従って透明物体表面及び内部の欠陥を観
測し、特願昭48−36372号に示される方法でその
表面の欠陥のみを観測し、夫々の観測結果の比較によっ
て被観測物体内部の欠陥のみを観測或いは検査すること
ができる。
That is, defects on the surface and inside of a transparent object are observed according to the present invention, only defects on the surface are observed using the method shown in Japanese Patent Application No. 48-36372, and defects inside the object to be observed are determined by comparing the respective observation results. can only be observed or inspected.

本発明において、コヒーレント光特にレーザ光:を使用
する理由は、単色性及び収束性が良好で、それにより、
回折パターンの光強度分布における極大値が明瞭に観測
されるためである。
In the present invention, the reason for using coherent light, especially laser light, is that it has good monochromaticity and convergence, so that
This is because the maximum value in the light intensity distribution of the diffraction pattern can be clearly observed.

本発明者の行なった実験によれば、非干渉性の白色光源
を使用した場合には、単に幾何光学的な投影パター。
According to experiments conducted by the present inventor, when an incoherent white light source is used, a projection pattern that is simply geometrical optics is produced.

ンしか観測されなかった。Only 10% of the time was observed.

従って本発明を実施するに際しては、単色性及び収束性
の点から、特にレーザを光源として使用するのが好まし
い。
Therefore, when carrying out the present invention, it is particularly preferable to use a laser as a light source in terms of monochromaticity and convergence.

本発明の方法によって観測し得る欠陥としては、物体表
面の凹凸、しわ、うねり、汚れ、或いは物。
Defects that can be observed by the method of the present invention include unevenness, wrinkles, undulations, dirt, and objects on the surface of objects.

体内部の気泡、屈折率分析、異物等の光の振幅透過率の
異なる障害物及び透過光に位相差を与える欠隔が挙げら
れる。
Obstacles with different amplitude transmittances of light such as air bubbles inside the body, refractive index analysis, foreign objects, etc., and gaps that give a phase difference to transmitted light are included.

また以上の説明においては、本発明の物体欠陥観測法の
適用対象を透明物体と記述したが、ここでいう透明物体
とは、本発明に従って照射する球面波光の透過を許容す
る物体全てを含むことは明らかである。
Furthermore, in the above explanation, the object to which the object defect observation method of the present invention is applied is described as a transparent object, but the term transparent object herein includes all objects that allow transmission of the spherical wave light irradiated according to the present invention. is clear.

本発明の付随的効果としては、被観測物体における欠陥
の客観的評価が可能になる点が挙げられる。
An additional effect of the present invention is that defects in an observed object can be objectively evaluated.

即ち、従来の如く、物体欠陥の検査を直接目視検査或い
は顕微鏡検査によって行なう場合は、例えば物体表面の
微細な凹凸の形状、寸法等を評価する際に、観測者の主
観が入ってくるのを避けられないが、本発明によれば、
欠陥投影パターンの光強度分布極大値部分の寸法、光強
度等を所望の拡大率において測定し、その結果に基づい
て被観測物体における欠陥の寸法、形状等を客観的に評
価できるのである。
In other words, when inspecting object defects by direct visual inspection or microscopic inspection as in the past, it is important to avoid the subjectivity of the observer when evaluating the shape, size, etc. of minute irregularities on the surface of the object. Although unavoidable, according to the present invention:
The size, light intensity, etc. of the maximum light intensity distribution portion of the defect projection pattern are measured at a desired magnification, and based on the results, the size, shape, etc. of the defect in the observed object can be objectively evaluated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは本発明の物体欠陥観測法の原理を示す
図で、第2図a及びbは、本発明の物体欠陥観測法にお
ける欠陥寸法と欠陥投影寸法及び欠陥拡大率との関係を
示す図である。 図面において、1はコヒーレントな球面波光の発散点又
は収束点、2は観測面、3は被観測面、4は欠陥、5,
6は欠陥投影パターンの光強度分布、7は欠陥の幾何光
学的な影を示す線、Xは照明距離、Yは欠陥投影寸法、
Zは観測距離、Aは欠陥投影寸法を示す曲線群、Bは欠
陥拡大率を示す曲線群である。
Figures 1 a and b are diagrams showing the principle of the object defect observation method of the present invention, and Figures 2 a and b are diagrams showing the relationship between defect size, defect projection size, and defect enlargement rate in the object defect observation method of the present invention. FIG. In the drawing, 1 is a divergence or convergence point of coherent spherical wave light, 2 is an observation surface, 3 is a surface to be observed, 4 is a defect, 5,
6 is the light intensity distribution of the defect projection pattern, 7 is a line indicating the geometrical optical shadow of the defect, X is the illumination distance, Y is the defect projection dimension,
Z is the observation distance, A is a group of curves showing the defect projected size, and B is a group of curves showing the defect expansion rate.

Claims (1)

【特許請求の範囲】[Claims] 1 コヒーレントナ球面波光を被検査物体に照射して被
検査物体の欠陥を検査する物体欠陥観測法において、発
散点または収束点と前記被検査物体との相対的距離を変
化させ得るようにした前記コヒーレントな球面波光を前
記被検査物体に照射し、その透過光を観測面に投影し、
該観測面上の前記被検査物体の表面および内部に存する
欠陥に対応した投影像の透過光分布をフレネル領域で2
次元的に拡大縮小して前記被検査物体の欠陥の有無、大
きさを観測するようにしたことを特徴とする物体欠陥観
測法。
1. In an object defect observation method in which the object to be inspected is inspected for defects by irradiating the object with coherent toner spherical wave light, the relative distance between the divergence point or the convergence point and the object to be inspected can be changed. Irradiating the object to be inspected with coherent spherical wave light and projecting the transmitted light onto an observation surface,
The transmitted light distribution of the projected image corresponding to defects existing on the surface and inside of the object to be inspected on the observation surface is calculated by 2 in the Fresnel region.
A method for observing defects in an object, characterized in that the presence or absence and size of defects in the object to be inspected are observed by dimensional scaling.
JP49028795A 1974-03-12 1974-03-12 buttaibutsukankansokuhou Expired JPS5823584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49028795A JPS5823584B2 (en) 1974-03-12 1974-03-12 buttaibutsukankansokuhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49028795A JPS5823584B2 (en) 1974-03-12 1974-03-12 buttaibutsukankansokuhou

Publications (2)

Publication Number Publication Date
JPS50122981A JPS50122981A (en) 1975-09-26
JPS5823584B2 true JPS5823584B2 (en) 1983-05-16

Family

ID=12258345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49028795A Expired JPS5823584B2 (en) 1974-03-12 1974-03-12 buttaibutsukankansokuhou

Country Status (1)

Country Link
JP (1) JPS5823584B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156506A (en) * 1985-12-27 1987-07-11 Kansai Electric Power Co Inc:The Gap measuring instrument for rotary machine
JPS62157968A (en) * 1985-12-28 1987-07-13 Sony Corp Method of forming free curved surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160752A (en) * 1963-02-19 1964-12-08 Harold E Bennett Reflectometer for measuring surface finishes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160752A (en) * 1963-02-19 1964-12-08 Harold E Bennett Reflectometer for measuring surface finishes

Also Published As

Publication number Publication date
JPS50122981A (en) 1975-09-26

Similar Documents

Publication Publication Date Title
US4747683A (en) Method and device for in vivo wetting determinations
US5835218A (en) Moire interferometry system and method with extended imaging depth
JP6750793B2 (en) Film thickness measuring device and film thickness measuring method
WO2020045589A1 (en) Surface shape measurement device and surface shape measurement method
IL112395A (en) Optical device and a method of utilizing such device for optically examining objects
JPS5823584B2 (en) buttaibutsukankansokuhou
JPH05142754A (en) Inspecting method for phase shift mask
Bakolias et al. Dark-field Scheimpflug imaging for surface inspection
Meyer Overview on machine vision methods for finding defects in transparent objects
US20120038911A1 (en) Defect detection apparatus
US3748048A (en) Method of detecting changes of a specular surface
JPS5823583B2 (en) buttaibutsukankansokuhou
JPS62132153A (en) Mask defect inspector
Agour et al. Improved 3D form profiler based on extending illumination aperture
Šarbort et al. Comparison of Three Focus Sensors for Optical Measurement of Rough Surface Topography
Baker On-machine measurement of roughness, waviness, and flaws
JPS6165107A (en) Inspecting method for surface defect
Kanai et al. Simple technique for the evaluation of the finish of an edge using interference phenomena in a shadow region
JPH0599639A (en) Inspection device for small unevenness of planar object
Haridas Investigation into micro and nano scale optical metrology for shiny surfaces and difficult to access aircraft engine components
Lee et al. Detection system for sub-micrometer defects of a photo-mask using on-axis interference between reflected and scattered lights
Hung Three-dimensional computer vision techniques for full-field surface shape measurement and surface flaw inspection
JP2017198575A (en) Optical element characteristic measurement device
Trumpold Paper 9: Limits of Application of the Interference Methods for Surface Measurements
Patzelt et al. Fast integral optical roughness measurement of specular reflecting surfaces in the nanometer range