JPH01113177A - Method for controlling industrial robot - Google Patents

Method for controlling industrial robot

Info

Publication number
JPH01113177A
JPH01113177A JP26766987A JP26766987A JPH01113177A JP H01113177 A JPH01113177 A JP H01113177A JP 26766987 A JP26766987 A JP 26766987A JP 26766987 A JP26766987 A JP 26766987A JP H01113177 A JPH01113177 A JP H01113177A
Authority
JP
Japan
Prior art keywords
electrode
torch
welding
point
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26766987A
Other languages
Japanese (ja)
Other versions
JPH0673745B2 (en
Inventor
Hisahiro Fukuoka
福岡 久博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP26766987A priority Critical patent/JPH0673745B2/en
Publication of JPH01113177A publication Critical patent/JPH01113177A/en
Publication of JPH0673745B2 publication Critical patent/JPH0673745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the welding time by teaching an optional place of a work as a regulating point of electrode wire extension and using a corrected value by sensing of the work to correct said regulating point of the electrode wire extension and carrying out regulating work at a place close to a welding starting point. CONSTITUTION:An electrode 4a is brought into a torch 4 and a changeover switch is changed over to a power source for detection. The virtual tip P of the torch 4 falls and moves so that it is located at the regulating point P7' of the electrode wire extension after being corrected. Hereby, the distance between the chip tip of the torch 4 and the surface of a horizontal plate W1a' of the work is exactly coincident with the regular electrode wire extension L0. Continuously, the electrode 4a is fed and again projected toward the horizontal plate 1a' from the chip tip and the tip approaches the horizontal plate 1a' and discharges electricity to detect the surface of the horizontal plate W1a'. A computer 8 receives an electrification signal from an electrified state detection output circuit and the electrode 4a returns to the original intermediate shunting position P6. The electrode tip of the torch 4 is coincident with the position P6 and the electrode wire extension is in a state regulated to be equal to the regular extension L0.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、電極に検出用電圧を印加してワークを検出す
るセンサに関する。 (従来技術とそれQ問題点) 本出願人は先に特開昭54−15441および特願昭5
4−64853において、トーチの電極自体をセンサと
して使用する自動溶接装置を提示した。この自動溶接装
置においては、適宜制御手段からの溶接指令またはセン
サ指令により特殊な電圧印加手段を介してトーチの電極
にそれぞれ溶接用電圧とセンサ用電圧を選択的に印加し
、センシング時において電極とワークとの間の通電状態
を検知してワークの溶接線を探るものである。しかしな
がら、電極として消耗電極を用いた場合、電極のトーチ
からの突出長さは溶接中の電極の溶は込み具合の違いに
より各溶接終了時ごとに異なるのが普通である。また、
一般に電極供給リールからトーチに至る間の電極は可と
う管内に挿通されるが、この場合トーチの移動に伴なう
可とう管の屈曲状態の変化等によって前述電極の突出長
さは必ずしも一定に保たれず、この状態でセンシングを
行なってもワークの正確な溶接線が検出されないため、
当然この様な不正確なセンシングに基いて行なわれる自
動溶接では良好なる溶接結果は期待し得ない。 したがって、溶接終了後におけるワークの次の溶接線の
センシングに際しては、実際のセンシングに先立ち予め
トーチの電極突出長さを所定長さに規正する必要がある
。 従来、この電極突出長さの規正は、ワーク取付具の外縁
に基準位置を設け、センシングの度にトーチの電極を若
干引込めた状態で制御手段の指令。 に基いてトーチ先端の仮想溶接点を前記基準位置に合わ
せ、この状態で電極を送り出し、電極とワーク取付具間
の通電信号を得て電極の送り出しを停止させたり、ある
いはワークのある個所の自動溶接を終了して次のセンシ
ングに移行する前に、予めプログラムしておいた先の溶
接終了地点の近傍(次のセンシングおよび溶接個所に近
い場所が多い)で前述同要領で行なっていた。しかし前
者の場合は、センシングの都度ワーク取付具゛とトーチ
の仮想溶接点の相対位置を位置制御しなければならない
ため、特にトーチの移動距離が長い場合はセンシングに
要する時間も長くなり、また後者の場合は、個々のワー
クの製作および取付は誤差により電極突出長さ規正のた
めに予め定めておいたワークの基準位置は必ずしも総て
のワークに対して正確とはならず、その位置ずれ誤差が
そのまま電極の突出長さの誤差として現われる等、いず
れにしても常時正確な電極突出長さが得られるとは限ら
なかった。 (問題点の解決手段) 本発明による制御方法は、ワークの適所に電極突出長さ
規正点を教示し、各ワークに対し少くとも1次元にセン
シングした位置情報の補正値を記憶し、該補正値によっ
て前記電極突出長さ規正点の位置情報を修正するごとく
したことを特徴とする。 (実施例) 以下、図面に示す実施例に基づき詳述する。第1図は本
発明の背景となる産業用ロボットとして採用した直角座
標形溶接ロボン)ROの全体概要図である。 1は公知の直角座標(X、Y、Z)ロボッ)RO(詳細
は図示せず)の端末に構成した垂直軸で、該垂直軸1ま
わり(矢印α)に旋回可能に第1腕2を支承しである。 3は第1腕2の先端に斜軸3aまわり(矢印β)に旋回
可能に支承した第2腕である。第2腕3先端にはエンド
エフェクタとしてのトーチ4を取着しており、該トーチ
4は後述するようにセンサとしての機能を備えている。 そして垂直軸1、斜軸3aおよびトーチ4の中心軸線M
は一点Pにおいて交差するように構成しである。さらに
トーチ4はその溶接作動点が点Pと一致しうるように設
定しである。かくして、矢印αおよびβ方向への回転角
を制御することにより、トーチ4の垂直軸1に対する姿
勢角θおよび旋回角ψ(いわゆるオイラ角)を点Pを固
定して制御可能となっている。 5はワーク取付具としての固定のワーク妄−プルで、適
宜クランプ治具5a・5bにより上面左・右に2個のワ
ークW1・W2を対として固定する。尚、ワークW1・
W2はそれぞれ水平板W1a−W2aと該各水平板の端
縁に沿って直立状に仮付けした立板Wlb−W2bから
成り、各ワークW1・W2は製作誤差が予想され、また
クランプ治具5a・5bによるワークテーブル5への取
付は誤差も避けられないものとする。 6a・6bは電極供給ロールと1対の送給ローラで、送
給ローラ6bの回転制御により電極4aを供給ロール6
aから引き出し可撓性チューブ6C内を通ってトーチ4
に送給するごとくし−ζある。 7は溶接電源装置で電圧印加手段7aと通電状態検出手
段7bを内蔵し、このうち電圧印加手段7aは、溶接用
電源7a1.検出用電源7a2.一端を電極4aに接続
して適時前記両型源7a、・7azのいずれかに選択的
に接続する切換スイッチ?azから成る。また前記通電
状態検出手段7bは、通電状態検出回路7b、と通電状
態検出出力回路7b2とから成り、このうち通電状態検
出回路7b、は−端を前記検出用電源7azに接続し、
他端を前記溶接用電源7a、の反切換スイッチ7a、側
と共にワークW1・W2と常時導通状態にあるワークテ
ーブル5に接続してあり、また通電状態検出出力回路7
b2は前記通電状態検出回路7b、における通電状態の
変化(電流、電圧、またはこれら両者の変化)を検出信
号として入力する。 8は溶接ロボッ)ROの全体を総合的に制御する制御手
段としてのコンピュータで、CPUとメモリを含み、該
コンピュータ8のパスラインBには前記溶接電源装置7
.ロボットROの各軸サーボ系5x−sy−sz−sy
・Sβ、並びにティーチング用のリモコンボックス9を
接続しである。 前記リモコンボックス9は、「0」〜「9」の数字入カ
キ−の他、予め割当てられた種々の情報を入力するため
のキー群ならびに、対話型式にてティーチング作業を行
なえるように逐次必要なメツセージおよびキー操作に応
じた情報を表示するためのデイスプレー9aを具備して
構成されている。 ティーチングのための所定の手順は、コンピュータ8の
メモリ内に予めプログラムされており、コンピュータ8
はこのプログラムとオペレータのキー操作とに基づいて
、デイスプレー9aを表示制御する。 しかして、オペレータは、ティーチング作業に先立ち適
宜切断工具を用いてトーチ4から突出する電極4aを正
規の突出長さのし。に切断する。 いま前記ワークW1・W2のそれぞれ水平板W1a−W
2aと立板Wlb−W2bとの隅肉溶接条件LI・WL
2につき水平隅肉部溶接を実行しようとするものである
。 そして、オペレータは、リモコンボックス9を操作して
トーチ4を移動させながら以下のティーチング作業を行
う。 (1)  先ず溶接′fllAWL、1の溶接開始点P
4に近い第1のセンシング開始点P、にトーチ4の電極
先端Pを配置し、その位置P、における位置情報(X。 Y、  Z軸)、姿勢情報(α、β軸)、および隅肉溶
接条件センシング指令情報を教示するとともに、該セン
シングを実行する。即ち、このセンシングでは、トーチ
4は水平板Wlaに向う垂直方向と立板w1bに向う水
平方向に移動して水平板Wlaおよび立板Wlbの面を
検出して各検出位置より溶接線WLIの位置P2を取込
む。 (2)次に、トーチ4を溶接開始点P4から適宜離間し
た待機位置P3さらに溶接開始点P4に移動させ、それ
ぞれの位置P3 ・P4における位置情報、姿勢情報1
両位置P、・pi、間の移動速度情報を教示する。特に
溶接開始点P4においては前記各情報の他に、センシン
グ補正指令を教示する。 このセンシング補正指令はワークW1に対する自動溶接
作業時に前述(1)で実行したセンシング結果で溶接開
始点P4を補正することを意味する。 (3)トーチ4を溶接線WLIの溶接終了点P、にもた
らしその位置での位置情報、姿勢情報、隅肉溶接条件(
電流・電圧・速度等)、センシング補正指令を教示する
。 (4)続いて、トーチ4を溶接終了点P、から適宜離間
して水平板W1の上方に位置する中間泣避位置P6に中
心軸線Mが水平板W1に対し垂直状となるようにもたら
し、その位置での位置情報、姿勢情報、および電極突出
長さ規正指令を教示するとともに電極突出長さ規正作−
業を実行する。即ち、トーチ4は水平板Wlaに向って
垂直方向に下降して水平板Wlaの面を検出してその検
出位置P7を電極突出長さ規正点として取込む。その検
出位置P7に対するセンシング補正指令を教示する。 (5)トーチ4を溶接線WL2の溶接開始点P1゜に近
い第2のセンシング開始点P8にもたらし、その位置P
aにおける位置情報、姿勢情報、および隅肉溶接線用セ
ンシング指令情報を教示するとともに、前述(11と同
様にセンシングを実行し、溶接線WL2の位置P、を取
込む。 (6)次いでトーチ4を溶接開始点PIGに移動させ、
その位置P1゜における位置情報、姿勢情報、前記第2
センシング開始点P8 ・溶接開始点P1゜間の移動速
度情報、並びにセンシング補正指令を教示する。 (7)トーチ4を溶接線WL2の溶接終了点pHにもた
らし、その位置での位置情報、姿勢情報、隅肉溶接条件
、センシング補正指令を教示する。 (8)最後に、溶接終了点pHから離れた退避位置Pl
□にトーチ4をもたらし位置情報、移動速度情報を教示
する。 以上でティーチングを終了する。 次に溶接ロボットROがコンピュータ8からの指令出力
に基づき行う動作の中で、特に自動溶接作業途中で電極
突出長さ規正の動作に重点をおき第3・4図を参照しな
がら説明する。尚、これにより自動溶接行うワークWl
’ ・W2’はティーチング時のワークW1・W2とは
形状・大きさは実質上同じであるものの、多少の位置ず
れが予想されるものとする。 〔1〕先ずトーチ4は第1のセンシング開始点P1に位
置決めしてセンシングを実行し、コンピュータ8はその
センシング結果より溶接線WLIの点22 ′を求め、
ティーチング時の点P2との差△P2を補正値ΔPnと
して演算記憶する(処理PR1)。そしてコンピュータ
8はセンシング′補正指令のあるティーチング時の溶接
開始点Pa、溶接終了点Ps、並びに電極突出長さ規正
点P1を前記補正値△Pnで補正し、位置修正後の点2
4′・p 、l・p 、 lを演算して記憶する(処理
PR2)。 〔2〕 トーチ4は、前記センシング実行後、待機位置
P、より溶接開始点p、lに移動し、該溶接開始点p 
、 /より溶接終了点P、′まで水平隅肉溶接を行い、
溶接終了後、中間退避位置P6に退避する。この溶接終
了時点では、トーチ4の電極4a突出長さし、は電極4
aの溶は込みにより正規の突出長さLoより一般的に若
干短くなっている(第4(a)図参照)。 〔3〕第4(a)図の状態から、処理PR3により電極
4aがトーチ4内に引込むく第4(b)図)。 〔4〕処理PR4により、切換スイッチ7azが検出用
電源7a2に切換ねる。 〔5〕次いで、処理PR5により、トーチ4の仮想先端
Pが補正後の電極突出長さ規正点p7 jに位置するよ
うに、例えば第4(C)図に示すように下降移動する。 これで、トーチ4のチップ先端かたワークWl’の水平
板Wla’の表面までの距離は丁度正規の電極突出長さ
Loに一致する(第4(C)図参照)。 〔6〕続いて、処理PR6により、電極4aが送給され
て、該電極4aは再び千ツブ先端より水平板Wla’に
向けて突出する。そして、電極4a先端が水平FiW1
a’に近接放電して該水平板W1a′の表面を検出しく
第4(d)図)、コンピュータ8は通電状態検出出力回
路7bzからの「通電」信号を受信し、処理PR7・P
H1により電極4aの送給が停止するとともに元の中間
退避位置P6に移動復帰する(第4(e)図)。この移
動復帰で、第4 (e)図に示す通り、トーチ4の電極
先端は丁度位置P、に一致するとともに、トーチ4から
の電極突出長さは正規の電極突出長さLOに等しく規正
された状態にある。 〔8〕続いて、トーチ4は第2のセンシング開始点pg
に移動し、前述〔1〕と同様にセンシング結果より溶接
線WL2の点p、lを求め、ティーチング時の点P、と
の差△P、を補正値ΔPnとして演算記憶する(処理P
R1)。そしてコンピュータ8はセンシング補正指令の
あるティーチング時の溶接開始点PIGおよび溶接終了
点Pl+を前記補正値△Pnで補正し、位置修正後の点
PIO′・pH′を演算して記憶する(処理PR2>。
(Industrial Application Field) The present invention relates to a sensor that detects a workpiece by applying a detection voltage to an electrode. (Prior art and its Q problems) The present applicant previously filed Japanese Patent Application Laid-open No. 54-15441 and
No. 4-64853 presented an automatic welding device that uses the torch electrode itself as a sensor. In this automatic welding device, a welding voltage and a sensor voltage are selectively applied to the electrodes of the torch through a special voltage application means according to a welding command or a sensor command from a control means as appropriate, and the electrodes and sensor voltages are applied selectively to the torch electrodes during sensing. This detects the current state between the workpiece and the weld line of the workpiece. However, when a consumable electrode is used as the electrode, the length of the electrode protruding from the torch usually differs at the end of each weld due to the difference in the degree of penetration of the electrode during welding. Also,
Generally, the electrode between the electrode supply reel and the torch is inserted into a flexible tube, but in this case, the protruding length of the electrode is not necessarily constant due to changes in the bending state of the flexible tube as the torch moves. Even if sensing is performed in this state, the accurate weld line of the workpiece will not be detected.
Naturally, good welding results cannot be expected from automatic welding performed based on such inaccurate sensing. Therefore, when sensing the next weld line on the workpiece after welding is completed, it is necessary to regulate the protruding length of the electrode of the torch to a predetermined length in advance of actual sensing. Conventionally, this electrode protrusion length has been regulated by setting a reference position on the outer edge of the workpiece fixture, and commanding the control means with the torch electrode slightly retracted each time sensing is performed. Based on this, the virtual welding point at the tip of the torch is aligned with the reference position, the electrode is fed out in this state, and an energization signal is obtained between the electrode and the workpiece fixture to stop the electrode feeding, or automatic After finishing welding and before moving on to the next sensing, welding was carried out in the same manner as described above near the previously programmed welding end point (often at a place close to the next sensing and welding point). However, in the former case, the relative position of the virtual welding point between the workpiece fixture and the torch must be controlled each time sensing is performed, which increases the time required for sensing, especially if the torch travels a long distance. In this case, the reference position of the workpiece set in advance for regulating the electrode protrusion length is not necessarily accurate for all workpieces due to errors in manufacturing and mounting each workpiece, and the positional deviation error may occur. However, in any case, it was not always possible to obtain an accurate electrode protrusion length, for example, this directly appeared as an error in the protrusion length of the electrode. (Means for Solving Problems) The control method according to the present invention teaches an electrode protrusion length regulation point at a suitable location on a workpiece, stores a correction value of position information sensed in at least one dimension for each workpiece, and stores the correction value of position information sensed in at least one dimension for each workpiece. The present invention is characterized in that the positional information of the electrode protrusion length regulation point is corrected depending on the value. (Example) Hereinafter, a detailed description will be given based on an example shown in the drawings. FIG. 1 is an overall schematic diagram of a rectangular coordinate type welding robot (RO) employed as an industrial robot that forms the background of the present invention. 1 is a vertical axis constructed at the terminal of a known rectangular coordinate (X, Y, Z) robot) RO (details not shown), and the first arm 2 is rotatable around the vertical axis 1 (arrow α). I support it. 3 is a second arm supported at the tip of the first arm 2 so as to be pivotable around an oblique shaft 3a (arrow β). A torch 4 as an end effector is attached to the tip of the second arm 3, and the torch 4 has a function as a sensor as described later. The vertical axis 1, the oblique axis 3a, and the central axis M of the torch 4
are constructed so that they intersect at one point P. Further, the torch 4 is set so that its welding operating point can coincide with the point P. Thus, by controlling the rotation angle in the directions of the arrows α and β, the attitude angle θ and the turning angle ψ (so-called Euler angle) of the torch 4 with respect to the vertical axis 1 can be controlled while fixing the point P. Reference numeral 5 denotes a fixed workpiece pull as a workpiece fixing device, and the two works W1 and W2 are fixed as a pair on the left and right sides of the upper surface using appropriate clamping jigs 5a and 5b. In addition, work W1・
W2 consists of horizontal plates W1a-W2a and vertical plates Wlb-W2b temporarily attached in an upright manner along the edge of each horizontal plate, and each workpiece W1 and W2 is expected to have manufacturing errors, and also has a clamp jig 5a. - Errors are unavoidable when attaching to the work table 5 using 5b. 6a and 6b are an electrode supply roll and a pair of feed rollers, and the electrode 4a is transferred to the feed roll 6 by controlling the rotation of the feed roller 6b.
Pull out the torch 4 from a and pass through the flexible tube 6C.
There is -ζ as if it were to be sent to . Reference numeral 7 denotes a welding power source device which incorporates a voltage applying means 7a and an energization state detecting means 7b, of which the voltage applying means 7a is connected to a welding power source 7a1. Detection power source 7a2. A changeover switch that connects one end to the electrode 4a and selectively connects it to either of the two types of sources 7a, 7az at an appropriate time? Consists of az. The energization state detection means 7b includes an energization state detection circuit 7b and an energization state detection output circuit 7b2, of which the negative end of the energization state detection circuit 7b is connected to the detection power supply 7az,
The other end of the welding power source 7a is connected to the work table 5, which is always in electrical continuity with the workpieces W1 and W2, together with the opposite switch 7a, and the energization state detection output circuit 7
b2 inputs a change in the energization state (change in current, voltage, or both) in the energization state detection circuit 7b as a detection signal. Reference numeral 8 denotes a computer as a control means for comprehensively controlling the entire welding robot (RO), and includes a CPU and a memory.
.. Each axis servo system of robot RO 5x-sy-sz-sy
・Connect Sβ and remote control box 9 for teaching. The remote control box 9 includes keys for inputting numbers from "0" to "9" as well as a group of keys for inputting various information assigned in advance, as well as a set of keys for inputting various information assigned in advance, as well as a set of keys required for interactive teaching work. The device is equipped with a display 9a for displaying messages and information corresponding to key operations. A predetermined procedure for teaching is preprogrammed in the memory of the computer 8 and
controls the display 9a based on this program and key operations by the operator. Therefore, prior to the teaching operation, the operator uses an appropriate cutting tool to cut the electrode 4a protruding from the torch 4 to a regular protrusion length. Cut into. Now, the horizontal plates W1a-W of the works W1 and W2 are respectively
Fillet welding conditions LI/WL between 2a and standing plate Wlb-W2b
2, horizontal fillet welding is to be performed. Then, the operator performs the following teaching work while operating the remote control box 9 and moving the torch 4. (1) First, welding 'fullAWL, welding starting point P of 1
The electrode tip P of the torch 4 is placed at the first sensing starting point P, which is close to P, and the position information (X, Y, Z axes), posture information (α, β axes), and fillet at that position P are obtained. The welding condition sensing command information is taught and the sensing is executed. That is, in this sensing, the torch 4 moves vertically toward the horizontal plate Wla and horizontally toward the vertical plate W1b, detects the surfaces of the horizontal plate Wla and the vertical plate Wlb, and determines the position of the welding line WLI from each detection position. Take in P2. (2) Next, the torch 4 is moved to a standby position P3 appropriately spaced from the welding start point P4 and then to the welding start point P4, and the position information and posture information 1 at each position P3 and P4 are
The moving speed information between both positions P and pi is taught. In particular, at the welding start point P4, in addition to the above information, a sensing correction command is taught. This sensing correction command means correcting the welding start point P4 based on the sensing result executed in (1) above during automatic welding work on the workpiece W1. (3) Bringing the torch 4 to the welding end point P of the welding line WLI, position information, posture information, fillet welding conditions (
Current, voltage, speed, etc.) and sensing correction commands are taught. (4) Subsequently, the torch 4 is appropriately spaced from the welding end point P and brought to an intermediate weeping position P6 located above the horizontal plate W1 so that the central axis M is perpendicular to the horizontal plate W1, Teach the position information, posture information, and electrode protrusion length regulation command at that position, and create the electrode protrusion length regulation.
carry out the work. That is, the torch 4 descends in the vertical direction toward the horizontal plate Wla, detects the surface of the horizontal plate Wla, and takes the detected position P7 as the electrode protrusion length regulation point. A sensing correction command for the detected position P7 is taught. (5) Bring the torch 4 to the second sensing start point P8 close to the welding start point P1° of the welding line WL2, and
The position information, posture information, and fillet weld line sensing command information at a are taught, and sensing is performed in the same manner as in step 11 above to capture the position P of the weld line WL2. (6) Next, the torch 4 Move to the welding start point PIG,
Position information and posture information at the position P1°, the second
Sensing start point P8 - Teach moving speed information between welding start point P1° and sensing correction command. (7) Bring the torch 4 to the welding end point pH of the welding line WL2, and teach the position information, posture information, fillet welding conditions, and sensing correction command at that position. (8) Finally, the retreat position Pl away from the welding end point pH
Bring the torch 4 to □ and teach position information and movement speed information. This completes the teaching. Next, among the operations performed by the welding robot RO based on the command output from the computer 8, the operation of regulating the electrode protrusion length during the automatic welding operation will be particularly emphasized and explained with reference to FIGS. 3 and 4. In addition, with this, the workpiece Wl to be automatically welded
It is assumed that 'W2' has substantially the same shape and size as the workpieces W1 and W2 at the time of teaching, but some positional deviation is expected. [1] First, the torch 4 is positioned at the first sensing starting point P1 and sensing is performed, and the computer 8 determines the point 22' of the welding line WLI from the sensing result,
The difference ΔP2 from the point P2 at the time of teaching is calculated and stored as a correction value ΔPn (processing PR1). Then, the computer 8 corrects the welding start point Pa, welding end point Ps, and electrode protrusion length regulation point P1 at the time of teaching with the sensing 'correction command using the correction value ΔPn, and points 2 after position correction.
4'·p, l·p, and l are calculated and stored (processing PR2). [2] After performing the sensing, the torch 4 moves from the standby position P to the welding start points p and l, and moves from the standby position P to the welding start points p and l.
, Perform horizontal fillet welding from / to the welding end point P,',
After welding is completed, it retreats to the intermediate retreat position P6. At the end of this welding, the protruding length of the electrode 4a of the torch 4 is
Generally, the protrusion length Lo is slightly shorter than the normal protrusion length Lo due to the welding in a (see Fig. 4(a)). [3] From the state shown in FIG. 4(a), the electrode 4a is retracted into the torch 4 by process PR3 (FIG. 4(b)). [4] Through process PR4, the changeover switch 7az is switched to the detection power supply 7a2. [5] Next, in process PR5, the virtual tip P of the torch 4 is moved downward, for example, as shown in FIG. 4(C), so that it is located at the corrected electrode protrusion length regulation point p7j. With this, the distance from the tip end of the torch 4 to the surface of the horizontal plate Wla' of the workpiece W1' exactly corresponds to the normal electrode protrusion length Lo (see FIG. 4(C)). [6] Subsequently, in process PR6, the electrode 4a is fed, and the electrode 4a again protrudes from the tip end toward the horizontal plate Wla'. Then, the tip of the electrode 4a is horizontal FiW1
a' to detect the surface of the horizontal plate W1a' (FIG. 4(d)), the computer 8 receives the "energization" signal from the energization state detection output circuit 7bz, and processes PR7 and P.
At H1, feeding of the electrode 4a is stopped and the electrode 4a returns to the original intermediate retracted position P6 (FIG. 4(e)). With this movement return, as shown in FIG. 4(e), the electrode tip of the torch 4 exactly coincides with the position P, and the electrode protrusion length from the torch 4 is regulated to be equal to the normal electrode protrusion length LO. is in a state of [8] Next, the torch 4 moves to the second sensing starting point pg
, calculate the points p and l of the welding line WL2 from the sensing results as in [1] above, and calculate and store the difference ΔP from the point P at the time of teaching as a correction value ΔPn (process P
R1). Then, the computer 8 corrects the welding start point PIG and welding end point Pl+ at the time of teaching with the sensing correction command using the correction value ΔPn, calculates and stores the point PIO' and pH' after the position correction (processing PR2 >.

〔9〕その後、処理PR9により切換スイッチ7a、が
溶接用電源7a、に切換ねる。 〔10〕続いて、トーチ4は溶接開始点P、。′より溶
接終了点pH′まで水平隅肉溶接を行い、溶接終了後、
退避位”11 P + zに退避し、これらのり−クW
1′・W2’に対する自動溶接作業を完了する。 本発明は前述実施例以外に下記する変形もまた可能であ
る。 (1)  ロボットは前述実施例のような直角座標形溶
接ロボット以外に、多関節形溶接ロボット等他のメカ構
成のロボットでもよい。 (2)前述実施例では、ティーチングに先立つ電極突出
長さの規正を切断工具を用いた手作業として述べたが、
予めワークテーブル5の基準点を定めておき、自動的に
行うようにしてもよい。 (3)前述実施例では、溶接途中での電極突出長さ規正
点を1個所としたが、多数のワークが個別に治具により
取付けられワーク間の相対位置がずれる恐れのある場合
は、電極突出長さ規正点は順次既溶接済ワーク(位置補
正済み)においてしかも次のワークの溶接開始点に近い
ところに設定することになり複数個所となる。 (4)前述実施例では、トーチ4を溶接トーチとセンサ
を兼用としたが、溶接トーチ・溶断トーチ・グラインダ
等地の加工器具とともに使用するセンサ専用としても当
然に実施できる。 (発明の効果) 以上説明したように、本発明の制御方法によるときは、
ワークの任意の場所を電極突出長さ規正点として教示し
、自動溶接に先立つワークのセンシングによる補正値を
用いて先の電極突出長さ規正点を補正するようにしたた
め、従来のように電極突出長さ規正作業の都度遠方のワ
ーク取付具等の基準位置に戻る必要がなく、次の溶接開
始点に近い場所でその規正作業を行うことができ、全体
の溶接時間の短縮を図り得、また溶接中断時に電極が溶
込みにより短(なっても次の電極突出長さ規正の精度に
悪影響を及ぼす恐れは皆無で常に正確な電極突出長さ規
正作業を保証し、その後における溶接開始を円滑に行い
得る等、大きな効果を奏するものである。
[9] Thereafter, the changeover switch 7a is switched to the welding power source 7a by process PR9. [10] Next, the torch 4 is moved to the welding starting point P. Horizontal fillet welding is performed from ' to the welding end point pH', and after welding is completed,
Retreat to the retreat position "11 P + z, and these pictures W
Complete automatic welding work for 1' and W2'. In addition to the embodiments described above, the present invention can also be modified as described below. (1) The robot may be a robot of other mechanical configuration, such as an articulated welding robot, in addition to the rectangular coordinate type welding robot as in the above embodiment. (2) In the above embodiment, the electrode protrusion length was regulated manually using a cutting tool prior to teaching.
The reference point of the work table 5 may be determined in advance, and the process may be performed automatically. (3) In the above embodiment, the length of the electrode protrusion during welding was set at one point, but if a large number of workpieces are attached individually using jigs and there is a risk that the relative positions of the workpieces may shift, The protrusion length regulation points are successively set in the previously welded workpieces (position corrected) and close to the welding start point of the next workpiece, resulting in a plurality of points. (4) In the above-mentioned embodiment, the torch 4 is used both as a welding torch and as a sensor, but it can also be used exclusively as a sensor for use with a processing tool such as a welding torch, a fusing torch, or a grinder. (Effect of the invention) As explained above, when using the control method of the present invention,
An arbitrary location on the workpiece is taught as the electrode protrusion length regulation point, and the correction value obtained by sensing the workpiece prior to automatic welding is used to correct the previous electrode protrusion length regulation point. There is no need to return to the reference position of a distant workpiece fixture each time the length adjustment work is performed, and the adjustment work can be performed at a location close to the next welding start point, reducing the overall welding time. Even if the electrode becomes short due to penetration during welding interruption, there is no risk of adversely affecting the accuracy of the next electrode protrusion length adjustment, ensuring accurate electrode protrusion length adjustment at all times, and making subsequent welding starts smoothly. It can be used with great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を採用した溶接ロボットの全体概要図、
第2(a)・ (b)図はティーチング時の電極突出長
さ規正作業を示す作用説明図、第3図はフローチャート
、第4(a)〜(e)図は自動溶接作業途中での電極突
出長さ規正作業を示す作用説明図である。 図中、4はトーチ、4aは電極、5はワークテーブル、
7は溶接電源装置、8はコンピュータである。
Figure 1 is an overall schematic diagram of a welding robot adopting the present invention.
Figures 2 (a) and (b) are action explanatory diagrams showing the electrode protrusion length regulation work during teaching, Figure 3 is a flow chart, and Figures 4 (a) to (e) are electrodes during automatic welding work. FIG. 7 is an explanatory diagram showing the operation of protrusion length regulation work. In the figure, 4 is a torch, 4a is an electrode, 5 is a work table,
7 is a welding power supply device, and 8 is a computer.

Claims (1)

【特許請求の範囲】[Claims] 中心軸線方向に伸縮可能な電極を具備したセンサと、前
記電極に検出用電圧を印加する手段と、前記電極の通電
状態を検出する手段とを含む産業用ロボットにおいて、
ワークの適所に電極突出長さ規正点を教示し、各ワーク
に対し少くとも1次元にセンシングした位置情報の補正
値を記憶し、該補正値によって前記電極突出長さ規正点
の位置情報を修正するごとくしたことを特徴とする、産
業用ロボットの制御方法。
An industrial robot including a sensor equipped with an electrode that is expandable and retractable in the central axis direction, means for applying a detection voltage to the electrode, and means for detecting the energization state of the electrode,
Teach the electrode protrusion length regulation point at an appropriate location on the workpiece, store a correction value of positional information sensed in at least one dimension for each workpiece, and correct the positional information of the electrode protrusion length regulation point using the correction value. A method of controlling an industrial robot, which is characterized by the ability to control robots.
JP26766987A 1987-10-22 1987-10-22 Control method for industrial robot Expired - Lifetime JPH0673745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26766987A JPH0673745B2 (en) 1987-10-22 1987-10-22 Control method for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26766987A JPH0673745B2 (en) 1987-10-22 1987-10-22 Control method for industrial robot

Publications (2)

Publication Number Publication Date
JPH01113177A true JPH01113177A (en) 1989-05-01
JPH0673745B2 JPH0673745B2 (en) 1994-09-21

Family

ID=17447884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26766987A Expired - Lifetime JPH0673745B2 (en) 1987-10-22 1987-10-22 Control method for industrial robot

Country Status (1)

Country Link
JP (1) JPH0673745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680353B1 (en) * 2005-12-15 2007-02-08 현대자동차주식회사 Welding robot teaching system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680353B1 (en) * 2005-12-15 2007-02-08 현대자동차주식회사 Welding robot teaching system

Also Published As

Publication number Publication date
JPH0673745B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
EP1123769A2 (en) Robot welding
US6522949B1 (en) Robot controller
US4380696A (en) Method and apparatus for manipulator welding apparatus with vision correction for workpiece sensing
JP6517871B2 (en) Teaching system and method for welding robot
US4706000A (en) Tool posture control system
CN110948089B (en) Robot control device for controlling arc motion of robot
CN110154043B (en) Robot system for learning control based on machining result and control method thereof
JPH01113177A (en) Method for controlling industrial robot
US20230094555A1 (en) Robot controller
JPS60170576A (en) Automatic positioning system for welding parts
JPS6235861B2 (en)
JPH06155055A (en) Laser beam machine
JP2004314108A (en) Automatic welding control method
JPS6313791B2 (en)
JPH0318478A (en) Method for controlling weld line profile
JPH0514921B2 (en)
JPH10244368A (en) Method and device for detecting groove in automatic welding machine
JP2832630B2 (en) Welding line profiling control method
JPH01161401A (en) Method for controlling industrial robot
JPH0413109B2 (en)
JP2572082Y2 (en) Teaching machine for processing machine
JPS5839029B2 (en) Groove detection method
JPS6342552B2 (en)
JPS61172678A (en) Method for controlling welding robot
JP3682637B2 (en) Groove detection method in automatic welding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14