JPH0673745B2 - Control method for industrial robot - Google Patents

Control method for industrial robot

Info

Publication number
JPH0673745B2
JPH0673745B2 JP26766987A JP26766987A JPH0673745B2 JP H0673745 B2 JPH0673745 B2 JP H0673745B2 JP 26766987 A JP26766987 A JP 26766987A JP 26766987 A JP26766987 A JP 26766987A JP H0673745 B2 JPH0673745 B2 JP H0673745B2
Authority
JP
Japan
Prior art keywords
welding
electrode
torch
point
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26766987A
Other languages
Japanese (ja)
Other versions
JPH01113177A (en
Inventor
久博 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP26766987A priority Critical patent/JPH0673745B2/en
Publication of JPH01113177A publication Critical patent/JPH01113177A/en
Publication of JPH0673745B2 publication Critical patent/JPH0673745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

(産業上の利用分野) 本発明は、電極に検出用電圧を印加してワークを検出す
るセンサに関する。 (従来技術とそれの問題点) 本出願人は先に特開昭54−15441および特開昭55−15667
3において、トーチの電極自体をセンサとして使用する
自動溶接装置を提示した。この自動溶接装置において
は、適宜制御手段からの溶接指令またはセンサ指令によ
り特殊な電圧印加手段を介してトーチの電極にそれぞれ
溶接用電圧とセンサ用電圧を選択的に印加し、センシン
グ時において電極とワークとの間の通電状態を検知して
ワークの溶接線を探るものである。しかしながら、電極
として消耗電極を用いた場合、電極のトーチからの突出
長さは溶接中の電極の溶け込み具合の違いにより各溶接
終了時ごとに異なるのが普通である。また、一般に電極
供給リールからトーチに至る間の電極は可とう管内に挿
通されるが、この場合トーチの移動に伴なう可とう管の
屈曲状態の変化等によって前述電極の突出長さは必ずし
も一定に保たれず、この状態でセンシングを行なっても
ワークの正確な溶接線が検出されないため、当然この様
な不正確なセンシングに基いて行なわれる自動溶接では
良好なる溶接結果は期待し得ない。 したがって、溶接終了後におけるワークの次の溶接線の
センシングに際しては、実際のセンシングに先立ち予め
トーチの電極突出長さを所定長さに規正する必要があ
る。 従来、この電極突出長さの規正は、ワーク取付具の外縁
に基準位置を設け、センシングの度にトーチの電極を若
干引込めた状態で制御手段の指令に基いてトーチ先端の
仮想溶接点を前記基準位置に合わせ、この状態で電極を
送り出し、電極とワーク取付具間の通電信号を得て電極
の送り出しを停止させたり、あるいはワークのある個所
の自動溶接を終了して次のセンシングに移行する前に、
予めプログラムしておいた先の溶接終了地点の近傍(次
のセンシングおよび溶接個所に近い場所が多い)で前述
同要領で行なっていた。しかし前者の場合は、センシン
グの都度ワーク取付具とトーチの仮想溶接点の相対位置
を位置制御しなければならないため、特にトーチの移動
距離が長い場合はセンシングに要する時間も長くなり、
また後者の場合は、個々のワークの製作および取付け誤
差により電極突出長さ規正のために予め定めておいたワ
ークの基準位置は必ずしも総てのワークに対して正確と
はならず、その位置ずれ誤差がそのまま電極の突出長さ
の誤差として表われる等、いずれにしても常時正確な電
極突出長さが得られるとは限らなかった。 (問題点の解決手段) 本発明による制御方法は、ワークの適所に電極突出長さ
規正点を教示し、各ワークに対し少くとも1次元にセン
シングした位置情報の補正値を記憶し、該補正値によっ
て前記電極突出長さ規正点の位置情報を修正するごとく
したことを特徴とする。 (実施例) 以下、図面に示す実施例に基づき詳述する。第1図は本
発明の背景となる産業用ロボットとして採用した直角座
標形溶接ロボットROの全体概要図である。 1は公知の直角座標(X,Y,Z)ロボットRO(詳細は図示
せず)の端末に構成した垂直軸で、該垂直軸1まわり
(矢印α)に旋回可能に第1腕2を支承してある。 3は第1腕2の先端に斜軸3aまわり(矢印β)に旋回可
能に支承した第2腕である。第2腕3先端にはエンドエ
フェクタとしてのトーチ4を取着しており、該トーチ4
は後述するようにセンサとしての機能を備えている。 そして垂直軸1、斜軸3aおよびドーチ4の中心軸線Mは
一点Pにおいて交差するように構成してある。さらにト
ーチ4はその溶接作動点が点Pと一致しうるように設定
してある。かくして、矢印αおよびβ方向への回転角を
制御することにより、トーチ4の垂直軸1に対する姿勢
角θおよび旋回角φ(いわゆるオイラ角)を点Pを固定
して制御可能となっている。 5はワーク取付具としての固定のワークテーブルで、適
宜クランプ治具5a・5bにより上面左・右に2個のワーク
W1・W2を対として固定する。尚、ワークW1・W2はそれぞ
れ水平板W1a・2Waと該各水平板の端縁に沿って直立状に
仮付けした立板W1b・W2bから成り、各ワークW1・W2は製
作誤差が予想され、またクランプ治具5a・5bによるワー
クテーブル5への取付け誤差も避けられないものとす
る。 6a・6bは電極供給ロールと1対の送給ローラで、送給ロ
ーラ6bの回転制御により電極4aを供給ロール6aから引き
出し可撓性チューブ6c内を通ってトーチ4に送給するご
とくしてある。 7は溶接電源装置で電圧印加手段7aと通電状態検出手段
7bを内蔵し、このうち電圧印加手段7aは、溶接用電源7a
1,検出用電源7a2,一端を電極4aに接続して適時前記両電
源7a1・7a2のいずれかに選択的に接続する切換スイッチ
7a3から成る。また前記通電状態検出手段7bは、通電状
態検出回路7b1と通電状態検出出力回路7b2とから成り、
このうち通電状態検出回路7b1は一端を前記検出用電源7
a2に接続し、他端を前記溶接用電源7a1の反切換スイッ
チ7a3側と共にワークW1・W2と常時導通状態にあるワー
クテーブル5に接続してあり、また通電状態検出出力回
路7b2は前記通電状態検出回路7b1における通電状態の変
化(電流,電圧,またはこれら両者の変化)を検出信号
として入力する。 8は溶接ロボットROの全体を総合的に制御する制御手段
としてのコンピュータで、CPUとメモリを含み、該コン
ピュータ8のバスラインBには前記溶接電源装置7,ロボ
ットROの各軸サーボ系SX・SY・SZ・Sα・Sβ、並びに
ティーチング用のリモコンボックス9を接続してある。 前記リモコンボックス9は、「0」〜「9」の数字入力
キーの他、予め割当てられた種々の情報を入力するため
のキー群ならびに、対話型式にてティーチング作業を行
なえるように逐次必要なメッセージおよびキー操作に応
じた情報を表示するためのディスプレー9aを具備して構
成されている。 ティーチングのための所定の手順は、コンピュータ8の
メモリ内に予めプログラムされており、コンピュータ8
はこのプログラムとオペレータのキー操作とに基づい
て、ディスプレー9aを表示制御する。 しかして、オペレータは、ティーチング作業に先立ち適
宜切断工具を用いてトーチ4から突出する電極4aを正規
の突出長さのL0に切断する。いま前記ワークW1・W2のそ
れぞれ水平板W1a・W2aと立板W1b・W2bとの隅肉部溶接線
WL1・WL2につき水平隅肉部溶接を実行しようとするもの
である。 そして、オペレータは、リモコンボックス9を操作して
トーチ4を移動させながら以下のティーチング作業を行
う。 (1) 先ず溶接線WL1の溶接開始点P4に近い第1のセ
ンシング開始点P1にトーチ4の電極先端Pを配置し、そ
の位置P1における位置情報(X,Y,Z軸),姿勢情報
(α,β軸),および隅肉部溶接線用センシング指令情
報を教示するとともに、該センシングを実行する。即
ち、このセンシングでは、トーチ4は水平板W1aに向う
垂直方向と立板W1bに向う水平方向に移動して水平板W1a
および立板W1bの面を検出して各検出位置より溶接線WL1
の位置P2を取込む。 (2) 次に、トーチ4を溶接開始点P4から適宜離間し
た待機位置P3さらに溶接開始点P4に移動させ、それぞれ
の位置P3・P4における位置情報,姿勢情報,両位置P3
P4間の移動速度情報を教示する。特に溶接開始点P4にお
いては前記各情報の他に、センシング補正指令を教示す
る。このセンシング補正指令はワークW1に対する自動溶
接作業時に前述(1)で実行したセンシング結果で溶接
開始点P4を補正することを意味する。 (3) トーチ4を溶接線WL1の溶接終了点P5にもたら
しその位置での位置情報,姿勢情報,隅肉溶接条件(電
流・電圧・速度等),センシング補正指令を教示する。 (4) 続いて、トーチ4を溶接終了点P5から適宜離間
して水平板W1の上方に位置する中間退避位置P6に中心軸
線Mが水平板W1に対し垂直状となるようにもたらし、そ
の位置での位置情報,姿勢情報,および電極突出長さ規
正指令を教示するとともに電極突出長さ規正作業を実行
する。即ち、トーチ4は水平板W1aに向って垂直方向に
下降して水平板W1aの面を検出してその検出位置P7を電
極突出長さ規正点として取込む。その検出位置P7に対す
るセンシング補正指令を教示する。 (5) トーチ4を溶接線WL2の溶接開始点P10に近い第
2のセンシング開始点P8にもたらし、その位置P8におけ
る位置情報,姿勢情報,および隅肉溶接線用センシング
指令情報を教示するとともに、前述(1)と同様にセン
シングを実行し、溶接線WL2の位置P9を取込む。 (6) 次いでトーチ4を溶接開始点P10に移動させ、
その位置P10における位置情報,姿勢情報,前記第2セ
ンシング開始点P8・溶接開始点P10間の移動速度情報,
並びにセンシング補正指令を教示する。 (7) トーチ4を溶接線WL2の溶接終了点P11にもたら
し、その位置での位置情報,姿勢情報,隅肉溶接条件,
センシング補正指令を教示する。 (8) 最後に、溶接終了点P11から離れた退避位置P12
にトーチ4をもたらし位置情報,移動速度情報を教示す
る。 以上でティーチングを終了する。 次に溶接ロボットROがコンピュータ8からの指令出力に
基づき行う動作の中で、特に自動溶接作業途中で電極突
出長さ規正の動作に重点をおき第3・4図を参照しなが
ら説明する。尚、これにより自動溶接行うワークW1′・
W2′はティーチング時のワークW1・W2とは形状・大きさ
は実質上同じであるものの、多少の位置ずれが予想され
るものとする。 〔1〕先ずトーチ4は第1のセンシング開始点P1に位置
決めしてセンシングを実行し、コンピュータ8はそのセ
ンシング結果より溶接線WL1の点P2′を求め、ティーチ
ング時の点P2との差△P2を補正値△Pnとして演算記憶す
る(処理PR1)。そしてコンピュータ8はセンシング補
正指令のあるティーチング時の溶接開始点P4,溶接終了
点P5,並びに電極突出長さ規正点P7を前記補正値△Pnで
補正し、位置終了後の点P4′・P5′・P7′を演算して記
憶する(処理PR2)。 〔2〕トーチ4は、前記センシング実行後、待機位置P3
より溶接開始点P4′に移動し、該溶接開始点P4′より溶
接終了点P5′まで水平隅肉溶接を行い、溶接終了後、中
間退避位置P6に退避する。この溶接終了時点では、トー
チ4の電極4a突出長さL1は電極4aの溶け込みにより正規
の突出長さL0より一般的に若干短くなっている(第4
(a)図参照)。 〔3〕第4(a)図の状態から、処理PR3により電極4a
がトーチ4内に引込む(第4(b)図)。 〔4〕処理PR4により、切換スイッチ7a3が検出用電源7a
2に切換わる。 〔5〕次いで、処理PR5により、トーチ4の仮想先端P
が補正後の電極突出長さ規正点P7′に位置するように、
例えば第4(c)図に示すように下降移動する。これ
で、トーチ4のチップ先端かたワークW1′の水平板W1
a′の表面までの距離は丁度正規の電極突出長さL0に一
致する(第4(c)図参照)。 〔6〕続いて、処理PR6により、電極4aが送給されて、
該電極4aは再びチップ先端より水平板W1a′に向けて突
出する。そして、電極4a先端が水平板W1a′に近接放電
して該水平板W1a′の表面を検出し(第4(d)図)、
コンピュータ8は通電状態検出出力回路7b2からの「通
電」信号を受信し、処理PR7・PR8により電極4aの送給が
停止するとともに元の中間退避位置P6に移動復帰する
(第4(e)図)。この移動復帰で、第4(e)図に示
す通り、トーチ4の電極先端は丁度位置P6に一致すると
ともに、トーチ4からの電極突出長さは正規の電極突出
長さL0に等しく規正された状態にある。 〔8〕続いて、トーチ4は第2のセンシング開始点P8
移動し、前述〔1〕と同様にセンシング結果より溶接線
WL2の点P9′を求め、ティーチング時の点P9との差△P9
を補正値△Pnとして演算記憶する(処理PR1)。そして
コンピュータ8はセンシング補正指令のあるティーチン
グ時の溶接開始点P10および溶接終了点P11を前記補正値
△Pnで補正し、位置修正後の点P10′・P11′を演算して
記憶する(処理PR2)。
(Field of Industrial Application) The present invention relates to a sensor for detecting a work by applying a detection voltage to electrodes. (Prior Art and Problems Therewith)
In 3, we presented an automatic welding device that uses the torch electrode itself as a sensor. In this automatic welding device, a welding voltage and a sensor voltage are selectively applied to the electrodes of the torch through a special voltage application means in response to a welding command or a sensor command from the control means, and the electrodes are not The welding state of the work is searched by detecting the energization state with the work. However, when a consumable electrode is used as the electrode, the protruding length of the electrode from the torch is usually different at the end of each welding due to the difference in the penetration of the electrode during welding. Further, generally, the electrode between the electrode supply reel and the torch is inserted into the flexible tube, but in this case, the protruding length of the electrode is not necessarily changed due to the change in the bending state of the flexible tube accompanying the movement of the torch. Since it is not kept constant and the accurate welding line of the workpiece is not detected even if sensing is performed in this state, naturally good welding results cannot be expected in automatic welding performed based on such inaccurate sensing. . Therefore, when sensing the next welding line of the work after welding, it is necessary to set the electrode projection length of the torch to a predetermined length in advance, prior to actual sensing. Conventionally, the regulation of the electrode protrusion length is performed by setting a reference position on the outer edge of the work fixture, with the torch electrode slightly retracted each time the sensing is performed, and the virtual welding point of the torch tip being set based on the command of the control means. Aligning with the reference position, send out the electrode in this state, stop the electrode sending out by obtaining the energization signal between the electrode and the work fixture, or finish the automatic welding of the part with the work and move to the next sensing Before
The procedure was performed in the same manner as described above in the vicinity of the welding end point previously programmed (often near the next sensing and welding point). However, in the former case, the relative position between the workpiece attachment and the virtual welding point of the torch must be position-controlled each time sensing is performed, so the time required for sensing also increases, especially when the torch travel distance is long,
In the latter case, the reference position of the work, which was set in advance to regulate the length of the electrode protrusion due to manufacturing and mounting errors of each work, is not always accurate for all works, and the position deviation The error directly appears as an error in the protruding length of the electrode, but in any case, the accurate protruding length of the electrode is not always obtained. (Means for Solving Problems) A control method according to the present invention teaches an electrode protrusion length regulation point at an appropriate position on a work, stores a correction value of at least one-dimensionally sensed position information for each work, and corrects the correction value. It is characterized in that the position information of the electrode protrusion length regulation point is corrected by the value. (Example) Hereinafter, it demonstrates in full detail based on the Example shown in drawing. FIG. 1 is an overall schematic view of a rectangular coordinate welding robot RO adopted as an industrial robot which is the background of the present invention. Reference numeral 1 is a vertical axis configured at a terminal of a known rectangular coordinate (X, Y, Z) robot RO (details not shown), and supports a first arm 2 so as to be rotatable around the vertical axis 1 (arrow α). I am doing it. Reference numeral 3 denotes a second arm supported by the tip of the first arm 2 so as to be rotatable around the oblique axis 3a (arrow β). A torch 4 as an end effector is attached to the tip of the second arm 3, and the torch 4
Has a function as a sensor as described later. The vertical axis 1, the oblique axis 3a and the central axis M of the dorch 4 are configured to intersect at a point P. Further, the torch 4 is set so that its welding operation point may coincide with the point P. Thus, by controlling the rotation angles in the directions of the arrows α and β, the attitude angle θ and the turning angle φ (so-called Euler angle) of the torch 4 with respect to the vertical axis 1 can be controlled with the point P fixed. Reference numeral 5 is a fixed work table as a work mounting tool, and two work pieces are provided on the upper left and right by appropriately using the clamp jigs 5a and 5b.
Fix W1 and W2 as a pair. The workpieces W1 and W2 are composed of horizontal plates W1a and 2Wa and standing plates W1b and W2b that are temporarily attached in an upright shape along the edges of the horizontal plates.Each workpiece W1 and W2 is expected to have a manufacturing error. It is also inevitable that the clamp jigs 5a and 5b will cause an error in attachment to the work table 5. Reference numerals 6a and 6b denote an electrode supply roll and a pair of feed rollers. By controlling the rotation of the feed roller 6b, the electrode 4a is pulled out from the supply roll 6a and fed to the torch 4 through the flexible tube 6c. is there. Reference numeral 7 is a welding power supply device, which is a voltage applying means 7a and an energization state detecting means.
7b is built in, of which the voltage applying means 7a is a welding power source 7a.
1 , a power source for detection 7a 2 , a changeover switch for connecting one end to the electrode 4a and selectively connecting to either of the power sources 7a 1 and 7a 2 at appropriate times
Composed of 7a 3 . Also, the energization state detection means 7b is made conductive state detection circuit 7b 1 energized state detection output circuit 7b 2 Prefecture,
Of these, the energization state detection circuit 7b 1 has one end connected to the detection power supply 7
a 2 and the other end of the welding power source 7a 1 together with the non-changeover switch 7a 3 side to the work table 5 which is always in conduction with the works W1 and W2, and the energization state detection output circuit 7b 2 inputs a change in the energized state in the energization state detection circuit 7b 1 (current, voltage or both of them changes,) as a detection signal. Reference numeral 8 denotes a computer as a control means for comprehensively controlling the entire welding robot RO, including a CPU and a memory, and the bus line B of the computer 8 has the welding power source device 7 and each axis servo system SX of the robot RO. The remote control box 9 for SY / SZ / Sα / Sβ and teaching is connected. The remote control box 9 is required to input numbers of "0" to "9", a group of keys for inputting various kinds of pre-assigned information, and an interactive type so that the teaching work can be sequentially performed. It comprises a display 9a for displaying a message and information corresponding to a key operation. The predetermined procedure for teaching is pre-programmed in the memory of the computer 8 and
Controls the display 9a based on this program and the operator's key operation. Then, the operator appropriately cuts the electrode 4a protruding from the torch 4 into a regular protruding length L 0 using a cutting tool prior to the teaching work. Now, the weld lines of the fillets of the horizontal plates W1a and W2a and the vertical plates W1b and W2b of the workpieces W1 and W2, respectively.
It is intended to perform horizontal fillet welding for WL1 and WL2. Then, the operator operates the remote control box 9 to move the torch 4 to perform the following teaching work. (1) First, the electrode tip P of the torch 4 is arranged at the first sensing start point P 1 near the welding start point P 4 of the welding line WL 1, and the position information (X, Y, Z axes) at the position P 1 is set, The posture information (α and β axes) and the fillet weld line sensing command information are taught and the sensing is executed. That is, in this sensing, the torch 4 moves in the vertical direction toward the horizontal plate W1a and in the horizontal direction toward the standing plate W1b to move to the horizontal plate W1a.
And the surface of the vertical plate W1b are detected, and the welding line WL1
Take in position P 2 of. (2) Next, the torch 4 is moved from the welding start point P 4 to the standby position P 3 appropriately separated from the welding start point P 4 and further to the welding start point P 4, and the position information, attitude information, and both positions P at the respective positions P 3 and P 4 are moved. 3
It teaches the moving speed information between P 4. In particular, at the welding start point P 4 , a sensing correction command is taught in addition to the above information. This sensing correction command means that the welding start point P 4 is corrected by the sensing result executed in the above (1) during the automatic welding operation on the work W1. (3) location information at that position brings the torch 4 to a welding end point P 5 of weld lines WL1, orientation information, fillet welding conditions (current, voltage, speed, etc.), it teaches the sensing correction command. (4) Subsequently, the torch 4 is appropriately separated from the welding end point P 5 and brought to an intermediate retreat position P 6 located above the horizontal plate W1 so that the central axis M is vertical to the horizontal plate W1. The position information, attitude information, and electrode protrusion length regulation command at that position are taught, and the electrode protrusion length regulation work is executed. That is, the torch 4 descends in the vertical direction toward the horizontal plate W1a, detects the surface of the horizontal plate W1a, and takes in the detected position P 7 as the electrode protrusion length regulation point. Teach the sensing correction command for the detected position P 7 . (5) Bring the torch 4 to the second sensing start point P 8 near the welding start point P 10 of the welding line WL 2, and teach the position information, posture information, and fillet welding line sensing command information at that position P 8 . At the same time, sensing is performed in the same manner as in (1) above, and the position P 9 of the welding line WL2 is captured. (6) Next, move the torch 4 to the welding start point P 10 ,
Position information at that position P 10 , attitude information, moving speed information between the second sensing start point P 8 and welding start point P 10 ,
Also, teach the sensing correction command. (7) Bring the torch 4 to the welding end point P 11 of the welding line WL 2, and position information, posture information, fillet welding conditions at that position,
Teach the sensing correction command. (8) Finally, the retracted position P 12 away from the welding end point P 11
Bring torch 4 to teach position information and moving speed information. This is the end of teaching. Next, among the operations performed by the welding robot RO based on the command output from the computer 8, an explanation will be given with reference to FIGS. 3 and 4, focusing particularly on the operation of adjusting the electrode protrusion length during the automatic welding operation. It should be noted that work W1 ′ ・
W2 ′ has substantially the same shape and size as the workpieces W1 and W2 during teaching, but some misalignment is expected. [1] First, the torch 4 positions the first sensing start point P 1 to perform sensing, and the computer 8 obtains the point P 2 ′ of the welding line WL 1 from the sensing result, and determines the point P 2 at the time of teaching. The difference ΔP 2 is calculated and stored as the correction value ΔPn (process PR1). Then, the computer 8 corrects the welding start point P 4 , the welding end point P 5 , and the electrode protrusion length regulation point P 7 during the teaching with the sensing correction command by the correction value ΔPn, and the point P 4 after the position end. ′ · P 5 ′ · P 7 ′ is calculated and stored (process PR2). [2] The torch 4 is in the standby position P 3 after performing the sensing.
'Go to, the welding start point P 4' more welding start point P 4 performs horizontal fillet welding to the welding end point P 5 'than, after the end of welding, retracted to an intermediate retracted position P 6. At the end of this welding, the protruding length L 1 of the electrode 4a of the torch 4 is generally slightly shorter than the normal protruding length L 0 due to the melting of the electrode 4a (fourth
(See (a) figure). [3] From the state of FIG. 4 (a), the electrode 4a is processed by the treatment PR3.
Retracts into the torch 4 (Fig. 4 (b)). [4] By the process PR4, the changeover switch 7a 3 turns the detection power source 7a
Switch to 2 . [5] Next, the virtual tip P of the torch 4 is processed by the process PR5.
So that is located at the corrected electrode protrusion length regulation point P 7 ′,
For example, it moves downward as shown in FIG. 4 (c). With this, the tip of the torch 4 and the horizontal plate W1 of the workpiece W1 '
The distance to the surface of a'just corresponds to the regular electrode protrusion length L 0 (see FIG. 4 (c)). [6] Subsequently, the electrode 4a is fed by the process PR6,
The electrode 4a again projects from the tip of the chip toward the horizontal plate W1a '. Then, the tip of the electrode 4a discharges close to the horizontal plate W1a 'to detect the surface of the horizontal plate W1a' (Fig. 4 (d)),
Computer 8 receives the "energization" signal from the energization state detection output circuit 7b 2, delivery of the electrode 4a by treatment PR7 · PR8 moves back to its original intermediate retracted position P 6 is stopped (the 4 (e ) Figure). As a result of this movement return, as shown in FIG. 4 (e), the electrode tip of the torch 4 exactly coincides with the position P 6 , and the electrode projection length from the torch 4 is set equal to the regular electrode projection length L 0. It is in the state of being [8] Subsequently, the torch 4 moves to the second sensing start point P 8 , and the welding line is obtained from the sensing result as in the above [1].
Find point P 9 ′ on WL2 and calculate the difference from point P 9 during teaching △ P 9
Is stored as a correction value ΔPn (processing PR1). Then, the computer 8 corrects the welding start point P 10 and welding end point P 11 at the time of teaching with a sensing correction command by the correction value ΔPn, and calculates and stores the point P 10 ′ · P 11 ′ after position correction. Yes (Process PR2).

〔9〕その後、処理PR9により切換スイッチ7a3が溶接用
電源7a1に切換わる。 〔10〕続いて、トーチ4は溶接開始点P10′より溶接終
了点P11′まで水平隅肉溶接を行い、溶接終了後、退避
位置P12に退避し、これらのワークW1′・W2′に対する
自動溶接作業を完了する。 本発明は前述実施例以外に下記する変形もまた可能であ
る。 (1) ロボットは前述実施例のような直角座標形溶接
ロボット以外に、多関節形溶接ロボット等他のメカ構成
のロボットでもよい。 (2) 前述実施例では、ティーチングに先立つ電極突
出長さの規正を切断工具を用いた手作業として述べた
が、予めワークテーブル5の基準点を定めておき、自動
的に行うようにしてもよい。 (3) 前述実施例では、溶接途中での電極突出長さ規
正点を1個所としたが、多数のワークが個別に治具によ
り取付けられワーク間の相対位置がずれる恐れのある場
合は、電極突出長さ規正点は順次既溶接済ワーク(位置
補正済み)においてしかも次のワークの溶接開始点に近
いところに設定することになり複数個所となる。 (4) 前述実施例では、トーチ4を溶接トーチとセン
サを兼用したが、溶接トーチ・溶断トーチ・グラインダ
等他の加工器具とともに使用するセンサ専用としても当
然に実施できる。 (発明の効果) 以上説明したように、本発明の制御方法によるときは、
ワークの任意の場所を電極突出長さ規正点として教示
し、自動溶接に先立つワークのセンシングによる補正値
を用いて先の電極突出長さ規正点を補正するようにした
ため、従来のように電極突出長さ規正作業の都度遠方の
ワーク取付具等の基準位置に戻る必要がなく、次の溶接
開始点に近い場所でその規正作業を行うことができ、全
体の溶接時間の短縮を図り得、また溶接中断時に電極が
溶込みにより短くなっても次の電極突出長さ規正の精度
に悪影響を及ぼす恐れは皆無で常に正確な電極突出長さ
規正作業を保証し、その後における溶接開始を円滑に行
い得る等、大きな効果を奏するものである。
[9] After that, the changeover switch 7a 3 is switched to the welding power source 7a 1 by the process PR9. [10] Subsequently, the torch 4 performs horizontal fillet welding from the welding start point P 10 ′ to the welding end point P 11 ′, and after the welding is completed, retracts to the retracted position P 12 and these workpieces W1 ′ and W2 ′ Complete the automatic welding work for. The present invention can also be modified as described below in addition to the above-described embodiment. (1) The robot may be a robot having another mechanical structure such as a multi-joint welding robot, in addition to the Cartesian welding robot as in the above embodiment. (2) In the above embodiment, the regulation of the electrode protrusion length prior to teaching was described as a manual work using a cutting tool, but a reference point of the work table 5 may be set in advance and automatically performed. Good. (3) In the above-described embodiment, the electrode protrusion length regulation point during welding is set to one place. However, if a large number of works are individually attached by jigs and the relative positions between the works may shift, the electrode The protrusion length regulation point is set at a plurality of positions in the already welded work (position-corrected) in sequence and near the welding start point of the next work. (4) In the above-described embodiment, the torch 4 is used both as a welding torch and a sensor, but it can be naturally implemented as a sensor for use with other processing tools such as a welding torch, fusing torch, grinder and the like. (Effects of the Invention) As described above, when the control method of the present invention is used,
The arbitrary point on the work is taught as the electrode protrusion length regulation point, and the previous electrode protrusion length regulation point is corrected using the compensation value of the workpiece sensing prior to automatic welding. There is no need to return to the reference position of the work fixture or the like, which is located far away each time the length regulation work is performed, and the regulation work can be performed near the next welding start point, which can shorten the overall welding time. Even if the electrode is shortened due to melting when welding is interrupted, there is no risk of adversely affecting the accuracy of the next electrode protrusion length regulation, and accurate electrode protrusion length regulation work is always guaranteed, and welding is started smoothly thereafter. It has a great effect such as obtaining.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を採用した溶接ロボットの全体概要図、
第2(a)・(b)図はティーチング時の電極突出長さ
規正作業を示す作用説明図、第3図はフローチャート、
第4(a)〜(e)図は自動溶接作業途中での電極突出
長さ規正作業を示す作用説明図である。 図中、4はトーチ、4aは電極、5はワークテーブル、7
は溶接電源装置、8はコンピュータである。
FIG. 1 is an overall schematic view of a welding robot adopting the present invention,
FIGS. 2 (a) and 2 (b) are operation explanatory views showing work for adjusting the length of the electrode protrusion during teaching, and FIG. 3 is a flow chart.
FIGS. 4 (a) to 4 (e) are operation explanatory views showing an electrode protrusion length adjusting operation during the automatic welding operation. In the figure, 4 is a torch, 4a is an electrode, 5 is a work table, 7
Is a welding power source device, and 8 is a computer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心軸線方向に伸縮可能な電極を具備した
センサと、前記電極に検出用電圧を印加する手段と、前
記電極の通電状態を検出する手段とを含む産業用ロボッ
トにおいて、ワークの適所に電極突出長さ規正点を教示
し、各ワークに対し少くとも1次元にセンシングした位
置情報の補正値を記憶し、該補正値によって前記電極突
出長さ規正点の位置情報を修正するごとくしたことを特
徴とする、産業用ロボットの制御方法。
1. An industrial robot comprising: a sensor having an electrode capable of expanding and contracting in the direction of the central axis; a means for applying a detection voltage to the electrode; and a means for detecting the energized state of the electrode. The electrode protrusion length regulation point is taught in a proper position, the correction value of the position information sensed in at least one dimension for each work is stored, and the position information of the electrode protrusion length regulation point is corrected by the correction value. A method for controlling an industrial robot characterized by the above.
JP26766987A 1987-10-22 1987-10-22 Control method for industrial robot Expired - Lifetime JPH0673745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26766987A JPH0673745B2 (en) 1987-10-22 1987-10-22 Control method for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26766987A JPH0673745B2 (en) 1987-10-22 1987-10-22 Control method for industrial robot

Publications (2)

Publication Number Publication Date
JPH01113177A JPH01113177A (en) 1989-05-01
JPH0673745B2 true JPH0673745B2 (en) 1994-09-21

Family

ID=17447884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26766987A Expired - Lifetime JPH0673745B2 (en) 1987-10-22 1987-10-22 Control method for industrial robot

Country Status (1)

Country Link
JP (1) JPH0673745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680353B1 (en) * 2005-12-15 2007-02-08 현대자동차주식회사 Welding robot teaching system

Also Published As

Publication number Publication date
JPH01113177A (en) 1989-05-01

Similar Documents

Publication Publication Date Title
EP1123769A2 (en) Robot welding
US4707582A (en) Method and apparatus for operating an industrial robot with sensor-correction
GB2087107A (en) Manipulator welding apparatus with vision correction for workpiece sensing
JP6517871B2 (en) Teaching system and method for welding robot
EP0194314A1 (en) System for controlling posture of tool
US11247288B2 (en) Welding position detection device, welding position detection method, and welding robot system
WO2017051445A1 (en) Multi-joint robot teaching system
JP6550985B2 (en) Robot joining system
JPH0673745B2 (en) Control method for industrial robot
JP2000288733A (en) Automatic origin checking device of welding robot, and its checking method
JPS6235861B2 (en)
JP2655898B2 (en) Control method of memory and regeneration type arc welding robot
JPH0642164B2 (en) Control method for industrial robot
JP2832630B2 (en) Welding line profiling control method
JPS58155188A (en) Industrial robot
JPH10244368A (en) Method and device for detecting groove in automatic welding machine
JPH0415420Y2 (en)
JPH0310124B2 (en)
JPH01278971A (en) Welding start control method for automatic welding equipment
JPS6342552B2 (en)
TW202306720A (en) Teaching point generation device that generates teaching points on basis of output of sensor, and teaching point generation method
JPH0514921B2 (en)
JPH0318989B2 (en)
JPS5942594B2 (en) automatic welding equipment
JPH0710435B2 (en) Welding equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20080921