JPS5823188B2 - Method for regulating torch electrode protrusion length in automatic welding equipment - Google Patents

Method for regulating torch electrode protrusion length in automatic welding equipment

Info

Publication number
JPS5823188B2
JPS5823188B2 JP54099195A JP9919579A JPS5823188B2 JP S5823188 B2 JPS5823188 B2 JP S5823188B2 JP 54099195 A JP54099195 A JP 54099195A JP 9919579 A JP9919579 A JP 9919579A JP S5823188 B2 JPS5823188 B2 JP S5823188B2
Authority
JP
Japan
Prior art keywords
electrode
torch
workpiece
circuit
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54099195A
Other languages
Japanese (ja)
Other versions
JPS5623380A (en
Inventor
砥綿俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP54099195A priority Critical patent/JPS5823188B2/en
Publication of JPS5623380A publication Critical patent/JPS5623380A/en
Publication of JPS5823188B2 publication Critical patent/JPS5823188B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は適宜制御手段によってワーク取付具とトーチと
を相対的に位置制御しながら自動溶接を行なう自動溶接
装置におけるトーチの電極突出長さ規正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regulating the length of an electrode protrusion of a torch in an automatic welding apparatus that performs automatic welding while controlling the relative positions of a workpiece fixture and a torch using appropriate control means.

本出願人は先に特開昭54−15441および特願昭5
4−64853において、トーチの電極自体をセンサと
して使用する自動溶接装置を提示した。
The present applicant previously filed Japanese Patent Application Publication No. 54-15441 and Japanese Patent Application No. 54-15441
No. 4-64853 presented an automatic welding device that uses the torch electrode itself as a sensor.

この自動溶接装置においては、適宜制御手段からの溶接
指令またはセンサ指令により特殊な電圧印加手段を介し
てトーチの電極にそれぞれ溶接用電圧とセンサ用電圧を
選択的に印加し、センシング時において電極とワークと
の間の通電状態を検知してワークの溶接線を探るもので
ある。
In this automatic welding device, a welding voltage and a sensor voltage are selectively applied to the electrodes of the torch through a special voltage application means according to a welding command or a sensor command from a control means as appropriate, and the electrodes and sensor voltages are applied selectively to the torch electrodes during sensing. This detects the current state between the workpiece and the weld line of the workpiece.

しかしながら、電極として消耗電極を用いた場合、電極
のトーチからの突出長さは溶接中の電極の溶は込み具合
の違いにより各溶接終了時ごとに異なるのが普通である
However, when a consumable electrode is used as the electrode, the length of the electrode protruding from the torch usually differs at the end of each weld due to the difference in the degree of penetration of the electrode during welding.

また、一般に電極供給リールからトーチに至る間の電極
は可とう管内に挿通されるが、この場合トーチの移動に
伴なう可とう管屈曲状態の変化等によって前述電極の突
出長さは必ずしも一定に保たれず、この状態でセンシン
グ。
Additionally, the electrode between the electrode supply reel and the torch is generally inserted into a flexible tube, but in this case, the protruding length of the electrode is not necessarily constant due to changes in the bending state of the flexible tube as the torch moves. sensing in this state.

を行なってもワークの正確な溶接線が検出されないため
、当然この様な不正確なセンシングに基いて行なわれる
自動溶接では良好なる溶接結果は期待し得ない。
Even if this is done, the accurate welding line of the workpiece cannot be detected, so naturally good welding results cannot be expected from automatic welding performed based on such inaccurate sensing.

したがって、溶接終了後におけるワークの状の4溶接線
のセンシングに際しては、実際のセンシングに先立ち予
めトーチの電極突出長さを所定長さに規正する必要があ
る。
Therefore, when sensing the four weld lines on the workpiece after welding is completed, it is necessary to regulate the protruding length of the electrode of the torch to a predetermined length in advance of actual sensing.

従来、この電極突出長さの規正は、ワーク取付具の外縁
に基準位置を設け、センシングの度にトーチの電極を若
干引込めた状態で制御手段の指令に基いてトーチ先端の
仮想溶接点を前記基準位置に合わせ、この状態で電極を
送り出し、電極とワーク取付具間の通電信号を得て電極
の送り出しを停止させたり、あるいはワークのある個所
の自動溶接を終了して次のセンシングに移行する前に、
予めプログラムしておいた先の溶接終了地点の近傍(次
のセンシングおよび溶接個所に近い場合が多い)で前述
同要領に行なっていた。
Conventionally, this electrode protrusion length was regulated by setting a reference position on the outer edge of the workpiece fixture, and setting the virtual welding point at the tip of the torch based on a command from the control means with the torch electrode slightly retracted each time sensing was performed. Adjust the electrode to the reference position, send out the electrode in this state, and stop sending out the electrode by obtaining an energization signal between the electrode and workpiece fixture, or finish automatic welding at a certain part of the workpiece and move on to the next sensing. Before you do
The same procedure as described above was carried out near the previously programmed welding end point (often near the next sensing and welding point).

しかし前者の場合は、センシングの都度ワーク取付具と
トーチの回想溶接点の相対位置を位置制御しなければな
らないため、特にトーチの移動距離が長い場合はセンシ
ングに要する時間も長くなり、また後者の場合は、個々
のワークの加工および取付は誤差により電極突出長さ規
正のために予め定めておいたワークの基準位置は必ずし
も総てのワークに対して正確とはならず、その位置ずれ
誤差がそのまま電極の突出長さの誤差として現われる等
、いずれにしても常時正確な電極突出長さが得られると
は限らなかった。
However, in the former case, the relative position of the workpiece fixture and the welding point of the torch must be controlled each time sensing is performed, which increases the time required for sensing, especially if the torch travels a long distance. In this case, the reference position of the workpiece set in advance for regulating the electrode protrusion length is not necessarily accurate for all workpieces due to errors in the processing and installation of individual workpieces, and the positional deviation error may occur. In any case, it was not always possible to obtain an accurate electrode protrusion length, as this appeared as an error in the protrusion length of the electrode.

本発明は前述事情に鑑み、トーチ外套先端部は電極から
絶縁した導体となし、制御手段からの電極突出長さ規正
指令に基いて、先ず電極をトーチ内に引込めた上で該電
極および前記トーチ外套先端部導体にセンサ用の電圧を
印加し、ワークから適宜離間した位置から、トーチをワ
ークの平面部に向けて移動させ、ワーク平面部とトーチ
外套先端部間で「通電」を検知したところでトーチをワ
ークから離れる方向に所定距離移動させ、次いで電極と
ワーク間の「通電」を検知するところまで電極を送給す
るごとくなし、たとえワークがその都度多少ずれていて
も、また溶接終了時毎に電極突出長さが異っても常に電
極の突出長さを一定に規正し得るごとくなすことを目的
とする、自動溶接装置におけるトーチの電極突出長さ規
正方法に関するものである。
In view of the above-mentioned circumstances, the present invention makes the tip of the torch mantle a conductor insulated from the electrode, and first retracts the electrode into the torch based on an electrode protrusion length regulation command from the control means, and then removes the electrode and the A voltage for the sensor was applied to the conductor at the tip of the torch jacket, and the torch was moved toward the flat part of the workpiece from a position appropriately away from the workpiece, and "current conduction" was detected between the flat part of the workpiece and the tip of the torch jacket. By the way, the torch is moved a predetermined distance away from the workpiece, and then the electrode is fed until it detects "current conduction" between the electrode and the workpiece. The present invention relates to a method for regulating the electrode protrusion length of a torch in an automatic welding device, the purpose of which is to be able to always regulate the protrusion length of the electrode to a constant value even if the protrusion length of the electrode differs from case to case.

この発明の詳細な説明に先立ち、この発明の背景となる
自動溶接装置より順次説明する。
Prior to a detailed explanation of the present invention, an automatic welding apparatus, which is the background of the present invention, will be sequentially explained.

第1図において自動溶接装置1は、ワークWを固定する
ワーク取付具2を左右方向(以後「X軸方向」と呼称)
・前後方向(以後「X軸方向」と呼称)に移動可能且つ
水平軸線Hまわり(以後「θ軸方向」と呼称)に回転可
能となし、またトーチ3のトーチ取付具4を上下方向(
以後「Z軸方向」と呼称)に移動可能具つ垂直軸線りま
わり(以後IF軸方向」と呼称)揺動可能となすごとく
構成し、前記ワークWおよびトーチ3の移動および揺動
位置を制御するための制御手段5を設けている。
In FIG. 1, the automatic welding device 1 moves the workpiece fixture 2 that fixes the workpiece W in the left-right direction (hereinafter referred to as the "X-axis direction").
・It is movable in the front-back direction (hereinafter referred to as the "X-axis direction") and rotatable around the horizontal axis H (hereinafter referred to as the "θ-axis direction"), and the torch mount 4 of the torch 3 can be moved in the vertical direction (hereinafter referred to as the "θ-axis direction").
The tool is configured to be movable in the "Z-axis direction" (hereinafter referred to as the "Z-axis direction") and swingable around the vertical axis (hereinafter referred to as the IF-axis direction), and controls the movement and rocking position of the workpiece W and the torch 3. A control means 5 is provided for the purpose.

6は平面り字形の基台で、一方の辺に第1枠体7を固設
しである。
Reference numeral 6 denotes a flat, square-shaped base, on one side of which a first frame 7 is fixed.

8は前記第1枠体7上に載置した台車で、適宜減速機お
よびブレーキ付正・逆転モータ(図示せず)の駆動によ
りボールスクリュー等適宜伝動手段(図示せず)を介し
てX軸方向に移動し得るごとくしである。
Reference numeral 8 denotes a trolley placed on the first frame 7, which is driven by an appropriate reduction gear and a forward/reverse motor with a brake (not shown), and is connected to the X-axis via an appropriate transmission means (not shown) such as a ball screw. It is possible to move in any direction.

9は前記台車8に嵌装した第2枠体で、前記台車8と同
要領の、駆動および伝動手段によりX軸方向に移動可能
としてあり、該第2枠体9の前端にはθ軸方向に回転可
能に前述ワーク取付具2を取り付けている。
Reference numeral 9 denotes a second frame fitted to the cart 8, which is movable in the X-axis direction by the same driving and transmission means as the cart 8, and the front end of the second frame 9 has a The aforementioned workpiece fixture 2 is rotatably attached to the holder.

10は前記基台6のL字形他辺に立設した垂直枠体で、
Z軸方向に移動可能に水平腕11の先端には前述トーチ
取付具4をW軸方向に揺動可能に取り付けである。
10 is a vertical frame erected on the other side of the L shape of the base 6;
The aforementioned torch fixture 4 is attached to the tip of the horizontal arm 11 so as to be movable in the Z-axis direction and swingable in the W-axis direction.

前記水平腕11およびトーチ取j付具4の駆動手段はい
ずれもブレーキ封止・逆転モータ(図示せず)である。
The driving means for the horizontal arm 11 and the torch attachment 4 are both brake-sealing/reverse motors (not shown).

また前記トーチ3は、中心軸線M延長上の溶接点WP(
この点は仮想点であって、必ずしも常時電極Wの先端に
一致するとは限らない)が常に前ノ記垂直軸線り上にも
たらされるように前記トーチ取付具4の先端に取り付け
、その取り付角度、即ち前記垂直軸線りに対して前記中
心軸線Mの成す角度αは実施する溶接態様(突合せ溶接
や隅肉溶接等)やワークWの形状に応じて適宜決定され
るノが、特殊な場合を除き45度前後とされるのが普通
である。
Further, the torch 3 has a welding point WP (
This point is a virtual point and does not always coincide with the tip of the electrode W) is attached to the tip of the torch mount 4 so that it is always on the vertical axis, and its attachment angle is In other words, the angle α formed by the central axis M with respect to the vertical axis is determined as appropriate depending on the type of welding to be performed (butt welding, fillet welding, etc.) and the shape of the workpiece W, but in special cases. Generally, the temperature is around 45 degrees.

12は前記トーチ3の電極Wに電圧を印加し電流を供給
するための電源装置、13.14はそれぞれ前記電源装
置12に付設した電極供給ロール」と1対の電極送給ロ
ーラで、電極Wはブレーキ付可変速の正・逆転モータ1
5(第3図)によって駆動制御される前記送給ローラ1
4の回転により前記供給ロール13から引き出し、途中
ループ状の曲り癖取り部16a(第3図)を形成した可
とシう性チューブ16内を通って前記トーチ3に送給す
るごとくしである。
12 is a power supply device for applying voltage and supplying current to the electrode W of the torch 3; 13.14 is a pair of electrode feeding rollers attached to the power supply device 12, respectively; is variable speed forward/reverse motor with brake 1
5 (FIG. 3).
4, the material is pulled out from the supply roll 13 and fed to the torch 3 through a flexible tube 16 formed with a loop-shaped deformed portion 16a (FIG. 3). .

17は前記電源装置12から導出して前記制御手段5に
付設した溶接制御器具である。
Reference numeral 17 denotes a welding control instrument derived from the power supply device 12 and attached to the control means 5.

18はリモートコントロールパネルで、手動操作により
前記各部の移動および回転動作を;遠隔制御したり、ま
た該遠隔制御に基いて前記制御手段5内のメモリ(図示
せず)にユーザプログラムをインプットするものである
Reference numeral 18 denotes a remote control panel, which remotely controls the movement and rotation of the various parts by manual operation, and inputs a user program into the memory (not shown) in the control means 5 based on the remote control. It is.

第2,3図は本発明を実施する上で特に重要な構成部分
に関する図面で、このうち第2図は前記。
FIGS. 2 and 3 are drawings relating to particularly important structural parts in carrying out the present invention, of which FIG. 2 is the same as described above.

トーチ3の詳細を示す縦断面図、また第3図は主として
前記電源装置12の回路ブロック図を主体とした概略説
明図である。
A vertical cross-sectional view showing the details of the torch 3, and FIG. 3 is a schematic explanatory diagram mainly showing a circuit block diagram of the power supply device 12.

第2図において、前記トーチ3の本体100は、前記可
とう性チューブ16を装置して電極Wを受。
In FIG. 2, the main body 100 of the torch 3 includes the flexible tube 16 to receive the electrode W.

け入れる基端ソケット100aと、電極Wのクランプ機
構101を内蔵した中空筒体100bと、先端電極導出
部材100cとから成る。
It consists of a proximal end socket 100a into which the electrode W is inserted, a hollow cylindrical body 100b containing a clamping mechanism 101 for the electrode W, and a tip electrode lead-out member 100c.

前記クランプ機構101は前記基端ソケツt100a内
側に開閉自在に装着したコレットチャック102と、基
端飼犬径部103aおよび先端側小径部103bをそれ
ぞれ前記中空筒体100bの内周面1oob1および中
央突起部100b2内周面に摺動自在に密着させるとと
もに前記大径部103a先端に削設したテーパ穴103
a1を前記コレットチャック102の先端に形成したテ
ーパ部102aに係合させた単動ピストン103と、前
記中央突起部100b2と前記小径部103b端部との
間に介在させ前記単動ピストン103を常時先端側(第
2図において左方)に付勢する圧縮ばね104と。
The clamp mechanism 101 includes a collet chuck 102 which is attached to the inner side of the proximal end socket t100a so as to be openable and closable, and a proximal diameter portion 103a and a distal end small diameter portion 103b which are connected to the inner circumferential surface 1oob1 and the central protrusion of the hollow cylindrical body 100b, respectively. 100b2 A tapered hole 103 slidably attached to the inner peripheral surface and cut at the tip of the large diameter portion 103a.
A1 is interposed between a single acting piston 103 which is engaged with a tapered portion 102a formed at the tip of the collet chuck 102, and the central protrusion 100b2 and the end of the small diameter portion 103b, so that the single acting piston 103 is always operated. and a compression spring 104 that biases toward the tip side (leftward in FIG. 2).

前記中央突起部100b2と前記大径部103aとの間
に形成される空室105に対し前記中空筒体100bに
穿設した穴100b3を介して高圧ガス(例えばシール
ドガスボンベ中の高圧ガス)の流入および排出を行なう
ガス送給管106とから成り、前記可とう性チューブ1
6からの電極Wはトーチ3の中心軸線Mに沿って前記基
端ソケット100a、単動ピストン103、先端電極導
出部材100cを挿通しており、前記空室105に高圧
ガスが流入していないときは第2図に示すととく単動ピ
ストン103は先端側に後退した位置にあってコレット
チャック102をゆるめて電極Wの移動を許容し、また
高圧ガスが空室105に流入すると単動ピストン103
は基端側に押動されて、コレットチャック102を締め
付けるため電極Wが固定されるものである。
High-pressure gas (for example, high-pressure gas in a shield gas cylinder) flows into the cavity 105 formed between the central protrusion 100b2 and the large-diameter portion 103a through a hole 100b3 formed in the hollow cylinder 100b. and a gas feed pipe 106 for discharging the flexible tube 1.
The electrode W from 6 is inserted through the base end socket 100a, the single-acting piston 103, and the tip electrode lead-out member 100c along the central axis M of the torch 3, and when high pressure gas is not flowing into the cavity 105. In particular, as shown in FIG. 2, the single-acting piston 103 is in a position retracted toward the tip, loosening the collet chuck 102 to allow the movement of the electrode W, and when high-pressure gas flows into the cavity 105, the single-acting piston 103
is pushed toward the proximal end, and the electrode W is fixed in order to tighten the collet chuck 102.

前記先端電極導出部材100cは電気絶縁材でできてお
り、その先端部には外径が前記中心軸線Mを中心として
半径aの導体より成る環状外套107を装置し、該外套
107は前記導出部材100cによって電極Wとは常時
絶縁しである。
The tip electrode lead-out member 100c is made of an electrically insulating material, and a ring-shaped jacket 107 made of a conductor having an outer diameter of a radius a centered on the central axis M is disposed at the tip thereof, and the jacket 107 is connected to the lead-out member. It is always insulated from the electrode W by 100c.

第3図において、300,301は前記電源装置12に
内蔵した電圧印加手段と通電状態検出手段で、このうち
前記電圧印加手段300は、溶接用電源300a、セン
サ用電源300b、一端を電極Wに接続して適時前記側
電源300a、300bのいずれかに選択的に接続する
切換スイッチ300c、一端を前記トーチ3の外套10
7に接続して適時前記センサ用電源300bに接続する
常開の開閉スイッチ300d等から成る。
In FIG. 3, reference numerals 300 and 301 are voltage applying means and energization state detecting means built into the power supply device 12. Of these, the voltage applying means 300 has a welding power source 300a, a sensor power source 300b, and one end connected to the electrode W. a changeover switch 300c that connects and selectively connects to either of the side power supplies 300a, 300b at an appropriate time;
7, and a normally open on/off switch 300d, which is connected to the sensor power source 300b as appropriate.

また前記通電状態検出手段301は、通電状態検出回路
301aと通電状態検出出力回路301bとから成り、
このうち通電状態検出回路301aは一端を前記センサ
用電源300bに接続し、他端を前記溶接用電源300
aの反切換スイッチ300c側と共にワークWに接続し
てあり、また通電状態検出出力回路301bは前記通電
状態検出回路301aにおける通電状態の変化(電流、
電圧、またはこれら両者の変化)を検出信号として入力
し、前記制御手段5に送信するものである。
Further, the energization state detection means 301 includes an energization state detection circuit 301a and an energization state detection output circuit 301b,
Among these, the energization state detection circuit 301a has one end connected to the sensor power source 300b, and the other end connected to the welding power source 300b.
The energization state detection output circuit 301b is connected to the workpiece W together with the opposite switch 300c side of the energization state detection circuit 301a.
(or a change in both voltages) is input as a detection signal and transmitted to the control means 5.

以下、前述構成の自動溶接装置1でトーチ3から突出す
る電極長さを正規の長さに規正する操作について、第4
〜7図の作用説明図および第8゜9図のフローチャート
を参照しながら説明する。
The following is a fourth explanation of the operation for regulating the length of the electrode protruding from the torch 3 in the automatic welding apparatus 1 configured as described above to a regular length.
This will be explained with reference to the operation explanatory diagrams in FIGS. 7 to 7 and the flowcharts in FIGS.

いま、トーチ3は取付角度αでトーチ取付具4に固定し
、コレットチャック102は開いた状態にあるものとす
る。
It is now assumed that the torch 3 is fixed to the torch fixture 4 at an attachment angle α, and the collet chuck 102 is in an open state.

また、電極Wの正規突出長さはトーチ3の先端から溶接
点WPまでの距離すとする。
Further, it is assumed that the regular protrusion length of the electrode W is the distance from the tip of the torch 3 to the welding point WP.

さらに、前記制御手段5に内蔵したマイクロコンピュー
タ(図示せず)には、予め電極突出長さ規正、センシン
グ、および自動溶接等一連の動作指令をプログラムして
あり、該マイクロコンピュータをオートモードとして能
動化し、それに応じて前述のプログラムを1ステツプず
つ指令情報として出力する。
Furthermore, a microcomputer (not shown) built into the control means 5 is programmed with a series of operating commands such as electrode protrusion length regulation, sensing, and automatic welding, and the microcomputer is set to auto mode and activated. The above-mentioned program is output step by step as command information accordingly.

(1)先ず、プログラムに電極突出長さ規正指令を含ん
でいるか否か判断する(第8図)。
(1) First, it is determined whether the program includes an electrode protrusion length regulation command (FIG. 8).

(2)含んでおれば、電極送給モータ15に対し電極W
を適量引込める指令を出力する。
(2) If included, the electrode W for the electrode feeding motor 15
Outputs a command to retract the appropriate amount.

送給ローラ14の逆回転により電極Wを若干量巻戻し、
電極先端をトーチ3内に引込める。
The electrode W is rewound slightly by reverse rotation of the feed roller 14,
The electrode tip can be retracted into the torch 3.

(3)電圧印加手段300に対し電極Wとトーチ3の外
套107にセンサ用電圧を印加する指令を出力する。
(3) A command is output to the voltage applying means 300 to apply a sensor voltage to the electrode W and the jacket 107 of the torch 3.

それに応じて、切換スイッチ300cおよび開閉スイッ
チ300dはいずれもセンサ用電源300aに接続し、
前記電極Wおよび前記外套107にセンサ用電圧(通常
、高電圧低電流)を印加する。
Accordingly, the changeover switch 300c and the open/close switch 300d are both connected to the sensor power supply 300a,
A sensor voltage (usually high voltage and low current) is applied to the electrode W and the mantle 107.

(4)トーチ3をスタート位置に位置制御する指令を出
力する。
(4) Output a command to control the position of the torch 3 to the start position.

トーチ3はX、Y、Z軸方向に適宜移動し、ワークWの
水平部材W1より適宜上方のスタート位置Qに溶接点W
Pを一致させた状態で停止する(第4図)。
The torch 3 moves appropriately in the X, Y, and Z axis directions, and welds the welding point W at a starting position Q appropriately above the horizontal member W1 of the workpiece W.
Stop with P matched (Fig. 4).

(5)トーチ3をZ軸方向に下げる指令を出力する。(5) Output a command to lower the torch 3 in the Z-axis direction.

トーチ3は水平部材W1に向かって下降する。The torch 3 descends toward the horizontal member W1.

(6)前記下降の際に、トーチ3の外套107が前記水
平部材W1の上面f1に近接すれば両者間が通電し、通
電状態検出回路301aによって電圧および/または電
流の変化を検出し、通電状態検出出力回路301bから
「通電」の信号を発し、トーチ3は下降を停止する。
(6) When the mantle 107 of the torch 3 comes close to the upper surface f1 of the horizontal member W1 during the lowering, electricity is applied between the two, and the energization state detection circuit 301a detects a change in voltage and/or current, and the energization state is detected by the energization state detection circuit 301a. The state detection output circuit 301b issues an "energization" signal, and the torch 3 stops descending.

(第5図)。(7)トーチ3をZ軸方向に所定距離り上
げる指令を出力する。
(Figure 5). (7) Output a command to raise the torch 3 a predetermined distance in the Z-axis direction.

トーチ3は距離りだけ上昇してその位置に停止しく第6
図)、当然外套107は水平部材W1から離れ、両者間
は通電しなくなる。
Torch 3 rises by the distance and stops at that position.
(Figure), the mantle 107 naturally separates from the horizontal member W1, and no current is passed between them.

尚、このとき前記距離りは、トーチ3の取付角度α、ト
ーチ3の外套107の半径a、および電極Wの規正突出
長さbより、(bco、sα−asinα)として予め
プログラムしであるため、第6図に示す通り溶接点WP
は水平部材W1のの上面f1に一致する。
At this time, the distance is programmed in advance as (bco, sα-asinα) from the mounting angle α of the torch 3, the radius a of the jacket 107 of the torch 3, and the standard protrusion length b of the electrode W. , welding point WP as shown in Figure 6.
corresponds to the upper surface f1 of the horizontal member W1.

(8)電極送給モータ15に対し電極Wを送給する指令
を出力する。
(8) A command to feed the electrode W is output to the electrode feeding motor 15.

電極Wは送給ローラ14の正回転によりトーチ3から突
出する。
The electrode W protrudes from the torch 3 by forward rotation of the feed roller 14.

(9)前記電極送給の間に、電極W先端が前記水平部材
W1の上面f1に近接すれば両者間が通電し、通電状態
検出回路301aを介して通電状態検出出力回路301
bから「通電」の信号を発し、電極送給モータ15の駆
動を停止して電極Wの送給移動を停止する(第7図)。
(9) During the electrode feeding, if the tip of the electrode W comes close to the upper surface f1 of the horizontal member W1, electricity will flow between the two, and the current will be passed through the energization state detection output circuit 301 via the energization state detection circuit 301a.
An "energization" signal is issued from b, and the drive of the electrode feeding motor 15 is stopped to stop the feeding movement of the electrode W (FIG. 7).

00)トーチ3内のクランプ機構101に対し電極Wを
締付ける指令を出力する。
00) A command is output to the clamp mechanism 101 in the torch 3 to tighten the electrode W.

ガス送給管106より空室105内に高圧ガスが流入し
、これに伴ない単動ピストン103bが第2図において
右行してコレットチャック102を閉成し、これによっ
て電極Wを締付は固定する。
High-pressure gas flows into the cavity 105 from the gas supply pipe 106, and the single-acting piston 103b moves to the right in FIG. 2 to close the collet chuck 102, thereby tightening the electrode W. Fix it.

αD 以上により電極突出長さ規正の完了を判断し、ス
テップ(3)における電圧印加手段300への指令を消
去する。
αD Based on the above, it is determined that the electrode protrusion length regulation is completed, and the command to the voltage application means 300 in step (3) is deleted.

このとき、開閉スイッチ300dのみ開動作を行ない、
切換スイッチ300cは制御手段5から「溶接指令」を
受けるまでセンサ用電源300a側に接続したままとな
る。
At this time, only the open/close switch 300d performs the opening operation,
The changeover switch 300c remains connected to the sensor power source 300a until it receives a "welding command" from the control means 5.

これで電極突出長さ規正のステップを終了し、電極Wの
トーチ3からの突出長さはbに正確に規正され、しかも
電極先端は溶接点WPに一致したことになる。
This completes the step of regulating the electrode protrusion length, and the protrusion length of the electrode W from the torch 3 is accurately regulated to b, and the electrode tip coincides with the welding point WP.

その後、トーチ3を適宜移動させ、次のセンシング指令
または溶接指令が発せられるまでその位置に待機するも
のである。
Thereafter, the torch 3 is moved as appropriate and stands by at that position until the next sensing command or welding command is issued.

尚、実際にはワークWの材質、板厚あるいは溶接条件等
を考慮して電極先端を溶接点WPより反送給飼にずらす
ことがあり、この場合は、前述の距離りを予めh’ (
= h−△h)としてプログラムしておけばよい。
In reality, the electrode tip may be shifted away from the welding point WP in consideration of the material, plate thickness, welding conditions, etc. of the workpiece W, and in this case, the above-mentioned distance must be set h' (
= h−△h).

また、前述実施例においては、前記ステップ(2)で電
極Wをトーチ3内に引込めるようにしたが、このステッ
プは自動溶接のシステムプログラムの最終ステップに移
行しても同様に実施できる。
Further, in the above-mentioned embodiment, the electrode W was retracted into the torch 3 in step (2), but this step can be carried out in the same way even when the program moves to the final step of the automatic welding system program.

この場合、自動溶接作業の終了ごとに電極Wをトーチ3
内に引込めるものである。
In this case, each time the automatic welding operation is completed, the electrode W is
It is something that can be drawn inside.

また、前記トーチ取付具4が揺動しないもの、あるいは
前記溶接点WPが垂直軸線り上にもたらす必要のないト
ーチにも本発明の電極突出長さ規正方法を採用でき、ま
た前述作用説明ではX、Y軸方向を水平、Z軸方向を垂
直としたが、これら3軸が互いに直交するものであれば
どのように入れ替えても実施できるものである。
Further, the electrode protrusion length regulating method of the present invention can be applied to a torch in which the torch fixture 4 does not swing or the welding point WP does not need to be placed on the vertical axis. , the Y-axis direction is horizontal and the Z-axis direction is vertical, but it is possible to carry out the implementation by replacing these three axes in any way as long as they are perpendicular to each other.

また、前記電源装置12は第10図に示すような制御回
路をもつ電源装置400としても、本発明方法による電
極突出長さ規正を行なうことができる。
Further, the power supply device 12 can also be used as a power supply device 400 having a control circuit as shown in FIG. 10 to regulate the electrode protrusion length by the method of the present invention.

即ち、第10図において前記電源装置400は、大きく
分けて電圧印加手段401、電極送給手段402、通電
状態検出手段403の3つの制御ブロックから構成して
いる。
That is, in FIG. 10, the power supply device 400 is roughly divided into three control blocks: voltage application means 401, electrode feeding means 402, and energization state detection means 403.

前記電圧印加手段401は、前記制御手段500から「
溶接指令」または「センサ指令」あるいは「電極突出長
さ規正指令」のいずれかを受けて信号を発する。
The voltage application means 401 receives the voltage from the control means 500.
It emits a signal in response to either a "welding command", a "sensor command", or an "electrode protrusion length regulation command".

溶接指令信号発生回路404、センサ指令信号発生回路
405、電極突出長さ規正指令信号発生回路406を備
えている。
It includes a welding command signal generation circuit 404, a sensor command signal generation circuit 405, and an electrode protrusion length regulation command signal generation circuit 406.

このうち回路404の出力は溶接用出力電圧設定回路4
07を、また回路405と406の出力はセンサ用出力
電圧設定回路408を経ていずれも出力電圧制御回路4
09に至り、予め設定された溶接用出力電圧またはセン
サ用出力電圧(この電圧は電極突出長さ規正用出力電圧
を兼用する)をサイリスク整流スタック410を介して
電極Wに印加するが、回路406からの出力は同時に電
圧印加を許容する電圧印加規制回路411を経てトーチ
503の先端部導体503aにも印加するごとくしであ
る。
Among these, the output of the circuit 404 is the output voltage setting circuit 4 for welding.
07, and the outputs of the circuits 405 and 406 pass through the sensor output voltage setting circuit 408 and are then output to the output voltage control circuit 4.
09, a preset welding output voltage or sensor output voltage (this voltage also serves as an output voltage for electrode protrusion length regulation) is applied to the electrode W via the thyrisk rectifier stack 410, but the circuit 406 At the same time, the output from the torch 503 is applied to the tip conductor 503a of the torch 503 via a voltage application regulation circuit 411 that allows voltage application.

また前記電極送給手段402は、電極送給量設定回路4
12、電極送給モータ制御回路413、電極送給モータ
414、および電極送給モータ制動回路415から成り
、前記電極送給モータ制動回路415が前記溶接指令信
号発生回路404または電極突出長さ規正指令信号発生
回路406から「溶接指令」または「電極突出長さ規正
指令」の信号を入力している間のみ、前記電極送給モー
タ414の制動を解除して前記制御手段500からの指
令方向に前記送給モータ414を駆動させ、前記電極送
給ローラ514の正または逆回転により予め設定した速
度で電極送給ロール513から電極Wを引き出してトー
チ503に送給したり、あるいはトーチ503から前記
送給ロール513へ電極Wを引き取るものである。
Further, the electrode feeding means 402 includes an electrode feeding amount setting circuit 4
12. Consists of an electrode feeding motor control circuit 413, an electrode feeding motor 414, and an electrode feeding motor braking circuit 415, and the electrode feeding motor braking circuit 415 receives the welding command signal generation circuit 404 or the electrode protrusion length regulation command. Only while a "welding command" or "electrode protrusion length regulation command" signal is being input from the signal generation circuit 406, the braking of the electrode feeding motor 414 is released and the electrode is moved in the direction of the command from the control means 500. The feeding motor 414 is driven, and the electrode W is drawn out from the electrode feeding roll 513 at a preset speed by forward or reverse rotation of the electrode feeding roller 514 and fed to the torch 503, or the electrode W is fed from the torch 503 to the torch 503. It takes the electrode W to the supply roll 513.

さらに、前記通電状態検出手段403は通電状態検出回
路416と通電状態検出出力回路417とから成り、こ
のうち前記検出回路416は適宜遮断回路(図示せず)
を内蔵し、前記溶接指令信号発生回路404から「溶接
指令」の信号を入力した際前記遮断回路を介して不作動
とされ、センサ時と電極突出長さ規正時のみ電極Wおよ
びトーチ503の先端部導体503aとワークWとの近
接放電によって生じる通電状態(電流および/または電
圧の変化)を検出し、該検出信号を前記通電状態検出出
力回路417を介して前記制御手段500に送信するご
とくしである。
Further, the energization state detecting means 403 includes an energization state detection circuit 416 and an energization state detection output circuit 417, of which the detection circuit 416 is connected to an appropriate cutoff circuit (not shown).
When a "welding command" signal is input from the welding command signal generation circuit 404, it is deactivated via the cutoff circuit, and the electrode W and the tip of the torch 503 are turned off only when sensing and when regulating the protruding length of the electrode. The energization state (change in current and/or voltage) caused by the close discharge between the part conductor 503a and the workpiece W is detected, and the detection signal is transmitted to the control means 500 via the energization state detection output circuit 417. It is.

前述構成の電源装置400を使用した場合の電極突出長
さ規正は、第10図のサブルーチン1に代えて第11図
のサブルーチン1′のフローチャートに従って行なわれ
るものであり、ここでは詳細な作用説明を省略する。
Regulation of the electrode protrusion length when using the power supply device 400 configured as described above is performed according to the flowchart of subroutine 1' in FIG. 11 instead of subroutine 1 in FIG. 10, and a detailed explanation of the operation will be given here. Omitted.

以上詳述せるごとく、本発明におけるトーチの電極突出
長さ規正方法は、移動方向を1つに定め、該方向に対し
て中心軸線が所定鋭角となるようにトーチを固定した状
態でセンサ用の電圧を電極とトーチの先端部導体に別個
に印加し、先ず電極をトーチ内に引込ませたうえで、前
記移動方向に直角なワーク平面部に向けてトーチを移動
させ、この際先端部導体がワーク平面部を検出し、次い
でトーチをワーク平面部から所定距離離間させ、この状
態から電極がワーク平面部を検出するところまで電極を
突出させて規正突出長さとするため、個々のワークの加
工誤差やワーク取付具への取付は誤差があっても、常時
正確な電極突出長さが得られるものである。
As described in detail above, the method for regulating the protruding length of the electrode of the torch according to the present invention is to fix the torch in one direction of movement, and to fix the torch so that the central axis forms a predetermined acute angle with respect to the direction. Voltages are applied separately to the electrode and the torch tip conductor, first the electrode is retracted into the torch, and then the torch is moved toward the workpiece plane perpendicular to the direction of movement, with the tip conductor The flat surface of the workpiece is detected, the torch is then moved a predetermined distance away from the flat surface of the workpiece, and from this state the electrode is protruded to the point where it detects the flat surface of the workpiece to obtain the standard protrusion length, which reduces machining errors for individual workpieces. Even if there is an error in mounting the electrode to a workpiece fixture, an accurate electrode protrusion length can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のトーチの電極突出長さ規正方法を実施
する一例としての自動溶接装置の全体斜親図、第2図は
トーチの拡大縦断面図、第3図は電源装置の回路構成を
主体とした概略説明図、第4〜1図は作用説明図、第8
,9図はフローチャート、第10図は別の電源装置の回
路構成を主体とした概略説明図、第11図は第10図の
電源装置を用いた場合のフローチャートである。 図中、1は自動溶接装置、3はトーチ、5は制御手段、
12は電源装置、Wはワークである。
Fig. 1 is an overall perspective view of an automatic welding device as an example of implementing the method for regulating the protruding length of a torch electrode according to the present invention, Fig. 2 is an enlarged vertical sectional view of the torch, and Fig. 3 is a circuit configuration of a power supply device. A schematic explanatory diagram mainly based on
, 9 is a flowchart, FIG. 10 is a schematic explanatory diagram mainly showing the circuit configuration of another power supply device, and FIG. 11 is a flowchart when the power supply device of FIG. 10 is used. In the figure, 1 is an automatic welding device, 3 is a torch, 5 is a control means,
12 is a power supply device, and W is a workpiece.

Claims (1)

【特許請求の範囲】 1 適宜制御手段によって相対的に位置制御するごとく
したワーク取付具およびトーチと、前記制御手段からの
指令により前記トーチの電極に溶接用およびセンサ用電
圧を選択的に印加する手段と、前記電極の通電状態を検
出する手段とを備え、溶接路りにおいて電極突出長さが
正規長さ以下となるものにおいて、前記トーチは先端部
の外套を前記電極から絶縁した導体となし、前記電圧印
加手段は前記外套にセンサ用電圧を印加し得るごとくな
し、電極突出長さ規正作業に際し、前記トーチの中心軸
線を所定の移動方向に対して鋭角αに保持し、前記電圧
印加手段により前記電極および外套にセンサ用電圧を印
加し、前記ワーク取付具またはトーチをワーク平面部と
トーチが接近する前記所定移動方向に移動させ、ワーク
平面部と前記外套間で近接放電したところで前記通電状
態検出手段からの「通電」信号によりワーク取付具また
はトーチを相互に離反する前記所定移動方向に所定距離
り移動させ、次いで電極とワーク間で近接放電するとこ
ろまで電極を送給するごとくしたことを特徴とする、自
動溶接装置におけるトーチの電極突出長さ規正方法。 2 前記電圧印加手段は、溶接用電源とセンサ用電源、
並びに前記電極を前記両型源に選択的に接続する切換ス
イッチと前記外套を適時前記センサ用電源に接続する開
閉スイッチとを備えた、特許請求の範囲第1項記載の自
動溶接装置におけるトーチの電極突出長さ規正方法。 3 前記電圧印加手段は、1個の電源装置に内蔵した、
溶接指令信号発生回路、センサ指令信号発生回路、電極
突出長さ規正指令信号発生回路、溶接用出力電圧設定回
路、センサ用出力電圧設定回路、前記両出力電圧設定回
路のいずれかの出力を選択的に入力して該出力電圧を前
記電極に印加するとともに、前記制御手段からの電極突
出長さ規正指令時のみ適宜電圧印加規制回路を介して前
記センサ用の出力電圧を前記外套に印加する出力電圧制
御回路とから成る、特許請求の範囲第1項記載の自動溶
接装置におけるトーチの電極突出長さ規正方法。 4 前記通電状態検出手段は、前記ワークと前記電極ま
たはトーチ外套との近接放電に伴う電流および/または
電圧の変化を検出する通電状態検出回路と、該回路から
の信号情報を前記制御手段に送信する通電状態検出出力
回路とから成る、特許請求の範囲第1項記載の自動溶接
装置におけるトーチの電極突出長さ規制方法。 5 前記所定距離りはbcosα−asinαに等しく
した、特許請求の範囲第1項記載の自動溶接装置におけ
るトーチの電極突出長さ規正方法。 但し、aは前記トーチの中心軸線からトーチ外套のワー
クに最接近する部分までの距離、bはトーチ先端から突
出する電極の規正突出長さ。
[Scope of Claims] 1. A workpiece fixture and a torch whose relative positions are controlled by appropriate control means, and welding and sensor voltages are selectively applied to the electrodes of the torch according to commands from the control means. and means for detecting the energization state of the electrode, and in the welding path, the protruding length of the electrode is equal to or less than the regular length, wherein the torch has a mantle at its tip as a conductor insulated from the electrode. , the voltage applying means is configured to be able to apply a sensor voltage to the mantle, and when adjusting the electrode protrusion length, the central axis of the torch is held at an acute angle α with respect to a predetermined movement direction; A sensor voltage is applied to the electrode and the jacket, the workpiece fixture or the torch is moved in the predetermined movement direction in which the torch approaches the workpiece flat part, and the energization is performed when a proximity discharge occurs between the workpiece flat part and the jacket. The workpiece fixture or the torch is moved a predetermined distance in the predetermined movement direction away from each other in response to an "energization" signal from the state detection means, and then the electrode is fed to the point where a close discharge occurs between the electrode and the workpiece. A method for regulating the protruding length of a torch electrode in an automatic welding device, characterized by: 2. The voltage applying means includes a welding power source and a sensor power source,
A torch in the automatic welding apparatus according to claim 1, further comprising a changeover switch for selectively connecting the electrode to the both type sources, and an opening/closing switch for connecting the mantle to the sensor power source at appropriate times. Method for regulating electrode protrusion length. 3. The voltage application means is built in one power supply device,
Selectively outputs one of the welding command signal generation circuit, sensor command signal generation circuit, electrode protrusion length regulation command signal generation circuit, welding output voltage setting circuit, sensor output voltage setting circuit, and both output voltage setting circuits. and apply the output voltage to the electrode, and apply the output voltage for the sensor to the mantle through the voltage application regulation circuit as appropriate only when an electrode protrusion length regulation command is issued from the control means. A method for regulating the length of an electrode protrusion of a torch in an automatic welding apparatus according to claim 1, comprising a control circuit. 4. The energization state detection means includes an energization state detection circuit that detects a change in current and/or voltage due to discharge in the proximity of the workpiece and the electrode or torch jacket, and transmits signal information from the circuit to the control means. A method for regulating the protrusion length of a torch electrode in an automatic welding apparatus according to claim 1, comprising: an energization state detection output circuit; 5. The method for regulating the length of an electrode protrusion of a torch in an automatic welding apparatus according to claim 1, wherein the predetermined distance is equal to b cos α - asin α. However, a is the distance from the central axis of the torch to the part of the torch mantle closest to the workpiece, and b is the normal protrusion length of the electrode protruding from the tip of the torch.
JP54099195A 1979-08-02 1979-08-02 Method for regulating torch electrode protrusion length in automatic welding equipment Expired JPS5823188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54099195A JPS5823188B2 (en) 1979-08-02 1979-08-02 Method for regulating torch electrode protrusion length in automatic welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54099195A JPS5823188B2 (en) 1979-08-02 1979-08-02 Method for regulating torch electrode protrusion length in automatic welding equipment

Publications (2)

Publication Number Publication Date
JPS5623380A JPS5623380A (en) 1981-03-05
JPS5823188B2 true JPS5823188B2 (en) 1983-05-13

Family

ID=14240858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54099195A Expired JPS5823188B2 (en) 1979-08-02 1979-08-02 Method for regulating torch electrode protrusion length in automatic welding equipment

Country Status (1)

Country Link
JP (1) JPS5823188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146878U (en) * 1984-10-24 1986-09-10
JPH0373996B2 (en) * 1983-03-30 1991-11-25

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118276A (en) * 1982-12-22 1984-07-07 Hitachi Zosen Corp Method for controlling projecting length of core wire
JPS59176618A (en) * 1983-03-25 1984-10-06 Hitachi Zosen Corp Measuring method of projection length of core
JPS59171880U (en) * 1983-05-02 1984-11-16 中央製機株式会社 arc welding robot
JP4875392B2 (en) * 2006-03-30 2012-02-15 株式会社ダイヘン Arc welding robot controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415441A (en) * 1977-04-30 1979-02-05 Shin Meiwa Ind Co Ltd Automatic welding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415441A (en) * 1977-04-30 1979-02-05 Shin Meiwa Ind Co Ltd Automatic welding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373996B2 (en) * 1983-03-30 1991-11-25
JPS61146878U (en) * 1984-10-24 1986-09-10

Also Published As

Publication number Publication date
JPS5623380A (en) 1981-03-05

Similar Documents

Publication Publication Date Title
US4249062A (en) Apparatus and method for sensing welding point in automatic welding apparatus
US7738996B2 (en) Method for positioning a welding robot tool
US20110220619A1 (en) Positional monitoring systems and methods for welding devices
US20210252626A1 (en) Methods and apparatus to provide a consistent electrode state for welding
JPH0732160A (en) Spot welding equipment
NO159579C (en) PROCEDURE TO CONTROL AN ARTS WELDING HEAD.
JPS5823188B2 (en) Method for regulating torch electrode protrusion length in automatic welding equipment
JP2001212671A (en) Automatic welding machine
JP2003320456A (en) Welding machine for welding metal element to structural component
WO2017077692A1 (en) Arc welding method
JPS59118276A (en) Method for controlling projecting length of core wire
JP3765861B2 (en) Electrode non-consumable welding robot and arc welding method using the same
JPH1177306A (en) Automatic welding equipment
JPS6210751B2 (en)
JPS5847943B2 (en) Fillet weld line detection method
KR200241167Y1 (en) submerged arc welding apparatus for joining pipe
JPS5839031B2 (en) automatic welding equipment
JPS5930511B2 (en) automatic welding equipment
JPH06344151A (en) Electric welding equipment
JPS6235861B2 (en)
JPS5942594B2 (en) automatic welding equipment
KR20020084366A (en) submerged arc welding apparatus for joining pipe
JPH01113177A (en) Method for controlling industrial robot
JPS5820707B2 (en) Fillet weld point detection method in automatic welding robot
JPH07116845A (en) Welding wire clamping device for welding robot