JPS5823454B2 - Wear resistant alloy - Google Patents

Wear resistant alloy

Info

Publication number
JPS5823454B2
JPS5823454B2 JP8291576A JP8291576A JPS5823454B2 JP S5823454 B2 JPS5823454 B2 JP S5823454B2 JP 8291576 A JP8291576 A JP 8291576A JP 8291576 A JP8291576 A JP 8291576A JP S5823454 B2 JPS5823454 B2 JP S5823454B2
Authority
JP
Japan
Prior art keywords
chromium
wear
nickel
niobium
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8291576A
Other languages
Japanese (ja)
Other versions
JPS539218A (en
Inventor
河合光雄
蒲原尚登
宮崎松生
川口寛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8291576A priority Critical patent/JPS5823454B2/en
Publication of JPS539218A publication Critical patent/JPS539218A/en
Publication of JPS5823454B2 publication Critical patent/JPS5823454B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電プラントのバルブのフェース部や、
ジェットポンプの部品、タービン低圧部の最終段羽根用
エロージョンシールドあるいハ制御棒摺動部部品などに
好適な耐摩耗合金に関する周知のように沸騰水型原子力
発電プラントは原子炉で発生させた蒸気を用いてタービ
ンを回転させ発電するシステムである。
[Detailed Description of the Invention] The present invention is applicable to the face part of a valve of a nuclear power plant,
Concerning wear-resistant alloys suitable for jet pump parts, erosion shields for final stage blades in turbine low-pressure sections, control rod sliding parts, etc. As is well known, boiling water nuclear power plants use steam generated in nuclear reactors. This is a system that rotates a turbine and generates electricity.

しかしてこの発電プラントにおいては、水は原子炉で水
蒸気化してタービンに送入され、タービンで湿り度の高
い蒸気となり、凝縮器で水になった後、給水加熱器で加
熱されて原子炉に戻ると云うように循環している。
However, in this power generation plant, water is vaporized in the nuclear reactor and sent to the turbine, which turns it into highly humid steam, which turns it into water in the condenser, and then is heated in the feedwater heater and sent to the reactor. It's a cycle that goes back and forth.

ところでこの発電システムにおいては、主蒸気管や凝縮
器あるいは給水加熱器などに用いられている各種パイプ
やタービンの羽根、ケーシングなどの腐食生成物が原子
炉に循環堆積し燃料棒から放射される中性子などにより
放射化され放射性腐食生成物となる。
By the way, in this power generation system, corrosion products from various pipes used in the main steam pipe, condenser, feed water heater, etc., turbine blades, casing, etc., circulate and accumulate in the reactor, and neutrons emitted from the fuel rods are generated. It becomes radioactive and becomes a radioactive corrosion product.

そのためこの種発電プラントにおいては高速蒸気流によ
るエロージョンやキャビテーションエロージョンによる
損耗が著シいバルブのフェース部やタービン低圧部最終
段羽根のエロージョンシールドなどを損耗に耐える材料
で構成する必要があり、通常コバルトを50%程度含有
したステライトを用いている。
Therefore, in this type of power plant, it is necessary to construct the valve face parts, which are subject to significant wear due to erosion caused by high-speed steam flow and cavitation erosion, and the erosion shields of the final stage blades of the turbine low-pressure section, from materials that can withstand wear and tear, and cobalt is usually used. Stellite containing about 50% is used.

かくして前述した蒸気の循環において構成材料中のコバ
ルト59が腐食損耗により原子炉にもちきたされたn・
γ反応によって生成したコバルト60などを核種とした
放射性腐食生成物が存在することになる。
Thus, during the aforementioned steam circulation, cobalt-59 in the constituent materials was brought into the reactor due to corrosion and loss.
There will be radioactive corrosion products containing cobalt-60 and other nuclides produced by the γ reaction.

しかしてこの放射性腐食生成物から放射される放射線量
は発電プラントの運転時間の経過とともに増加する。
However, the amount of radiation emitted from the radioactive corrosion products of the lever increases with the operating time of the power plant.

従って発電プラントの定期点検や補修に当っては、上記
放射性腐食生成物による放射線量の低減を待つため運転
休止期間を長くとる必要がある。
Therefore, when performing periodic inspections and repairs of power plants, it is necessary to take a long period of outage in order to wait for the radiation dose due to the radioactive corrosion products to be reduced.

本発明者らは上記点に鑑み検討を進めた結果、成る種の
クロム−ニオブ−ニッケルあるいはクロム−ニオブ−モ
リブデン−ニッケル系合金が上記発電プラント用の構成
部材などとして要求される耐摩耗性を備えていることを
見い出した。
The present inventors have carried out studies in view of the above points, and have found that certain types of chromium-niobium-nickel or chromium-niobium-molybdenum-nickel alloys have the wear resistance required as components for the above-mentioned power generation plants. I found out that I was prepared.

本発明は上記知見に基づき、沸騰水型原子力発電プラン
トにおける各種バルブのフェース部や、ジェットポンプ
の部品、タービン低圧部最終段羽根のエロージョンシー
ルド或は制御棒摺動部などの構成材に好適な耐摩耗合金
を提供しようとするものである。
The present invention is based on the above findings, and is suitable for constituent materials such as the face parts of various valves in boiling water nuclear power plants, parts of jet pumps, erosion shields of final stage blades of turbine low pressure parts, and control rod sliding parts. The aim is to provide a wear-resistant alloy.

以下本発明の詳細な説明すると本発明の耐摩耗合金は重
量比でクロム10〜45%、ニオブ3〜15%、残部ニ
ッケルあるいはこれに20%以下のモリブデンを含む組
成より成ることを特徴とするものである。
In detail, the present invention will be described below. The wear-resistant alloy of the present invention is characterized by having a composition, by weight, of 10 to 45% chromium, 3 to 15% niobium, and the balance containing nickel or less than 20% molybdenum. It is something.

本発明の耐摩耗合金は上記の如くクロム−ニオブ−ニッ
ケル系あるいはこれにMoを含むクロム−ニオブ−モリ
ブデン−ニッケル系でその組成比はクロム10〜45重
量%、ニオブ3〜15重量%、ニッケル残部あるいはク
ロム10〜45重量%、ニオブ3〜15重量%、モリブ
デン20重量%以下、ニッケル残部と選択する必要があ
り、その理由は次の如くである。
As mentioned above, the wear-resistant alloy of the present invention is a chromium-niobium-nickel system or a chromium-niobium-molybdenum-nickel system containing Mo, and its composition ratio is 10 to 45% by weight of chromium, 3 to 15% by weight of niobium, and nickel. It is necessary to select a balance of 10 to 45% by weight of chromium, 3 to 15% by weight of niobium, 20% by weight or less of molybdenum, and a balance of nickel, and the reason for this is as follows.

まずクロムは耐食性および合金の素地を強化するために
必要な成分でその組成比が10%未満では効果が不充分
でありまた45%を越えると粗大な初晶α相が過度に析
出し所要の耐摩耗性が得られない。
First of all, chromium is a necessary component to strengthen corrosion resistance and the matrix of the alloy.If the composition ratio is less than 10%, the effect will be insufficient, and if it exceeds 45%, coarse primary α phase will precipitate excessively. Abrasion resistance cannot be obtained.

一方二オブはニッケルと反応して合金の素地の強化と耐
摩耗性の向上に寄与する成分であるがその量が3%未満
では効果が不充分で、また15%を越えると靭性の低下
がみられ材料の機械的強度が損なわれるからである。
On the other hand, niobium is a component that reacts with nickel and contributes to strengthening the alloy base and improving wear resistance, but if the amount is less than 3%, the effect is insufficient, and if it exceeds 15%, the toughness may decrease. This is because the mechanical strength of the material is impaired.

さらにモリブデンは耐食性の向上と合金素地を強化し耐
摩耗性の向上に寄与するものであるが20%を越えると
合金の靭性低下が見られるからである。
Furthermore, molybdenum contributes to improving corrosion resistance, strengthening the alloy matrix, and improving wear resistance, but if it exceeds 20%, the toughness of the alloy decreases.

尚本発明に係る耐摩耗合金は、その加工手段や用途など
により合金組成を適宜選択することが好しい。
In addition, it is preferable that the alloy composition of the wear-resistant alloy according to the present invention is appropriately selected depending on the processing method and intended use.

例えば鋳造や肉盛りなどで成形する場合には、クロム1
5〜45%、ニオブ7〜15%、ニッケル残部あるいは
クロム15〜45%、ニオブ7〜15%、モリブデン1
0〜20筑ニッケル残部の合金系が望ましい。
For example, when forming by casting or overlaying, chromium 1
5-45%, niobium 7-15%, nickel balance or chromium 15-45%, niobium 7-15%, molybdenum 1
An alloy system with a balance of 0 to 20 nickel is desirable.

また鍛造加工により成形する場合にはクロム10〜40
%、ニオブ3〜10%、ニオブ3〜10%、ニッケル残
部あるいはクロム10〜40%、ニオブ3〜10%、モ
リブデン10%以下、ニッケル残部の合金系が望ましい
In addition, when forming by forging, chromium 10 to 40
%, 3 to 10% niobium, 3 to 10% niobium, balance of nickel or 10 to 40% of chromium, 3 to 10% of niobium, 10% or less of molybdenum, and the balance of nickel.

しかして本発明に係る耐摩耗合金はニオブの一部をアル
ミニウムやチタン、タンタルで置換してもよい。
In the wear-resistant alloy according to the present invention, a portion of niobium may be replaced with aluminum, titanium, or tantalum.

またニッケルの一部を鉄で置換すること、Moの一部を
Wに置換することもできる。
Further, a part of nickel can be replaced with iron, and a part of Mo can also be replaced with W.

さらに溶解時に添加する脱酸、脱窒剤としてのマンガン
やシリコンなどを含んでいても差支えない。
Furthermore, it may contain manganese, silicon, or the like as a deoxidizing and denitrifying agent that is added during melting.

次に本発明の実施例を記載する。Next, examples of the present invention will be described.

表1に示す組成(重量%)の合金を先ず用意し、高周波
真空誘導溶解炉を用いて溶解鋳造後、熱処理を施こした
First, alloys having the compositions (% by weight) shown in Table 1 were prepared, melted and cast using a high frequency vacuum induction melting furnace, and then heat treated.

ついでこの鋳造品から試験片を切り出し特性評価試験を
行なった。
Next, a test piece was cut out from this cast product and a characteristic evaluation test was conducted.

この特性評価試験は超音波振動方式によるキャビテーシ
ョンエロージョン試験で学振法に準じて3時間行なった
This characteristic evaluation test was a cavitation erosion test using an ultrasonic vibration method, and was carried out for 3 hours in accordance with the Japan Science and Technology Act.

その結果を表1に併せて示した。なお表−1における損
耗量は試験による試験片の重量減少量(772!i+)
を試験時間(分)と密度(グΔd)とで除した値に1×
106を乗じたもので、時間当りの体積減少量を示すも
のである。
The results are also shown in Table 1. In addition, the amount of wear in Table 1 is the amount of weight loss of the test piece due to the test (772!i+)
is divided by the test time (minutes) and the density (gΔd) by 1×
It is multiplied by 106 and indicates the amount of volume reduction per hour.

同表−1には比較のため1%クロム−1%モリブデン0
.25%バナジウム鋼(比較例4)、18クロム−8ニ
ツケルステンレス鋼(比較例5)或いは12%クロム−
1%モリブデン−0,2%バナジナジウム鋼(比較例6
)などの場合も併せて示した6尚上記表において熱処理
条件と記号とは次の関係にある。
Table 1 shows 1% chromium-1% molybdenum 0 for comparison.
.. 25% vanadium steel (Comparative Example 4), 18 chromium-8 nickel stainless steel (Comparative Example 5) or 12% chromium-
1% molybdenum-0.2% vanadinadium steel (Comparative example 6
) etc. 6 In the above table, the heat treatment conditions and symbols have the following relationship.

a・・・・・・1200℃X2H→水冷800℃X2H
b・・・・・・1200℃X2H→水冷800℃XIH
C・・・・・・1200℃X2H→水冷800℃×10
Hd・・・・・・1200℃X2H→水冷800℃X2
0He・・・・・・1050℃X2H→油冷650℃X
5Hf・・・・・・1100℃X2H→水冷 g・・・・・・1100℃X2H→油冷650℃X5H
また表−2に示す組成(重量%)の合金について鍛造加
工した後切り出した試験片について上記と同様の評価試
験を行なった。
a...1200℃X2H→Water cooling 800℃X2H
b...1200℃X2H→Water cooling 800℃XIH
C...1200℃X2H→Water cooling 800℃×10
Hd・・・1200℃×2H→Water cooling 800℃×2
0He・・・1050℃X2H→oil cooling 650℃X
5Hf...1100℃X2H→Water cooling g...1100℃X2H→Oil cooling 650℃X5H
In addition, evaluation tests similar to those described above were conducted on test pieces cut out after forging alloys having the compositions (% by weight) shown in Table 2.

結果を表−2に併せて示す。The results are also shown in Table-2.

さらに表−3に示す組成(重量%)の合金を18Cr−
18Niステンレス鋼板の上に肉盛溶接したのち試験片
を切り出し、その肉盛溶接面について上記と同様に評価
試験を行なった。
Furthermore, an alloy having the composition (wt%) shown in Table 3 was added to 18Cr-
After overlay welding was performed on a 18Ni stainless steel plate, a test piece was cut out, and an evaluation test was conducted on the overlay welded surface in the same manner as described above.

その結果を表−3に併せて示す。The results are also shown in Table-3.

上記試験結果より明らかなように本発明に係る耐摩耗合
金は比較例の場合に較べいずれも損耗量が少なく且つコ
バルへを含まないことに伴ない沸騰水型原子力発電プラ
ント用の構成材料に適するものと云える。
As is clear from the above test results, the wear-resistant alloy according to the present invention has less wear than the comparative examples and does not contain cobal, making it suitable as a constituent material for boiling water nuclear power plants. It can be said that it is a thing.

Claims (1)

【特許請求の範囲】 1 重量比でクロム10〜45%、ニオブ3〜15%、
残部ニッケルより成ることを特徴とする耐摩耗合金。 2 重量比でクロム10〜45%、ニオ13〜15%モ
リブテン20%以下、残部ニッケルより成ることを特徴
とした耐摩耗合金。
[Claims] 1. Chromium 10-45%, niobium 3-15% by weight,
A wear-resistant alloy characterized by consisting of the remainder nickel. 2. A wear-resistant alloy comprising, by weight, 10 to 45% chromium, 13 to 15% nitro, 20% or less molybdenum, and the balance nickel.
JP8291576A 1976-07-14 1976-07-14 Wear resistant alloy Expired JPS5823454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8291576A JPS5823454B2 (en) 1976-07-14 1976-07-14 Wear resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291576A JPS5823454B2 (en) 1976-07-14 1976-07-14 Wear resistant alloy

Publications (2)

Publication Number Publication Date
JPS539218A JPS539218A (en) 1978-01-27
JPS5823454B2 true JPS5823454B2 (en) 1983-05-16

Family

ID=13787536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291576A Expired JPS5823454B2 (en) 1976-07-14 1976-07-14 Wear resistant alloy

Country Status (1)

Country Link
JP (1) JPS5823454B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207145A (en) * 1981-06-15 1982-12-18 Toshiba Corp Wear resistant alloy
US20130315365A1 (en) * 2012-05-23 2013-11-28 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for a jet pump inlet-mixer slip joint
JP2024008291A (en) * 2022-07-07 2024-01-19 日立Geニュークリア・エナジー株式会社 Nickel-based alloy

Also Published As

Publication number Publication date
JPS539218A (en) 1978-01-27

Similar Documents

Publication Publication Date Title
Tamura et al. Development of potential low activation ferritic and austenitic steels
Masuyama History of power plants and progress in heat resistant steels
JP5420417B2 (en) Filler composition and method for low NOx power boiler tube overlay
US8419868B2 (en) Process and method to increase the hardness of Fe-Cr-C weld overlay alloy
EP2059620A2 (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
EP1095167A1 (en) Advanced ultra-supercritical boiler tubing alloy
CN105624469A (en) Nickel-based high-temperature alloy used for ultra-supercritical boiler and preparation method and application of nickel-based high-temperature alloy
US6372181B1 (en) Low cost, corrosion and heat resistant alloy for diesel engine valves
JPH01275740A (en) Austenite stainless steel alloy
US4585620A (en) Wear-resistant alloy for an atomic power plant
EP0042180B1 (en) A high cavitation erosion resistance stainless steel and hydraulic machines being made of the same
JP5525961B2 (en) Ni-based alloy for forged parts of steam turbine and forged parts of steam turbine
JPS5823454B2 (en) Wear resistant alloy
US4246048A (en) Forged atomic power plant parts
US4877465A (en) Structural parts of austenitic nickel-chromium-iron alloy
US4751046A (en) Austenitic stainless steel with high cavitation erosion resistance
JP5550298B2 (en) Ni-based alloy for forged parts of steam turbine, turbine rotor of steam turbine, moving blade of steam turbine, stationary blade of steam turbine, screwed member for steam turbine, and piping for steam turbine
US4849169A (en) High temperature creep resistant austenitic alloy
JP2832341B2 (en) Ni-base overlay alloy
JPH0718365A (en) Corrosion resistant and wear resistant chromium base alloy
Davis et al. Structural materials data base assessment for the blanket comparison and selection study
Antill Aqueous corrosion of steels and nickel-base alloys in a nuclear context
Smith Jr et al. Homogenous alloy powder
JP2006144068A (en) Austenitic stainless steel
JPS60108789A (en) Seal ring for driving mechanism of control rod for nuclear power plant