JPS5823154B2 - Metsuki Haisu Inoshiyorihouhou - Google Patents

Metsuki Haisu Inoshiyorihouhou

Info

Publication number
JPS5823154B2
JPS5823154B2 JP50091712A JP9171275A JPS5823154B2 JP S5823154 B2 JPS5823154 B2 JP S5823154B2 JP 50091712 A JP50091712 A JP 50091712A JP 9171275 A JP9171275 A JP 9171275A JP S5823154 B2 JPS5823154 B2 JP S5823154B2
Authority
JP
Japan
Prior art keywords
copper
column
eluent
heavy metal
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50091712A
Other languages
Japanese (ja)
Other versions
JPS5215168A (en
Inventor
原田博之
小口登
本間英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP50091712A priority Critical patent/JPS5823154B2/en
Publication of JPS5215168A publication Critical patent/JPS5215168A/en
Publication of JPS5823154B2 publication Critical patent/JPS5823154B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明はメッキ廃水の処理並びに重金属の回収方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating plating wastewater and recovering heavy metals.

一般にメッキ工程から出る廃水は銅、ニッケル、クロム
、亜鉛、鉛、カドミウム等の重金属イオン、金、銀等の
貴金属イオンを含有し℃おり、かかるメッキ廃水の処理
としてイオン交換樹脂で処理をしたり、或は中和凝集沈
澱処理を行い、一定の排出基準以下の水質にして放流し
ているのが現状である。
Generally, wastewater from the plating process contains heavy metal ions such as copper, nickel, chromium, zinc, lead, and cadmium, as well as precious metal ions such as gold and silver. Alternatively, the current situation is to perform neutralization, coagulation and sedimentation treatment, and then discharge the water to a water quality that is below a certain discharge standard.

又メッキ工程では水洗工程にて多量の水洗水が使用され
ているが、水の有効活用をはかるためにメッキ工程別の
水洗廃水をイオン交換樹脂で処理するクローズドシステ
ムが実用化され、イオン交換樹脂をカラムに充填し、重
金属イオンを吸着さた後、溶離剤にて重金属イオンを溶
離させてイオン交換樹脂の再生を行うと共に溶離液を中
和凝集沈澱処理を行って重金属イオンを水酸化物のスラ
ッジにする処理方法が一般に広く行われている。
Also, in the plating process, a large amount of washing water is used in the washing process, but in order to make effective use of water, a closed system has been put into practical use that treats the washing wastewater of each plating process with ion exchange resin. After filling the column and adsorbing heavy metal ions, the heavy metal ions are eluted with an eluent to regenerate the ion exchange resin, and the eluent is neutralized and coagulated and precipitated to convert the heavy metal ions into hydroxides. A method of processing sludge is generally widely used.

しかし、イオン交換樹脂を用いる方法では、直径約30
0〜1200μの球状粒子のため一般に表面と内部とで
イオンの拡散機構に差があり、重金属イオンの吸着及び
溶離の速度に分布があり、吸着では通液速度の増加に伴
い、貫通交流容量が低下し処理能力が低下する傾向があ
バ一方溶離では、溶離液量か多く、溶離時間が長くなり
、再生に長時間を必要とするのが欠点である。
However, in the method using ion exchange resin, the diameter is about 30 mm.
Because of the spherical particles of 0 to 1200μ, there is generally a difference in the ion diffusion mechanism between the surface and the inside, and there is a distribution in the rate of adsorption and elution of heavy metal ions.In adsorption, as the liquid passing rate increases, the through-current capacity increases. On the other hand, elution has the disadvantage that the amount of eluent is large, the elution time is long, and regeneration requires a long time.

更にイオン交換樹脂法では溶離液の中和処理を行う場合
が多く、中和凝集沈澱で多くのアルカリ及び凝集剤並び
にpH調整に酸を必要とし生成した重金属スラッジのフ
ィルタープレスによるケーキ化及び廃棄物処理を伴い公
害、省資源の面で問題が多い。
Furthermore, in the ion exchange resin method, the eluent is often neutralized, and the neutralized coagulation and sedimentation requires a large amount of alkali and coagulant, as well as acid for pH adjustment. There are many problems in terms of pollution and resource conservation associated with treatment.

本発明者らはこれらのイオン交換樹脂法の問題点を解決
すべく、繊維状のイオン交換体並びにキレート形成体を
用いてのメッキ廃水処理に関して研究を行い、本発明に
到達したものである。
In order to solve these problems with the ion exchange resin method, the present inventors conducted research on plating wastewater treatment using fibrous ion exchangers and chelate formers, and arrived at the present invention.

即ち、本発明は、メッキ廃水をイオン交換能或はキレー
ト形成能を有する単繊維直径5〜150μの繊維状物で
処理してメッキ廃水中の重金属イオンを該繊維状物に吸
着させる工程、重金属イオンを吸着した該繊維状物を溶
離させる工程、または更に溶離液中の重金属イオンを不
溶性陽極及び陰極を用いて電解回収する工程からなるメ
ッキ廃水の処理方法にある。
That is, the present invention provides a process for treating plating wastewater with a fibrous material having a single fiber diameter of 5 to 150 μm having ion-exchange ability or chelate-forming ability to adsorb heavy metal ions in the plating wastewater to the fibrous material, The present invention provides a method for treating plating wastewater, which comprises a step of eluting the fibrous material that has adsorbed ions, or a step of electrolytically recovering heavy metal ions in the eluent using an insoluble anode and a cathode.

本発明によれば、イオン交換樹脂法に比較し重金属の電
解回収が容易となり、従来の中和凝集沈澱法の如く重金
属スラッジの発生もなく、極めて有効な方法である。
According to the present invention, electrolytic recovery of heavy metals is easier than with the ion exchange resin method, and unlike the conventional neutralization coagulation precipitation method, heavy metal sludge is not generated, making it an extremely effective method.

また本発明によれは必ずしも重金属の電解回収をしなく
てもよく、従来の如く溶離液の中和凝集沈澱により、重
金属のスラッジ化も勿論可能である。
Further, according to the present invention, it is not necessarily necessary to perform electrolytic recovery of heavy metals, and it is of course possible to convert heavy metals into sludge by neutralizing and coagulating and precipitating the eluent as in the conventional method.

更に本発明で水洗廃水を処理した流出液は、水洗水とし
て再使用が可能であり、水洗水のリサイクリングと節水
が可能となる。
Furthermore, the effluent obtained by treating washing wastewater according to the present invention can be reused as washing water, making it possible to recycle washing water and save water.

本発明で使用されるイオン交換能或はキレート形成能を
有する繊維状物の単繊維直径5〜150μ好ましくは1
0〜100μであり、5μ未満の単繊維は繊維強度が必
要とする場合不適当であり、150μを越える場合には
イオン交換樹脂と同様にイオンの吸着、溶離の場合表面
と内部でイオンの拡散速度差を生じ易くなり好ましくな
い。
The single fiber diameter of the fibrous material having ion exchange ability or chelate forming ability used in the present invention is 5 to 150μ, preferably 1
0 to 100μ, single fibers less than 5μ are unsuitable if fiber strength is required, and fibers exceeding 150μ cause ion adsorption and ion diffusion on the surface and inside in the case of elution, similar to ion exchange resins. This is not preferable because it tends to cause a speed difference.

本発明で使用されるイオン交換能或はキレート形成能を
有する繊維状物は耐薬品性の面から一般に合成繊維を原
料繊維とするものが好ましく、ポリビニルアルコール繊
維、アクリル繊維、ポリ塩化ビニル繊維、ポリ塩化ビニ
リデン繊維、フェノール繊維、ポリスチレン繊維等が広
く使用可能である。
The fibrous material having ion exchange ability or chelate forming ability used in the present invention is generally preferably made of synthetic fiber from the viewpoint of chemical resistance, such as polyvinyl alcohol fiber, acrylic fiber, polyvinyl chloride fiber, Polyvinylidene chloride fibers, phenol fibers, polystyrene fibers, etc. can be widely used.

これらの原料繊維へカルボキシル基(−COOH)、ス
ルホン基(−3O3H)、2級アミン基、3級アミン基
、第4級アンモニウム基、ポリエチレンポリアミノ基(
−NH(CH2CH2NH)nH)イオン交換基或はキ
レート形成能基を導入する。
Carboxyl groups (-COOH), sulfone groups (-3O3H), secondary amine groups, tertiary amine groups, quaternary ammonium groups, polyethylene polyamino groups (
-NH(CH2CH2NH)nH) ion exchange group or chelate forming functional group is introduced.

寸だ繊維状物の形状としては短繊維、布、フェルト、ト
ウ状等種々の形態が可能であり粒子状のイオン交換樹脂
或はキレート樹脂に比較して遥かに形状の自由度が大き
く取扱上有利である。
The fibrous material can be in various shapes such as short fibers, cloth, felt, tow, etc., and has a much greater degree of freedom in handling than particulate ion exchange resins or chelate resins. It's advantageous.

本発明においては、メッキ廃水に前記のイオン交換能或
はキレート形成能を有する繊維状物を適宜形態にて浸漬
し、重金属イオンが吸着するに十分な時間接触させて処
理する。
In the present invention, the above-mentioned fibrous material having ion exchange ability or chelate forming ability is immersed in plating wastewater in an appropriate form and brought into contact with the material for a sufficient time to adsorb heavy metal ions for treatment.

処理方法は、綿状にして廃水中に投入する方法、カラム
に詰め或はフィルターにして通水する方法、布帛状にし
て廃水中に浸漬するなど任意の方法が用いられる。
As a treatment method, any method can be used, such as making it into a cotton-like material and throwing it into wastewater, packing it into a column or passing it through a filter, or making it into a fabric and immersing it in wastewater.

又イオン交換基及びキレート形成能基の種類に応じ適宜
処理形式を変えうる。
Further, the treatment format can be changed as appropriate depending on the type of ion exchange group and chelate-forming functional group.

処理された流出液はその1ま放流するか或は水洗水とし
て再使用することも勿論可能である。
It is of course possible to discharge the treated effluent or to reuse it as washing water.

このような処理によって重金属イオンが吸着された繊維
状物は塩酸、硫酸、苛性ソーダ、背比ソーダ等の溶離剤
で処理して重金属イオンを繊維状物より溶離させ得る。
The fibrous material on which heavy metal ions have been adsorbed by such treatment can be treated with an eluent such as hydrochloric acid, sulfuric acid, caustic soda, and sodium hydroxide to elute the heavy metal ions from the fibrous material.

本発明方法によれば繊維状物から重金属イオンが効率よ
く溶離し、イオン交換樹脂法に較らべ少量の溶離剤で溶
離可能であり、かつ溶離と同時に電解回収することも可
能である。
According to the method of the present invention, heavy metal ions can be efficiently eluted from fibrous materials, can be eluted with a smaller amount of eluent than in the ion exchange resin method, and can be electrolytically recovered at the same time as the elution.

次に溶離液中の重金属イオンは、電解法により回収する
ことにより、スラッジ処理が不要になるので好ましい。
Next, it is preferable to recover the heavy metal ions in the eluent by an electrolytic method, since this eliminates the need for sludge treatment.

イオン交換樹脂法では、溶離工程に於いて多量の溶離剤
を必要とし、溶離時間が長く溶離液中の重金属イオン濃
度も低くなる傾向があり電解回収に於いても、電解に長
時間を必要とする。
The ion exchange resin method requires a large amount of eluent in the elution process, the elution time is long, and the concentration of heavy metal ions in the eluent tends to be low.Even in electrolytic recovery, electrolysis requires a long time. do.

所が、本発明では少量の溶離剤にて溶離が可能で溶離時
間も短く、且つ溶離を同時に電解回収が可能であり効率
よく電解反応が行われるのも大きな特徴である。
However, the present invention is characterized in that elution can be performed with a small amount of eluent, the elution time is short, and electrolytic recovery can be performed at the same time as elution, so that the electrolytic reaction can be carried out efficiently.

電解回収に使用される不溶性陽極としては、白金、チタ
ン、過酸化鉛等が使用され、不溶性陰ffl板としては
、白金、アルミニウム、ステンレススティール板等が使
用される。
As the insoluble anode used for electrolytic recovery, platinum, titanium, lead peroxide, etc. are used, and as the insoluble negative ffl plate, platinum, aluminum, stainless steel plate, etc. are used.

以下本発明を実施例を以て説明する。The present invention will be explained below with reference to Examples.

実施例 1 アクリロニトリル48重量係、塩化ビニル52重量係の
共重合体からなる単繊維直径40μのアクリル繊維を苛
性ソーダ水溶液中にて加熱し加水分解し、カチオン交換
量が7.2 meq/y(dry f 1ber)のN
a形弱酸性カチオン交換繊維(WK)を得た。
Example 1 A single acrylic fiber with a diameter of 40μ made of a copolymer of 48% by weight of acrylonitrile and 52% by weight of vinyl chloride was heated and hydrolyzed in a caustic soda aqueous solution, and the amount of cation exchanged was 7.2 meq/y (dry f 1ber)
A-type weakly acidic cation exchange fiber (WK) was obtained.

このカチオン交換繊維をカッターにて繊維長を2mmに
切断しチョツプドファイバーにした。
This cation exchange fiber was cut into a length of 2 mm using a cutter to obtain chopped fiber.

一方、硫酸銅23.5775gを蒸溜水で溶解し207
にした水溶液(pH4,6)を調製した。
On the other hand, 23.5775 g of copper sulfate was dissolved in distilled water and
An aqueous solution (pH 4, 6) was prepared.

この水溶液中の銅イオン(Cu2 + )濃度は300
ppmに相当し、メッキ浴から持ち出された第一水洗
槽の水洗廃水に相当する。
The copper ion (Cu2+) concentration in this aqueous solution is 300
ppm, and corresponds to the washing wastewater from the first washing tank taken out from the plating bath.

この硫酸銅溶液をNa形のWK 53 g(dry f
1ber換算)を0.2 jq /rrtlの交換密
度で充填したアクリル樹脂製カラム(内径20mm、長
さ900m/m)のカラム塔頂部からSV(空間速度)
20にて通液したところ、流出液中には銅イオンは検出
されなかった。
This copper sulfate solution was mixed with 53 g of Na-form WK (dry f
SV (space velocity) from the top of an acrylic resin column (inner diameter 20 mm, length 900 m/m) packed with 1 ber equivalent) at an exchange density of 0.2 jq/rrtl.
No copper ions were detected in the effluent.

次に銅イオンを吸着せしめたWKに5%の硫酸水溶液1
00771/をSV6にて通液し流出液は300m/の
ビーカー(電解槽)に入れ、陰陽両極に白金板(30朋
×30m71VX0.3間の白金板)を用い、カラム−
電解槽直結方式にて電流密度2A/dm2、液温25℃
にて銅イオンを回収しつ\電解槽からポンプにてカラム
に通液し循環させて、溶離と同時に銅の電解回収を行っ
た結果、銅の回収率90係までは電流効率は98係であ
り、銅の回収率は最終的には99.99係であった。
Next, 5% sulfuric acid aqueous solution 1
00771/ was passed through SV6, the effluent was placed in a 300 m/beaker (electrolytic cell), and a column was placed using platinum plates (30 mm x 30 m, 71 V x 0.3 platinum plates) for both negative and positive poles.
Electrolytic tank direct connection method, current density 2A/dm2, liquid temperature 25℃
While recovering the copper ions in the electrolytic cell, the liquid was passed through the column using a pump and circulated, and the copper was electrolytically recovered at the same time as the elution. The final copper recovery rate was 99.99.

比較例 1 実施例1にて弱酸性カチオン交換繊維の代りに、弱酸性
カチオン交換樹脂としてオルガノ■製アンバーライトI
RC−84(Na形)(交換容量9.2meq/& )
42 g (dry resin換算)を充填密度0
−4!/rnlにてアクリル樹脂製カラムに充填し、3
00 ppm銅イオンの硫酸鋼溶液207を5V20に
て通液し、銅イオンを吸着せしめ、次いで5%の硫酸水
溶液1140m/をSV6にて通液し、実施例1と同様
に溶離と電解回収を同時に行った結果鋼の回収率80%
までは電流効率は96%であり、銅の回収率は最終的に
は99.9%であった。
Comparative Example 1 In Example 1, Amberlite I manufactured by Organo ■ was used as a weakly acidic cation exchange resin instead of the weakly acidic cation exchange fiber.
RC-84 (Na type) (exchange capacity 9.2meq/&)
42 g (dry resin equivalent) with a packing density of 0
-4! /rnl into an acrylic resin column, and
A sulfuric acid steel solution 207 containing 00 ppm copper ions was passed through at 5V20 to adsorb copper ions, and then a 5% sulfuric acid aqueous solution (1140 m/ml) was passed through at SV6, and elution and electrolytic recovery were carried out in the same manner as in Example 1. At the same time, the steel recovery rate was 80%.
Up to this point, the current efficiency was 96%, and the final copper recovery rate was 99.9%.

実施例 2 アクリロニトリル90重量%、臭化ビニル10重量係の
共重合体からなる単繊維直径75μのアクリル繊維をト
リエチレンテトラミンで処理して。
Example 2 A single acrylic fiber with a diameter of 75 μm made of a copolymer containing 90% by weight of acrylonitrile and 10% by weight of vinyl bromide was treated with triethylenetetramine.

アニオン交換容量6.9 meq 7g (dry f
iber )の弱塩基性アニオン交換繊維(WA)を得
た。
Anion exchange capacity 6.9 meq 7g (dry f
iber) weakly basic anion exchange fiber (WA) was obtained.

このWAを水洗しカッターでl mmに切断し、更に0
.5N−NaOH水溶液でOH形にコンディショニング
した。
This WA was washed with water, cut into 1 mm pieces with a cutter, and then
.. Conditioning was performed in OH form with a 5N-NaOH aqueous solution.

このWAはアニオン交換能を有すると共に重金属イオン
とのキレート形成能を有する。
This WA has an anion exchange ability as well as a chelate forming ability with heavy metal ions.

一方青化第一銅7.05g、シャン化ソーダ11.57
yを蒸溜水に溶解し、251に調製した。
On the other hand, 7.05 g of cuprous cyanide, 11.57 g of sodium chloride
251 was prepared by dissolving y in distilled water.

この液には銅イオンが200 ppm含まれている。This solution contains 200 ppm of copper ions.

OHH形Kを5係塩酸水溶液にてH形にコンディショニ
ングし、このH形WK55g(dryfiber換算)
を充填密度0.2g/mlにて内径20ynm、長さ1
100mmのアクリル樹脂製カラムに充填し、第一のカ
ラムとした。
OHH type K was conditioned into H type with a 5% hydrochloric acid aqueous solution, and this H type WK 55g (dryfiber conversion)
with a packing density of 0.2 g/ml, an inner diameter of 20 yn, and a length of 1
It was packed into a 100 mm acrylic resin column to serve as a first column.

別にOHH形A 23 j! (dry f 1ber
換算)を内径20朋、長さ500mmのアクリル樹脂製
カラムに充填し、第二のカラムとした。
Separately OHH type A 23 j! (dry f 1ber
(converted) was packed into an acrylic resin column with an inner diameter of 20mm and a length of 500mm to form a second column.

第一のカラムの下端と第二のカラムの上端を塩化ビニー
ル樹脂製チューブにて連結し、第一のカラムの塔頂より
銅イオン濃度が200 ppmの銅シアン化ソーダ水溶
液257を5V21にて通液し、銅シアンイオンを完全
にWAに吸着せしめ、次いで5チのNaCN水溶液にて
銅シアンイオンを完全に溶離せしめ、銅イオン濃度が2
0 g#の溶離液を得た。
The lower end of the first column and the upper end of the second column were connected with a vinyl chloride resin tube, and a copper sodium cyanide aqueous solution 257 with a copper ion concentration of 200 ppm was passed through the top of the first column at 5V21. The copper cyanide ions were completely adsorbed on the WA, and then the copper cyanide ions were completely eluted with 5 ml of NaCN aqueous solution until the copper ion concentration was 2.
0 g# of eluent was obtained.

この溶離液250rnlを5007717のビーカーに
入れ、陽極に過酸化鉛板、陰極にステンレススチール板
を用い電流密度2A/dm2、液温25℃にてマグネテ
イツケスターラーにて攪拌しながら、陰極板に銅を99
.99%回収した。
Put 250 rnl of this eluent into a beaker of 5007717, use a lead peroxide plate as the anode and a stainless steel plate as the cathode, and put it on the cathode plate while stirring with a magnetic stirrer at a current density of 2A/dm2 and a liquid temperature of 25°C. 99 copper
.. 99% recovery was achieved.

電流効率は銀回収率80係捷では97%であった。The current efficiency was 97% at a silver recovery rate of 80.

比較例 2 実施例2にてカチオン交換繊維(WK)の代りに比較例
1のアンバーライトJ RC−84(H形にコンディシ
ョニングしたもの)52idryre s i n換算
)を充填密度0.4jj/mlにてアクリル樹脂製カラ
ムtと充填し、第一のカラムとした。
Comparative Example 2 In Example 2, instead of the cation exchange fiber (WK), Amberlite J RC-84 (conditioned into H type) of Comparative Example 1 (52 idryre sin equivalent) was used at a packing density of 0.4jj/ml. This was then packed with an acrylic resin column T to form a first column.

別に実施例2のアニオン交換繊維(WA)の代りに三菱
化成工業■製弱塩基性アニオン交換樹脂ダイヤイオンW
A−21(OH形、アニオン交換容量5.98meq/
g) 27 g(dry resin換算)を充填密度
0.38 g/mlでアクリル樹脂製カラムに充填し、
第二のカラムとした。
Separately, instead of the anion exchange fiber (WA) of Example 2, a weakly basic anion exchange resin Diaion W manufactured by Mitsubishi Chemical Corporation was used.
A-21 (OH type, anion exchange capacity 5.98 meq/
g) 27 g (dry resin equivalent) was packed into an acrylic resin column at a packing density of 0.38 g/ml,
This was the second column.

第一のカラムの下端と第二のカラムの上端を塩化ビニー
ル樹脂製チューブで連結し、第一のカラムの塔頂より銅
イオン濃度が200 ppmの銅シアン化ソーダ251
を5V20にて通液し、銅シアンイオンを完全にダイヤ
イオンWA−21に吸着せしめ、次いで5係のNaCN
水溶液をSV2にてカラム塔頂から通液し銅シアンイオ
ンを完全に溶離せしめ、銅イオン濃度14 g/lの溶
離液を得た。
The lower end of the first column and the upper end of the second column are connected with a vinyl chloride resin tube, and copper sodium cyanide 251 with a copper ion concentration of 200 ppm is poured from the top of the first column.
was passed through the solution at 5V20 to completely adsorb the copper cyanide ions to the diamond ion WA-21, and then the 5V NaCN
The aqueous solution was passed through the top of the column at SV2 to completely elute the copper cyanide ions, thereby obtaining an eluent with a copper ion concentration of 14 g/l.

この溶離液360rnlを500m/のビーカーに入れ
陽極に過酸化鉛板、陰極にステンレススチ−ル板を用い
電流密度2 A/dm” 、液温250Cにてマグネテ
イツクスターラーで攪拌しながら電解し、陰極板に銅を
99.9%回収した。
360rnl of this eluent was placed in a 500m beaker and electrolyzed using a lead peroxide plate as the anode and a stainless steel plate as the cathode at a current density of 2 A/dm and a liquid temperature of 250C while stirring with a magnetic stirrer. , 99.9% of the copper was recovered in the cathode plate.

電流効率は胴回収率70係までは80係であった。The current efficiency was 80% until the shell recovery rate was 70%.

実施例 3 実施例1に使用した弱酸性カチオン交換繊維をH形にコ
ンディショニングしたもの(WK)用い、ビロリン酸銅
メッキ後の水洗水を処理した。
Example 3 The weakly acidic cation exchange fiber used in Example 1 was conditioned into an H shape (WK) to treat the washing water after copper birophosphate plating.

メッキ水洗水中には銅イオンが20 ppm含有されて
おり、pHは89であった。
The plating washing water contained 20 ppm of copper ions and had a pH of 89.

次にH形のWK65g(dry fiber換算)を0
.297m1の充填密度でカラムに充填しカラム塔頂か
らメッキ水洗水5001を5V21にて通液し、銅イオ
ンを完全に吸着せしめ、次いで5係の硫酸水溶液をSV
2にてカラム塔頂から通液し、銅イオンを完全に溶離せ
しめ、銅イオン濃度が20 g/lの溶離液を得た。
Next, the H type WK65g (dry fiber conversion) is 0
.. A column was packed with a packing density of 297 ml, and plating washing water 5001 was passed through the top of the column at 5V21 to completely adsorb copper ions, and then a 5th column sulfuric acid aqueous solution was passed through SV.
At step 2, the solution was passed from the top of the column to completely elute the copper ions, and an eluent with a copper ion concentration of 20 g/l was obtained.

との溶離液500m/を11のビーカーに入れ、白金板
(50mm×50mwtX0.3mm)を陰陽極板に用
い電流密度2A/dm2、液温25℃にてマグネティッ
クスクーラーで攪拌しながら電解し、陰極板に銅99.
99%回収した。
Pour 500 m of the eluent of the above into a beaker No. 11, electrolyze it using a platinum plate (50 mm x 50 mwt x 0.3 mm) as a cathode and anode plate at a current density of 2 A/dm2 and a liquid temperature of 25°C while stirring with a magnetic cooler. Copper 99.9% for the cathode plate.
99% recovery was achieved.

電流効率は銀回収率80係までは96ヂであった。The current efficiency was 96 degrees up to a silver recovery rate of 80.

比較例 3 実施例3にて弱酸性カチオン交換樹脂として三菱化成工
業製ダイヤイオンWK 10(Hu、カチオン交換容
量8.9meq/、F (dry resin ) )
71 g(dry resin換算)を充填密度0.3
9g/mlにてカラムに充填し、実施例3のビロリン酸
銅メッキの水洗水5007を5V20にてカラム塔頂よ
り通液したところ通液量1501付近から流出液中に銅
イオンが検出され、銅イオンの漏洩が始ったので、通液
を中止した。
Comparative Example 3 In Example 3, Diaion WK 10 manufactured by Mitsubishi Chemical Industries, Ltd. (Hu, cation exchange capacity 8.9 meq/, F (dry resin)) was used as the weakly acidic cation exchange resin.
71 g (dry resin equivalent) with a packing density of 0.3
When the column was filled with 9 g/ml and the washing water 5007 of the birophosphate copper plating of Example 3 was passed from the top of the column at 5V20, copper ions were detected in the effluent from around 1501, Since leakage of copper ions started, the flow of liquid was stopped.

以上の実施例及び比較例から本発明の繊維状物は、イオ
ン交換樹脂或はキレート樹脂に比較して、重金属イオン
の吸着、溶離が容易に行われ、且つ溶離液からの重金属
の電解回収は少量の溶離液で可能であり、公害対策及び
省資源の面で新規な処1理方法となり設備的にも軽量化
且つ小型化が可能となりその工業的意義は大きい。
From the above Examples and Comparative Examples, the fibrous material of the present invention adsorbs and elutes heavy metal ions more easily than ion exchange resins or chelate resins, and electrolytically recovers heavy metals from the eluent. This can be done with a small amount of eluent, and it is a new treatment method in terms of pollution control and resource conservation, and the equipment can be made lighter and smaller, which has great industrial significance.

Claims (1)

【特許請求の範囲】[Claims] 1 メッキ廃水をイオン交換能或はキレート形成能を有
する単繊維直径5〜150μの繊維状物で処理してメッ
キ廃水中の重金属イオンを吸着除去する工程および重金
属イオンを吸着した該繊維状物を溶離剤で処理して重金
属イオンを溶離させる工程からなるメッキ廃水の処理方
法。
1. A step of treating plating wastewater with a fibrous material having a single fiber diameter of 5 to 150 μm having ion exchange ability or chelate forming ability to adsorb and remove heavy metal ions in the plating wastewater, and removing the fibrous material that has adsorbed heavy metal ions. A method for treating plating wastewater that consists of a process of treating it with an eluent to elute heavy metal ions.
JP50091712A 1975-07-28 1975-07-28 Metsuki Haisu Inoshiyorihouhou Expired JPS5823154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50091712A JPS5823154B2 (en) 1975-07-28 1975-07-28 Metsuki Haisu Inoshiyorihouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50091712A JPS5823154B2 (en) 1975-07-28 1975-07-28 Metsuki Haisu Inoshiyorihouhou

Publications (2)

Publication Number Publication Date
JPS5215168A JPS5215168A (en) 1977-02-04
JPS5823154B2 true JPS5823154B2 (en) 1983-05-13

Family

ID=14034115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50091712A Expired JPS5823154B2 (en) 1975-07-28 1975-07-28 Metsuki Haisu Inoshiyorihouhou

Country Status (1)

Country Link
JP (1) JPS5823154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240763U (en) * 1985-08-30 1987-03-11

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077937A (en) * 1983-10-03 1985-05-02 Toppan Printing Co Ltd Metal recovering apparatus
KR100440249B1 (en) * 2001-05-15 2004-07-15 충남대학교산학협력단 Manufacturing Methods Conver Type Appratus for Nickle Separation from plating waste with Fibrous Ion Exchanger
JP2002336818A (en) * 2001-05-17 2002-11-26 Tamura Kagaku Kenkyusho:Kk Method for treating processing residue of mollusk food, treatment process and treatment device used therefor
KR100457633B1 (en) * 2002-05-17 2004-11-17 김재용 Method and Apparatus for extraction of Precious metals from Plating Wastewater
KR20030089793A (en) * 2002-05-20 2003-11-28 김재용 Method and Apparatus for extraction of Precious metals from Plating Wastewater
JP6329916B2 (en) * 2015-03-02 2018-05-23 新日鉄住金エンジニアリング株式会社 Method for treating acidic waste liquid containing metal ions and treatment apparatus for acidic waste liquid containing metal ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240763U (en) * 1985-08-30 1987-03-11

Also Published As

Publication number Publication date
JPS5215168A (en) 1977-02-04

Similar Documents

Publication Publication Date Title
Peters et al. Evaluation of recent treatment techniques for removal of heavy metals from industrial wastewaters
CN105858987B (en) The recycling treatment process of pure water pure nickel is reclaimed from electronickelling poaching wastewater
JP2632576B2 (en) Desorption method of gold iodine complex from ion exchange resin
GB959227A (en) A method for the recovery of metallic and metal complex ions from a slurry containing the same
US2733204A (en) Trf atmfimt op wrtca
JPH05212382A (en) Method for removing heavy metal ion from waste liquid stream
JPS5823154B2 (en) Metsuki Haisu Inoshiyorihouhou
US3656893A (en) Ion exchange removal of cyanide values
US2628165A (en) Process of preventing pollution of streams
US3394068A (en) Electrodialysis of pickle liquor using sequestrants
CN1055903C (en) Technology for treatment of waste liquid containing cyanogen by ion exchange method
JP3073789B2 (en) Apparatus and method for regenerating a trivalent chromium bath
JP3249677B2 (en) Electrolysis method of alkali metal chloride
Mitchenko et al. Optimization of sorption purification of industrial effluents, waste waters and technological solutions from polyvalent metal ions
JPH02298226A (en) Method for clarifying noble decoction con- taining gold leached by iodine
Revathi et al. Reclamation of hexavalent chromium from electroplating effluents by electroextraction
Chanda et al. Removal and recovery of thiocyanate by ligand sorption on polymer-bound ferric ion
SU638549A1 (en) Method of purifying electrolytic production waste liquids
SU1585357A1 (en) Method of purifying flushing water of electroplating shops from ions of heavy and nonferrous metals
CN217103410U (en) Device for removing ammonia nitrogen from manganese ore leachate
Waitz Jr Ion exchange for recovery of precious metals
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
CN106630268A (en) Recycling method of nickel in stainless steel
KR100402824B1 (en) The wastewater treatment method for lead removal process of pipe fitting made into bronze and brase
Mindler et al. Metal recovery by cation exchange