JPS5822865B2 - fuel cell power supply - Google Patents

fuel cell power supply

Info

Publication number
JPS5822865B2
JPS5822865B2 JP51022986A JP2298676A JPS5822865B2 JP S5822865 B2 JPS5822865 B2 JP S5822865B2 JP 51022986 A JP51022986 A JP 51022986A JP 2298676 A JP2298676 A JP 2298676A JP S5822865 B2 JPS5822865 B2 JP S5822865B2
Authority
JP
Japan
Prior art keywords
circuit
fuel cell
fuel
supply device
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51022986A
Other languages
Japanese (ja)
Other versions
JPS52106440A (en
Inventor
石飛守
池山正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP51022986A priority Critical patent/JPS5822865B2/en
Publication of JPS52106440A publication Critical patent/JPS52106440A/en
Publication of JPS5822865B2 publication Critical patent/JPS5822865B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は燃料電池の燃料利用率を向上せしめる運転制御
装置を備えた燃料電池電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell power supply device equipped with an operation control device that improves the fuel utilization rate of a fuel cell.

特に本発明による燃料電池電源装置は、無負荷時と負荷
時との切替えを行なう切替回路、無負荷時から負荷時へ
の切替時に燃料電池の立上りを制御する燃料電池遅延回
路、無負荷時において燃料電池の性能を劣化させない範
囲の適宜なる周期毎に電解液供給装置を作動させ適宜な
る燃料混合電解液を供給させる間欠駆動回路などからな
る運転制御装置を備え、定電圧回路、燃料濃度制御回路
、燃料補給装置、二次電池、電解液供給装置などと共に
構成される装置である。
In particular, the fuel cell power supply device according to the present invention includes a switching circuit for switching between no-load and load states, a fuel cell delay circuit for controlling the startup of the fuel cell when switching from no-load to load, and a fuel cell delay circuit for controlling the start-up of the fuel cell when switching from no-load to load. Equipped with an operation control device consisting of an intermittent drive circuit that operates the electrolyte supply device at appropriate cycles within a range that does not deteriorate the performance of the fuel cell and supplies an appropriate fuel mixed electrolyte, and a constant voltage circuit and a fuel concentration control circuit. This device is configured with a fuel supply device, a secondary battery, an electrolyte supply device, etc.

従来の燃料電池電源装置、特に燃料を一定の割合で混合
した電解液を燃料電池に循環供給し発電を行なう液体燃
料電池電源装置の回路構成を第1図に示す。
FIG. 1 shows a circuit configuration of a conventional fuel cell power supply device, particularly a liquid fuel cell power supply device that generates power by circulating an electrolyte mixed with fuel at a constant ratio to a fuel cell.

燃料電池10プラスaは定電圧回路2の入力端子に、こ
の回路2のプラス出力・端子Cは燃料濃度制御回路6、
燃料補給装置7、電解液供給装置5、二次電池例えば蓄
電池4のそれぞれのプラス端子と、切替回路8の開閉接
点e。
The fuel cell 10 plus a is connected to the input terminal of the constant voltage circuit 2, and the positive output/terminal C of this circuit 2 is connected to the fuel concentration control circuit 6.
The positive terminals of the fuel supply device 7, the electrolyte supply device 5, the secondary battery, for example, the storage battery 4, and the opening/closing contact e of the switching circuit 8.

を介して負荷機器3のプラス端子とに接続される。It is connected to the positive terminal of the load device 3 via.

燃料濃度制御回路6の出力は燃料補給装置7に接続され
この装置の作動を制御する。
The output of the fuel concentration control circuit 6 is connected to a refueling device 7 to control the operation of this device.

前記2,3.4゜5.6のそれぞれのマイナス端子は共
通に燃料電池1のマイナス端子に接続される。
The negative terminals of the 2, 3.4° and 5.6 cells are commonly connected to the negative terminal of the fuel cell 1.

このように構成された従来の燃料電池電源装置は、燃料
濃度制御回路6によって燃料の割合が一定に制御混合さ
れた電解液を電解液供給装置5により燃料電池1に連続
的に循環供給し、燃料電池1を連続的に発電させる。
The conventional fuel cell power supply device configured as described above continuously circulates and supplies an electrolytic solution mixed with a fuel concentration control circuit 6 at a constant fuel ratio to the fuel cell 1 using an electrolytic solution supplying device 5. The fuel cell 1 is caused to continuously generate electricity.

発生した燃料電池電力は定電圧回路2によって定電圧安
定化し負荷機器3に供給すると共に燃料濃度制御回路6
、燃料補給装置7、電解液供給装置5を駆動し、蓄電池
4を浮動充電する。
The generated fuel cell power is stabilized at a constant voltage by a constant voltage circuit 2 and supplied to a load device 3, as well as a fuel concentration control circuit 6.
, the fuel supply device 7 and the electrolyte supply device 5 are driven, and the storage battery 4 is floatingly charged.

蓄電池4は起動用電源、あるいはピーク負荷補償用電源
として用いられる。
The storage battery 4 is used as a starting power source or a peak load compensation power source.

切替回路8は蓄電池4または他の電源によって駆動式れ
、用途や使用条件による切替信号によって作動し、開閉
接点e。
The switching circuit 8 is driven by the storage battery 4 or other power source, and is activated by a switching signal depending on the application or usage conditions, and has an opening/closing contact e.

により負荷機器3をオン・オフし、負荷時と無負荷時の
切替を行なう。
The load device 3 is turned on and off by the switch, and the load equipment 3 is switched on and off to switch between load and no-load states.

しかしこのような従来の燃料電池電源装置は、連続発電
方式であるために切替回路8の作動によシ無負荷となっ
ても燃料電池1は、定電圧回路2、燃料濃度制御回路6
.電解液供給装置5などの駆動電流や蓄電池4の浮動充
電電流を供給し作動を続ける。
However, since such a conventional fuel cell power supply device uses a continuous power generation system, even if there is no load due to the operation of the switching circuit 8, the fuel cell 1 is operated by the constant voltage circuit 2 and the fuel concentration control circuit 6.
.. The drive current for the electrolyte supply device 5 and the floating charging current for the storage battery 4 are supplied to continue operation.

燃料電池1は第4図に示されるように、燃料電池電流密
度によって大きく燃料利用率が変化する。
As shown in FIG. 4, the fuel utilization rate of the fuel cell 1 varies greatly depending on the fuel cell current density.

言いかえると燃料電池1の出力電流が小さくなるほど理
論的に必要な燃料の量に対し無駄に消費される燃料の比
率が増大するためで第5図に示される(打点で示される
部分)。
In other words, as the output current of the fuel cell 1 becomes smaller, the ratio of wasted fuel to the theoretically required amount of fuel increases, as shown in FIG. 5 (the part indicated by dots).

これは燃料電池極板。における燃料の接触分解によるも
ので、燃料電池電流密度30mA/d、5mA/Cr?
Lとを比較すると前記電流密度が1/6になったにもか
かわらず、燃料の実際必要料は1/2しか減少しない。
This is a fuel cell plate. This is due to catalytic decomposition of fuel at a fuel cell current density of 30 mA/d, 5 mA/Cr?
Compared to L, even though the current density is reduced to 1/6, the actual fuel requirement is reduced by only 1/2.

これは、発電コストが高くなる、電源装置が大型。This increases the power generation cost and the power supply equipment is large.

化するなどの大きな原因であった。This was a major cause of this.

(第2図参照〕これを改良する方法として、無負荷時に
は燃料電池電源装置を停止し、燃料電池1への燃料を混
合した電解液供給を停止する方法があるが、長期間燃料
電池への電解液供給が停止すると電池性能・の劣化、燃
料利用率の低下が著しく、また負荷機器3の作動開始と
同時に燃料電池1が所定の電力を供給し得ない、燃料電
池1の作動開始に適確な保守が必要などの問題点がアリ
、長期無保守運転が必要となるべき他用独立電源、灯台
用電源、通信機器用予備電源などへの実用化が困難であ
った。
(See Figure 2) One way to improve this is to stop the fuel cell power supply when there is no load and stop the supply of electrolyte mixed with fuel to the fuel cell 1. If the electrolyte supply stops, the battery performance will deteriorate significantly and the fuel utilization rate will drop significantly, and the fuel cell 1 will not be able to supply the specified power at the same time as the load equipment 3 starts operating. Problems such as the need for precise maintenance made it difficult to put it into practical use as an independent power source for other uses, a power source for lighthouses, a backup power source for communication equipment, etc. that require long-term maintenance-free operation.

第3図に示されるようにTb時間の無負荷予備運転が燃
料・電池に必要となり、補助電池の容量が大きくなる、
電源装置の操作が複雑化する、などの欠点につながる。
As shown in Figure 3, no-load preliminary operation for Tb hours is required for the fuel/cell, and the capacity of the auxiliary battery increases.
This leads to drawbacks such as complicating the operation of the power supply device.

以上説明の如く、従来装置では問題があった。As explained above, there are problems with the conventional device.

本発明は、このような従来装置の問題点を解決し、燃料
の消費が少なく、しかも燃料電池作動開始時の立上シが
良い燃料電池電源装置を提供するものである。
The present invention solves the problems of the conventional devices, and provides a fuel cell power supply device that consumes less fuel and is easy to start up when starting the fuel cell operation.

以下、本発明の一実施例による燃料電池電源装置の回路
構成を第6図を用いて説明する。
Hereinafter, a circuit configuration of a fuel cell power supply device according to an embodiment of the present invention will be explained using FIG. 6.

燃料電池1、定電圧回路2、負荷機器3、蓄電池4、燃
料濃度制御回路6、電解液供給装置5、燃料補給装置7
、切替回路8とその開閉接点e。
Fuel cell 1, constant voltage circuit 2, load device 3, storage battery 4, fuel concentration control circuit 6, electrolyte supply device 5, fuel supply device 7
, the switching circuit 8 and its opening/closing contacts e.

、el。12 、e4 se5 、e6 sお
よび間欠駆動回路9とその接点e3 とによシ本発明の
燃料電池電源装置は構成される。
,el. 12, e4 se5, e6 s, and the intermittent drive circuit 9 and its contact e3 constitute the fuel cell power supply device of the present invention.

燃料電池1のプラスaは開閉接点e5 を介して定電圧
回路2の入力端子に、この回路2のプラス出力Cは開閉
接点e6 を介して燃料補給装置7、切替回路8の電源
端子および蓄電池4のプラスdに接続される。
The positive a of the fuel cell 1 is connected to the input terminal of the constant voltage circuit 2 via the switching contact e5, and the positive output C of this circuit 2 is connected to the fuel supply device 7, the power supply terminal of the switching circuit 8, and the storage battery 4 via the switching contact e6. is connected to the plus d of the

燃料濃度制御回路6、電解液供給装置5、負荷機器3、
および間欠1駆動回路9の電源端子はそれぞれ開閉接点
11 。
fuel concentration control circuit 6, electrolyte supply device 5, load equipment 3,
The power terminals of the intermittent drive circuit 9 and the intermittent drive circuit 9 each have a switching contact 11 .

14、go、12 を介して前記蓄電池4のプラスdに
接続される。
14, go, and 12 are connected to the plus d of the storage battery 4.

燃料濃度制御回路6の出力は燃料補給装置7に接続され
、この装置を駆動制御する。
The output of the fuel concentration control circuit 6 is connected to a fuel supply device 7 to drive and control this device.

間欠、駆動回路9の出力接点e3は前記開閉接点e4
と並列に設けられる。
The output contact e3 of the intermittent drive circuit 9 is the switching contact e4.
is provided in parallel with.

前記2,3,4,5゜6.8,9のそれぞれのマイナス
端子は共通に燃料電池1のマイナスbに接続される。
The negative terminals of the terminals 2, 3, 4, 5°6.8, and 9 are commonly connected to the negative b of the fuel cell 1.

前記切替回路8は用途や使用条件などによる切替信号に
よって作動し、この回路8の出力である開閉接点e。
The switching circuit 8 is operated by a switching signal depending on the application or usage conditions, and the output of this circuit 8 is an opening/closing contact e.

。11 s 62 s e4 t g5 、e
6ヲスイ’)f制御する。
. 11 s 62 s e4 t g5 , e
6) Control.

このように構成された燃料電池電源装置の動作について
第7図をもとに説明する。
The operation of the fuel cell power supply device configured as described above will be explained based on FIG. 7.

まず、第7図Eのtlの時点で、切替信号(第7図A)
により切替回1路8がオンからオフに切替わると、この
回路8の出力となる開閉接点e。
First, at time tl in FIG. 7E, the switching signal (FIG. 7A)
When the switching circuit 1 circuit 8 is switched from on to off, the opening/closing contact e becomes the output of this circuit 8.

”I!1’g4145、e6はそれぞれ第7図Bに示さ
れるようにオンからオフに切替わシ、負荷機器3、燃料
濃度制御回路6、電解液供給装置5、燃料電池1の出力
、定電圧回路2の出力をそれぞれオフする。
"I!1'g4145 and e6 are switched from on to off as shown in FIG. The outputs of the voltage circuits 2 are turned off.

逆に開閉接点e2は第7図Cに示されるようにオフから
オンに切替わり、間欠駆動回路9を作動させる。
Conversely, the opening/closing contact e2 is switched from OFF to ON as shown in FIG. 7C, thereby activating the intermittent drive circuit 9.

この時の間欠駆動回路9の出力は第7図りに示されるよ
うにオンからオフとなシ、この回路9の接点e3はオフ
となる。
At this time, the output of the intermittent drive circuit 9 changes from on to off as shown in Figure 7, and the contact e3 of this circuit 9 turns off.

この状態において、前記1.2,3,6,7,5.は停
止し、蓄電池4によって切替回路8と間欠1駆動回路9
のみが作動状態となっている。
In this state, the above 1.2, 3, 6, 7, 5. stops, and the switching circuit 8 and the intermittent drive circuit 9 are switched on by the storage battery 4.
Only one is in working condition.

つぎに第7図EのT2の時点で間欠、駆動回路9の出力
が第7図りに示されるようにオンすると、この回路9の
出力接点e3はオンとなり、電解液供給装置5を作動す
る。
Next, at time T2 in FIG. 7E, the output of the drive circuit 9 is intermittently turned on as shown in FIG.

前記第7図EのtlからT2までの期間T1 は燃料電
池1の性能を保持し得る適宜なる周期である。
The period T1 from tl to T2 in FIG. 7E is an appropriate cycle that can maintain the performance of the fuel cell 1.

間欠1駆動回路9の出力は第7図EのT3の時点までオ
ンを維持した後オフし、電解液供給装置5を停止する。
The output of the intermittent 1 drive circuit 9 remains on until time T3 in FIG. 7E, and then turns off, stopping the electrolyte supply device 5.

したがって、電解液供給装置5はT2時間作動i〜、適
宜々る量の燃料混合電解液を燃料電池1に補給する。
Therefore, the electrolyte supply device 5 supplies an appropriate amount of fuel mixed electrolyte to the fuel cell 1 during the operation time T2.

さらに第7図t3の時点をすぎると間欠、駆動回路9の
出力は第7図りに示されるように周期T1毎にT2時間
オンの動作を繰返し、電解液供給装置5を間欠的に駆動
させる。
Furthermore, after time t3 in FIG. 7, the output of the drive circuit 9 repeats the ON operation for T2 time every period T1, as shown in FIG. 7, to drive the electrolyte supply device 5 intermittently.

つぎに第7図Eの14 の時点で、切替回路8に切替信
号が与えられ、今度は切替回路がオフからオンに切替わ
ると、この回路8の出力となる開閉接点4゜。
Next, at time 14 in FIG. 7E, a switching signal is given to the switching circuit 8, and when the switching circuit is switched from OFF to ON, the opening/closing contact 4° becomes the output of this circuit 8.

11.14.15.e6はオフからオンへ、開閉接点e
2はオンからオフへそれぞれ切替わり燃料電池電源装置
を連続作動に切替え、負荷機器3に燃料電池1より電力
を供給する。
11.14.15. e6 is from off to on, opening/closing contact e
2 switches from on to off, switching the fuel cell power supply device to continuous operation, and supplying power from the fuel cell 1 to the load device 3.

このように本発明による燃料電池電源装置では、無負荷
時には燃料電池1の出力をオフとすると共に間欠1駆動
回路9によって燃料電池1の性能を保持し得る適宜なる
周期T1毎に、適宜な燃料混合電解液の供給をT2時間
行ない、燃料電池電極における無負荷時の燃料の接触分
解を著しく軽減することができ、燃料電池始動時の電圧
低下がわずかで、予備運転を必要としないなどの特徴を
有する。
As described above, in the fuel cell power supply device according to the present invention, the output of the fuel cell 1 is turned off when there is no load, and the intermittent 1 drive circuit 9 supplies appropriate fuel at appropriate intervals T1 to maintain the performance of the fuel cell 1. The mixed electrolyte is supplied for T2 hours, which can significantly reduce the catalytic decomposition of the fuel at no-load conditions at the fuel cell electrodes, and the voltage drop when starting the fuel cell is slight and no preliminary operation is required. has.

燃料電池10発生電圧は第7図Eに示される。The voltage generated by the fuel cell 10 is shown in FIG. 7E.

定格負荷時の燃料電池1の電圧v1 は、tl の時点
で負荷機器3がオフとなると同時に無負荷電圧に上昇す
る。
The voltage v1 of the fuel cell 1 at the rated load increases to the no-load voltage at the same time as the load device 3 is turned off at time tl.

燃料電池1への燃料混合電解液の供給はT□の期間停止
しているため、燃料電池電圧は燃料電池1内の燃料濃度
の変化に応じ、山形状に変化して行<o−T2からT3
の間は電解液供給装置が作動し、燃料混合電解液が補
給されるために電解液を通じてリーク電流の回路が形成
され、リーク電流が増すために燃料電池電圧はわずかに
低下する。
Since the supply of the fuel mixed electrolyte to the fuel cell 1 is stopped for a period of T□, the fuel cell voltage changes in a mountain shape according to the change in the fuel concentration in the fuel cell 1, and from the line <o-T2 T3
During this period, the electrolyte supply device operates and the fuel mixed electrolyte is replenished, so a leakage current circuit is formed through the electrolyte, and as the leakage current increases, the fuel cell voltage slightly decreases.

以後無負荷時においてはこの動作を繰返し、燃料電池1
は性能が劣化しないように護持される。
From then on, this operation is repeated during no-load conditions, and the fuel cell 1
is protected to prevent performance deterioration.

T3の時点で負荷機器3がオンすると同期に燃料電池1
も作動を開始し、定格時の電圧v1 よシ若干低下す
るのみで、ただちに電力を供給することができ、燃料電
池電圧の回復も早い0 本発明の回路構成による燃料電池電源装置で、間欠駆動
を行なうと、第8図に示されるように燃料の消費量を著
しく減少させることができた。
When load device 3 is turned on at time T3, fuel cell 1 is turned on at the same time.
The fuel cell power supply device with the circuit configuration of the present invention allows for intermittent drive. By doing so, the amount of fuel consumed could be significantly reduced as shown in FIG.

第8図かられかるように、電解液供給装置のオフ時間つ
まシ適宜なる周期T1 は3時間以上が、その効果が犬
であるが、本発明者らの調査によると、T□が8時間以
上になると燃料電池1の燃料利用率の低下、電池寿命の
劣化、立上り特性の劣化などが増す傾向を示し、T□は
3〜8時間が良いことが判明している。
As can be seen from Fig. 8, the period T1, which is an appropriate off-time period of the electrolyte solution supply device, is more than 3 hours, but the effect is significant, but according to the research conducted by the present inventors, T□ is 8 hours. When the temperature exceeds this value, there is a tendency for the fuel utilization rate of the fuel cell 1 to decrease, the battery life to deteriorate, the start-up characteristics to deteriorate, etc., and it has been found that T□ is good for 3 to 8 hours.

本発明による第7図の実施例では、燃料を一定の割合で
混合した電解液を電解液供給装置5によって供給する場
合を示したが、燃料と電解液は単独にそれぞれを燃料電
池1に供給するように構成しても、同等の効果があるこ
とがわかった。
In the embodiment shown in FIG. 7 according to the present invention, a case is shown in which an electrolytic solution mixed with fuel at a constant ratio is supplied by the electrolytic solution supply device 5, but the fuel and the electrolytic solution are each supplied separately to the fuel cell 1. It was found that the same effect could be obtained even if the configuration was configured to do so.

また電解液供給装置5の作動時間T2は、前記供給装置
の性能特に流量によって異なるが、定格時に1000e
/分の電解液流量を必要とする燃料電池1では、本発明
者らの調査の結果5〜30分、好ましくは5〜15分で
あることが判明している。
The operating time T2 of the electrolyte supply device 5 varies depending on the performance of the supply device, particularly the flow rate, but the operating time T2 is 1000 e
In the fuel cell 1 which requires an electrolyte flow rate of /min, the inventors' research has revealed that the electrolyte flow rate is 5 to 30 minutes, preferably 5 to 15 minutes.

24y100Wの出力のヒドラジン燃料電池電源装置に
本発明による回路構成を用いた場合において、T1−3
時間、T2−15分とした作動例では第8図に示される
ように、従来の連続運転の場合の燃料消費量を100と
した場合、本発明による装置では14%で済み86%の
燃料が節約できた。
When the circuit configuration according to the present invention is used in a hydrazine fuel cell power supply device with an output of 24y100W, T1-3
In an example of operation where the time is T2-15 minutes, as shown in Fig. 8, when the fuel consumption in conventional continuous operation is 100, the device according to the present invention consumes only 14% of the fuel, which is 86%. I was able to save money.

本発明による回路構成を用いた燃料電池電源装置の特徴
を列記すると、次の″ようになる。
The characteristics of the fuel cell power supply device using the circuit configuration according to the present invention are listed as follows.

(1)燃料の消費量を軽減でき、燃料タンクの・」・型
化、電源装置の小型化が可能となった。
(1) Fuel consumption can be reduced, fuel tanks can be made more compact, and power supplies can be made more compact.

(2)燃料電池の再始動時の電圧低下が少なく、即出力
が得られ、二次電池の容量を小さくできるまた燃料電池
の予備運転が不要となシ、保守が簡単になった。
(2) There is less voltage drop when restarting the fuel cell, immediate output is obtained, the capacity of the secondary battery can be reduced, and preliminary operation of the fuel cell is not required, making maintenance easier.

(3)燃料電池電源装置としての燃料利用率が向上し、
電源コストを下げることができた。
(3) Improved fuel utilization rate as a fuel cell power supply device,
We were able to reduce power supply costs.

(4)間欠駆動により可動部の寿命がのびた。(4) Intermittent drive extends the life of moving parts.

(5)燃料電池寿命の向上が期待できる。(5) Improvement in fuel cell life can be expected.

第9図は本発明の他の実施例における要部回路構成を示
す。
FIG. 9 shows the main circuit configuration in another embodiment of the present invention.

燃料濃度制御回路6の電源端子は開閉接点e1 を介し
て蓄電池4のプラスdに接続され、前記開閉接点e1
と並列に、間欠1駆動回路9の出力接点e3′が接続
されて々る回路構成である。
The power supply terminal of the fuel concentration control circuit 6 is connected to the plus d of the storage battery 4 via the switching contact e1.
In this circuit configuration, the output contact e3' of the intermittent 1 drive circuit 9 is connected in parallel with the output contact e3' of the intermittent 1 drive circuit 9.

動作について説明すると、負荷機器3がオン時には、開
閉接点e4.e1 がオンとなシ、電解液供給装置5、
燃料濃度制御回路6は連続作動となる。
To explain the operation, when the load device 3 is on, the opening/closing contacts e4. e1 is on, the electrolyte supply device 5,
The fuel concentration control circuit 6 operates continuously.

つぎに負荷機器3がオフすると、前記e4*。Next, when the load device 3 is turned off, the e4*.

がオンするために、電解液供給装置5、燃料濃度制御回
路6はオフし、開閉接点12 により間欠駆動回路9が
オンする。
is turned on, the electrolyte supply device 5 and fuel concentration control circuit 6 are turned off, and the intermittent drive circuit 9 is turned on by the opening/closing contact 12.

間欠1駆動回路9は第7図りに示されるように適宜な周
期T1毎にe3および43′をオンし、電解液供給装置
5および燃料濃度制御回路6を12時間だけ作動させる
As shown in the seventh diagram, the intermittent 1 drive circuit 9 turns on e3 and 43' at appropriate intervals T1, and operates the electrolyte supply device 5 and the fuel concentration control circuit 6 for only 12 hours.

第9図による本発明の実施例は、無負荷時、電解液供給
装置5の作動しているT2時間中に燃料電池極板によっ
て接触分解する燃料の量、およびT1時間中に燃料電池
1に残留している電解液中の燃料が接触分解によって消
費される量が蓄積増加することを防止するために、周期
T1毎に燃料濃度制御回路6をT2時間作動せしめ、燃
料補給装置7によシ燃料を補給し、電解液中の燃料濃度
を一定に制御している。
The embodiment of the invention according to FIG. 9 shows that the amount of fuel catalytically cracked by the fuel cell plate during time T2 when the electrolyte supply device 5 is in operation at no load, and the amount of fuel catalytically cracked by the fuel cell 1 during time T1. In order to prevent the amount of fuel in the remaining electrolyte from being consumed by catalytic cracking from accumulating and increasing, the fuel concentration control circuit 6 is operated for T2 hours every cycle T1, and the fuel replenishment device 7 is activated. Fuel is supplied and the fuel concentration in the electrolyte is controlled at a constant level.

この回路構成は、負荷機器3のオフ期間が非常に長期て
わたる、例えば非常電源あるいは通信機器などの予備電
源等に用いる燃料電池電源装置に用いられ、従来の連続
作動方式による装置に比べ、75%以上燃料の消費量を
軽減でき、燃料電池1の作動時の応答性も良好な特徴を
有する。
This circuit configuration is used in a fuel cell power supply device used as an emergency power source or a backup power source for communication equipment, etc., in which the off period of the load device 3 is very long. % or more, and the response of the fuel cell 1 during operation is also good.

第10図は本発明による間欠、駆動回路9の他の実施例
を示すブロック図であム間欠駆動回路9aは、燃料電池
1内の燃料濃度検出部9a1 と、前記検出部9a1
の信号に応じトリガ信号を発生する燃料濃度検出回路9
a2 と、前記検出回路9a2のトリガ信号によって作
動し、電解液供給装置5をT2時間作動させる単安定マ
ルチバ・イブレータ回路とによって少なくとも構成され
る。
FIG. 10 is a block diagram showing another embodiment of the intermittent drive circuit 9 according to the present invention.
A fuel concentration detection circuit 9 that generates a trigger signal in response to a signal from
a2, and a monostable multivibrator circuit that is activated by the trigger signal of the detection circuit 9a2 and operates the electrolyte supply device 5 for a time T2.

第10図による本発明の実施例では、燃料電池1内の燃
料濃度が一定値以下に々ると電池性能が劣化することに
着目し、燃料電池内の燃料濃度を燃料電池1がオフ時に
おいて一定値以上に制御することを特徴とする。
In the embodiment of the present invention shown in FIG. 10, focusing on the fact that the cell performance deteriorates when the fuel concentration in the fuel cell 1 falls below a certain value, the fuel concentration in the fuel cell is determined when the fuel cell 1 is off. It is characterized by being controlled above a certain value.

動作について説明する。無負荷の燃料電池1の出力がオ
フの状態において、燃料電池1内に残留している電解液
中の燃料濃度が接触分解によシ一定値以下になると燃料
濃度検出部9a1 は)信号を発し、燃料濃度検出回路
9a2はこの信号に応動し、単安定マルチバイブレータ
回路9a3をトリガにする。
The operation will be explained. When the output of the unloaded fuel cell 1 is off and the fuel concentration in the electrolyte remaining in the fuel cell 1 becomes below a certain value due to catalytic decomposition, the fuel concentration detection section 9a1 issues a signal. , the fuel concentration detection circuit 9a2 responds to this signal and triggers the monostable multivibrator circuit 9a3.

トリガされた前記バイブレータ回路9a3はその出力に
接続された電解液供給装置5をT2時間作動させて適宜
なる燃料混合電解液の補給を行なう。
The triggered vibrator circuit 9a3 operates the electrolyte supply device 5 connected to its output for a time T2 to replenish an appropriate fuel mixed electrolyte.

このようにして燃料電池1内の燃料濃度を一定値以上に
制市し、電池性能の劣化を防ぐものである。
In this way, the fuel concentration within the fuel cell 1 is controlled to a certain value or higher, thereby preventing deterioration of the cell performance.

上記実施例では燃料混合電解液を補給することによって
燃料電池1内の燃料温度を一定値以上に保つ構成である
が、燃料のみを燃料電池1に補給する構成としても同等
の効果がある。
In the embodiment described above, the fuel temperature in the fuel cell 1 is maintained at a certain value or higher by replenishing the mixed fuel electrolyte, but the same effect can be achieved by replenishing the fuel cell 1 with only fuel.

本実施例によれば、電解液温度、周囲温度、燃料電池1
の作動年数などにより燃料電池極板の接触分解量が変化
してきても適宜なる周期で燃料混合電解液の補給ができ
、電池性能の劣化が少なく、燃料消費の少ない燃料電池
電源装置を提供することができ、その利用価値は犬なる
ものである。
According to this embodiment, the electrolyte temperature, ambient temperature, fuel cell 1
To provide a fuel cell power supply device capable of replenishing a mixed fuel electrolyte at an appropriate period even if the amount of catalytic decomposition of a fuel cell electrode plate changes due to the number of years of operation of the fuel cell, with little deterioration of cell performance, and with low fuel consumption. The value of its use is that of a dog.

本実施例をヒドラジン燃料電池電源装置に用いた場合、
燃料電池内のヒドラジン燃料濃度は0.1%以上好まし
くは0.3%以上に制御することによって良好な作動結
果を得た。
When this example is used in a hydrazine fuel cell power supply device,
Good operational results were obtained by controlling the hydrazine fuel concentration in the fuel cell to 0.1% or more, preferably 0.3% or more.

従来装置に比べ、燃料消費量は30%減少することがで
き、電池性能、電池寿命の劣化は見られなかった。
Compared to conventional devices, fuel consumption was reduced by 30%, and no deterioration in battery performance or battery life was observed.

前記実施例として、9al を燃料電池電圧検出部、9
a2を燃料電池電圧検出回路、9a3を単安定マルチバ
イブレータ回路によって構成し、無負荷時において、燃
料電池電圧が低下し、一定値に達すると燃料混合電解液
を補給せしめる燃料電池電源装置が提案できる。
In the above embodiment, 9al is a fuel cell voltage detection section, 9
A fuel cell power supply device can be proposed in which a2 is a fuel cell voltage detection circuit and 9a3 is a monostable multivibrator circuit, and when the fuel cell voltage decreases under no load and reaches a certain value, the fuel mixed electrolyte is replenished. .

本実施例は燃料電池電圧が燃料電池内の電解液中の燃料
濃度に応じて変化することに着目し、装置を構成したも
ので、前記発明と同等の効果があシ、長期間良好に作動
することが可能であった。
This embodiment focuses on the fact that the fuel cell voltage changes depending on the fuel concentration in the electrolyte in the fuel cell, and the device is constructed.It has the same effect as the above invention and operates well for a long period of time. It was possible to do so.

第11図、第12図、第13図は本発明による燃料電池
電源装置の間欠駆動回路9の具体的実施例を示す。
11, 12, and 13 show specific embodiments of the intermittent drive circuit 9 of the fuel cell power supply device according to the present invention.

第11図の間欠駆動回路9bは、抵抗R1〜6、コンデ
ンサC7,C2トランジスタQ1.C2から構成される
無安定マルチバイブレータ回路9bt と、この回路
9b1の出力によって動作するトランジスタQ3、抵抗
R7、リレーRL1 とその接点e3 とから構成され
るスイッチ制御部とを有し、入力側に接続された開閉接
点e2 によって作動制御される。
The intermittent drive circuit 9b in FIG. 11 includes resistors R1 to R6, a capacitor C7, a C2 transistor Q1. It has an astable multivibrator circuit 9bt made up of C2, and a switch control part made up of a transistor Q3 operated by the output of this circuit 9b1, a resistor R7, a relay RL1 and its contact e3, and is connected to the input side. The operation is controlled by the opening/closing contact e2.

いま負荷時においては、開閉接点e2はオフ、。At present, under load, the switching contact e2 is off.

C4はオンし、電解液供給装置5は連続作動している。C4 is turned on and the electrolyte supply device 5 is continuously operating.

つぎに無負荷時に切替わると、開閉接点e2はオン、C
4はオフし、間欠駆動回路9bがオン、電解液供給装置
5がオフする。
Next, when the switch is made during no-load, the open/close contact e2 is turned on and C
4 is turned off, the intermittent drive circuit 9b is turned on, and the electrolyte supply device 5 is turned off.

間欠駆動回路9bがオンすると、無安定マルチバイブレ
ーク、9b1は発振し、トランジスタQ0 をT1=0
.7゜C25−R4時間オンし、トランジスタQ2 を
T2=0.7.C1,R6時間オンする。
When the intermittent drive circuit 9b is turned on, an astable multi-byte break occurs and 9b1 oscillates, causing the transistor Q0 to become T1=0.
.. 7°C25-R is turned on for 4 hours, transistor Q2 is set to T2=0.7. Turn on C1 and R for 6 hours.

したがってトランジスタQ3は12時間オンし、リレー
RL1をT2時間作動させ接点e3によシT2時間電解
Therefore, transistor Q3 is turned on for 12 hours, relay RL1 is operated for T2 hours, and contact e3 conducts electrolysis for T2 hours.

液供給装置5を作動させる。The liquid supply device 5 is activated.

トランジスタQi jQ2からなる無安定マルチバイ
ブレータ回路は、集積回路、電界効果トランジスタ等に
よって構成することができ、またスイッチ制御部はトラ
ンジス、り、ゲートターンオフサイリスタなどと、その
The astable multivibrator circuit consisting of the transistors Qi, j, and Q2 can be constructed using an integrated circuit, a field effect transistor, etc., and the switch control section may include a transistor, a gate turn-off thyristor, etc.

制御回路によって構成するこれが可能であった。This was possible by constructing a control circuit.

第12図は、発振器9C1、カウンタ回路9c2、単安
定マルチバイブレータ回路9c3 とスイッチ制御部R
L1 とから間欠駆動回路9Cが構成され、第11図と
同様の動作を行永う。
FIG. 12 shows an oscillator 9C1, a counter circuit 9c2, a monostable multivibrator circuit 9c3, and a switch control section R.
An intermittent drive circuit 9C is constructed from L1 and operates in the same manner as in FIG.

第13図は、集積回路タイマTb、コンデンサcA、c
7、抵抗R)、 s RBからなる無安定マルチバイ
ブレータとスイッチ制御部RL1 とから少なくとも構
成される間欠駆動回路9dで、第11図と同等の動作を
行なう。
FIG. 13 shows an integrated circuit timer Tb, capacitors cA, c
An intermittent drive circuit 9d comprising at least an astable multivibrator consisting of resistors R) and sRB and a switch control section RL1 performs the same operation as in FIG.

無負荷時には開閉接点e2がオンとなり、前記タイマT
bのリセット端子4を強制的にプラス電源に接続し、発
振させる。
When there is no load, the switching contact e2 is turned on, and the timer T
The reset terminal 4 of b is forcibly connected to the positive power supply to cause oscillation.

T1.T2は次式で表わされる。T1. T2 is expressed by the following formula.

TI −0,693(f3p、 + % ) CA(s
ec )T2=0.693・RB−CA (s
ec)負荷時には、発振を停止するために、開閉接点e
2 がオフと同時に前記タイマTbのリセット端子4を
抵抗R13を介してマイナス側に接地され、リセット状
態にされる。
TI -0,693(f3p, +%) CA(s
ec ) T2=0.693・RB-CA (s
ec) When under load, open/close contact e is used to stop oscillation.
2 is turned off, the reset terminal 4 of the timer Tb is grounded to the negative side via the resistor R13, and the timer Tb is brought into a reset state.

第14図は負荷再始動時における燃料電池の性能劣化を
より少なくし、電源装置としての立上り特性を良好にし
、よシ安定に行なわしめる構成とした燃料電池電源装置
の実施例を示す。
FIG. 14 shows an embodiment of a fuel cell power supply device configured to further reduce performance deterioration of the fuel cell at the time of restarting a load, improve startup characteristics as a power supply device, and perform more stably.

本実施例は、燃料電池1に開閉接点e5を介して接続し
た定電圧回路2と、燃料電池遅延回路10の接点06/
を介して接続した燃料補給装置7、切替回路8、および
蓄電池の如き二次電池4と、前記二次電池4の出力dよ
シ開閉接点61 、C4s62 seo、C7を介
してそれぞれ接続した燃料濃度制御回路6、電解液供給
装置5、間欠駆動回路9、負荷機器3への端子e、およ
び燃料電池遅延回路10と、さらに電解液供給装置5と
二次電池4の1274間に接続された開閉接点e4に並
設され、間欠1駆動回路9によって作動する接点e3
とにより構成したことを特徴とする燃料電池電源装置で
ある。
In this embodiment, a constant voltage circuit 2 connected to the fuel cell 1 via a switching contact e5 and a contact 06/
A fuel replenishment device 7, a switching circuit 8, and a secondary battery 4 such as a storage battery are connected through a fuel supply device 7, a switching circuit 8, and a secondary battery 4 such as a storage battery. An opening/closing circuit connected to the control circuit 6, the electrolyte supply device 5, the intermittent drive circuit 9, the terminal e to the load device 3, and the fuel cell delay circuit 10, and between the electrolyte supply device 5 and the secondary battery 4 1274 A contact e3 is arranged in parallel with the contact e4 and is operated by the intermittent 1 drive circuit 9.
This is a fuel cell power supply device characterized by comprising:

本実施例による回路の動作波形を第15図に示す。FIG. 15 shows operating waveforms of the circuit according to this example.

本実施例による動作を説明する。The operation according to this embodiment will be explained.

負荷時、負荷時から無負荷時への切替時、および無負荷
時の動作については、第6図、第7図による動作と同一
である。
Operations under load, when switching from load to no-load, and during no-load are the same as those shown in FIGS. 6 and 7.

つぎに切替信号により切替回路8が第14図Aに示され
るようにオフからオンに切替わルト、開閉接点eo
、11.(14,l=、 −67も第14図Aに示さ
れるようにオフからオンし、逆に開閉接点e2は第14
図Bに示されるようにオンからオフする。
Next, the switching signal causes the switching circuit 8 to switch from OFF to ON as shown in FIG. 14A.
, 11. (14,l=, -67 also turns on from off as shown in FIG. 14A, and conversely, the opening/closing contact e2
From on to off as shown in Figure B.

したがって負荷機器3、燃料濃度制御回路6、電解液供
給装置5、燃料電池1の出力、および燃料電池遅延回路
10はそれぞれオンとな多連続作動となるが定電圧回路
2の出力は前記遅延回路によって適宜なる期間T3だけ
接点16′によってオフ状態が保持される。
Therefore, the load equipment 3, the fuel concentration control circuit 6, the electrolyte supply device 5, the output of the fuel cell 1, and the fuel cell delay circuit 10 are each turned on and operate continuously, but the output of the constant voltage circuit 2 is Accordingly, the off state is maintained by the contact 16' for an appropriate period T3.

つまシT2時間、燃料電池1は定電圧回路2のわずかな
自己消費電流を供給するのみで、はとんど無負荷状態で
予備運転されることになる。
During the period T2, the fuel cell 1 only supplies a small amount of self-consumption current of the constant voltage circuit 2, and is mostly operated in a preliminary operation in a no-load state.

第14図りは接点e7の動作を示す。The 14th diagram shows the operation of contact e7.

13時間後に前記遅延回路10の出力がオフするとこの
回1烙10の接点46′がオンし、燃料電池1の電力を
負荷機器3へ供給する。
When the output of the delay circuit 10 is turned off after 13 hours, the contact 46' of the first heater 10 is turned on, and power from the fuel cell 1 is supplied to the load equipment 3.

(第14図E)T2時間は蓄電池4よシ負シ荷機器3へ
電力が供給される。
(FIG. 14E) During time T2, power is supplied from the storage battery 4 to the load device 3.

このような動作による本実施例では、負荷再始動時にお
ける燃料電池1の予備運転により、燃池性能の劣化を少
なくし、立上シ特性を向上させると共に、電池寿命を伸
ばすことができ、無負荷時に〉ける間欠駆動によ多燃料
の消費量を減少できる特徴を有し、その利用価値は犬な
るものである。
In this embodiment with such an operation, the preliminary operation of the fuel cell 1 at the time of restarting the load reduces the deterioration of the fuel cell performance, improves the start-up characteristics, and extends the battery life. It has the feature of reducing fuel consumption due to intermittent drive under load, and its utility value is significant.

燃料電池遅延回路10は、切替回路8がオン後一定の1
2時間遅延させた後、接点e6 をオンとする方法、あ
るいは燃料電池1の電圧が一定値に達すると出力を作動
させる方法、さらに前記両者を組み合せる方法などがあ
る。
The fuel cell delay circuit 10 has a constant value of 1 after the switching circuit 8 is turned on.
There are methods such as turning on the contact e6 after a two-hour delay, or activating the output when the voltage of the fuel cell 1 reaches a certain value, or a combination of the above methods.

切替回路8、燃料濃度制御回路6、電解液供給装置5、
間欠駆動回路9、燃料電池遅延回路10などは二次電池
4以外の外部電源、例えば交流電源よシ整流した直流電
源で駆動されるように構成した燃料電池電源装置でも本
発明による効果と同等の結果を得ることができた。
switching circuit 8, fuel concentration control circuit 6, electrolyte supply device 5,
Even in a fuel cell power supply device in which the intermittent drive circuit 9, fuel cell delay circuit 10, etc. are driven by an external power source other than the secondary battery 4, for example, an AC power source or a rectified DC power source, the same effect as that of the present invention can be obtained. I was able to get results.

切替回路8の切替信号は負荷機器の電流、負荷機器制御
信号、予備電源や非常電源では交流の停電による信号、
灯台用電源では太陽光などから得られる。
The switching signal of the switching circuit 8 is the current of the load equipment, the load equipment control signal, the signal due to an AC power outage in the case of backup power supply or emergency power supply,
Power for lighthouses can be obtained from sources such as sunlight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液体燃料電池電源装置の回路図、第2図
〜第5図は従来例を説明するための特性図、第6図は本
発明の・一実施例による燃料電池電源装置の回路図、第
7図は第6図の回路を説明する為の波形図、第8図は本
発明による燃料の消費量を示す特性図、第9図は本発明
の他の実施例を示す回路図、第10図は間欠1駆動回路
の他の実施例を示す図、第11図〜第13図は本発明に
よる燃料電池電源装置の間欠駆動回路の具体的実施例を
示す回路図、第14図は燃料電池電源装置の実施例を示
す回路図、第15図は第14図の回路を説明するための
波形図である。 1・・・・・・燃料電池、2・・・・・・定電圧回路、
3・・・−・・負荷機器、4・・・・・・二次電池、5
・・・・・・電解液供給装置、6・・・・・・燃料濃度
制御回路、7・・・・・・燃料補給装置、8・・・・・
・切替回路、9・・・・・・間欠1駆動回路、10・・
・・・・燃料電池遅延回路、a 2 b g Cs d
* e・・・・・・端子、1o 、el、e2.l
+ 、Ls 、(16−117・・・・・・開閉接
点、e3 s 63’t e6’・・・・・・接点、
VFC・・・・・・燃料電池電圧、t・・・・・・時間
FIG. 1 is a circuit diagram of a conventional liquid fuel cell power supply device, FIGS. 2 to 5 are characteristic diagrams for explaining the conventional example, and FIG. 6 is a diagram of a fuel cell power supply device according to an embodiment of the present invention. A circuit diagram, FIG. 7 is a waveform diagram for explaining the circuit of FIG. 6, FIG. 8 is a characteristic diagram showing fuel consumption according to the present invention, and FIG. 9 is a circuit showing another embodiment of the present invention. 10 is a diagram showing another embodiment of the intermittent drive circuit 1, FIGS. 11 to 13 are circuit diagrams showing a specific embodiment of the intermittent drive circuit of the fuel cell power supply device according to the present invention, and FIG. The figure is a circuit diagram showing an embodiment of the fuel cell power supply device, and FIG. 15 is a waveform diagram for explaining the circuit of FIG. 14. 1...fuel cell, 2...constant voltage circuit,
3...Load equipment, 4...Secondary battery, 5
. . . Electrolyte supply device, 6 . . . Fuel concentration control circuit, 7 . . . Fuel supply device, 8 .
・Switching circuit, 9...Intermittent 1 drive circuit, 10...
...Fuel cell delay circuit, a 2 b g Cs d
*e...Terminal, 1o, el, e2. l
+, Ls, (16-117... open/close contact, e3 s 63't e6'... contact,
VFC...Fuel cell voltage, t...Time.

Claims (1)

【特許請求の範囲】 1 燃料電池に開閉接点を介して接続した定電圧回路と
、定電圧回路の出力端より開閉接点を介して接続された
切替回路、二次電池および電解液に」燃料を補給する燃
料補給装置と、二次電池の出力よシそれぞれ開閉接点を
介して接続された負荷機器、燃料補給装置を制御する燃
料濃度制御回路、所定の濃度の燃料を含有する電解液を
燃料電池へ供給する電解液供給装置および電解液供給装
置をシ間欠的に駆動する間欠駆動回路と、さらに電解液
供給装置と二次電池間の開閉接点に並設した間欠駆動回
路によって作動する接点と有し、開閉接点を切替信号に
よって作動する切替回路によって動作させ、無負荷時に
間欠駆動回路を駆動するよう、に構成したことを特徴と
する燃料電池電源装置。 2 間欠駆動回路が、タイマ回路とこのタイマ回路の出
力によってトリガされる単安定マルチバイブレータ回路
と、このマルチバイブレータ回路の出力によって駆動さ
れるスイッチ制御部とを有し、・前記単安定マルチバイ
ブレーク回路の出力1でスイッチ制御部を1駆動し、他
方の出力2でタイマ回路をリセットするように構成した
特許請求の範囲第1項記載の燃料電池電源装置。 3 間欠1駆動回路が、燃料電池の電圧、電池内燃料濃
度などの変位を検出する検出回路と、前記検出回路の出
力信号によってトリガされる単安定マルチバイブレータ
回路と、前記マルチバイブレータ回路の出力によって駆
動されるスイッチ制御部とから構成した特許請求の範囲
第1項記載の燃料電池電源装置。 4 定電圧回路と燃料補給装置、切替回路、二次電池と
の間に燃料電池遅延回路を設け、切替信号によって作動
する切替回路によって開閉接点を動作させ、燃料電池よ
りの信号によって作動する燃料電池遅延回路によって定
電圧回路の出力に接続された接点を動作させるように構
成した特許請求の範囲第1項記載の燃料電池電源装置。
[Claims] 1. A constant voltage circuit connected to a fuel cell via a switching contact, a switching circuit connected from an output end of the constant voltage circuit via a switching contact, a secondary battery, and an electrolyte. A refueling device to replenish, a load device connected to the output of the secondary battery via switching contacts, a fuel concentration control circuit that controls the refueling device, and an electrolytic solution containing fuel at a predetermined concentration to the fuel cell. an intermittent drive circuit that intermittently drives the electrolyte supply device and the electrolyte supply device; and a contact operated by the intermittent drive circuit that is installed in parallel with the opening/closing contact between the electrolyte supply device and the secondary battery. A fuel cell power supply device characterized in that the opening/closing contacts are operated by a switching circuit operated by a switching signal, and the intermittent drive circuit is driven during no-load conditions. 2. The intermittent drive circuit includes a timer circuit, a monostable multivibrator circuit triggered by the output of the timer circuit, and a switch control section driven by the output of the multivibrator circuit, and the monostable multivibrator circuit. 2. The fuel cell power supply device according to claim 1, wherein the output 1 drives the switch control section, and the output 2 resets the timer circuit. 3. The intermittent 1 drive circuit includes a detection circuit that detects changes in the fuel cell voltage, fuel concentration in the cell, etc., a monostable multivibrator circuit that is triggered by the output signal of the detection circuit, and a monostable multivibrator circuit that is triggered by the output signal of the multivibrator circuit. The fuel cell power supply device according to claim 1, comprising a switch control section that is driven. 4. A fuel cell in which a fuel cell delay circuit is provided between a constant voltage circuit, a fuel replenishment device, a switching circuit, and a secondary battery, the switching circuit is activated by a switching signal, and the opening/closing contacts are operated, and the switching circuit is activated by a signal from the fuel cell. 2. The fuel cell power supply device according to claim 1, wherein the delay circuit operates a contact connected to the output of the constant voltage circuit.
JP51022986A 1976-03-02 1976-03-02 fuel cell power supply Expired JPS5822865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51022986A JPS5822865B2 (en) 1976-03-02 1976-03-02 fuel cell power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51022986A JPS5822865B2 (en) 1976-03-02 1976-03-02 fuel cell power supply

Publications (2)

Publication Number Publication Date
JPS52106440A JPS52106440A (en) 1977-09-07
JPS5822865B2 true JPS5822865B2 (en) 1983-05-11

Family

ID=12097853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51022986A Expired JPS5822865B2 (en) 1976-03-02 1976-03-02 fuel cell power supply

Country Status (1)

Country Link
JP (1) JPS5822865B2 (en)

Also Published As

Publication number Publication date
JPS52106440A (en) 1977-09-07

Similar Documents

Publication Publication Date Title
JP3331529B2 (en) Power storage device and power system
CN1551393B (en) Chemically generation
JPH07153474A (en) Fuel cell generation set
US20040174072A1 (en) Fuel cell hybrid power supply
JPS62105376A (en) Method for operating liquid-circulation cell
JP2021105194A (en) Hydrogen generation system, hydrogen generation system control device and hydrogen generation system control method
JPS6121516A (en) Fuel battery power generating system
JP2006353016A (en) Battery power supply unit
WO2020203857A1 (en) Hydrogen generation system
JPS5822865B2 (en) fuel cell power supply
JPH0530656A (en) Satellite loading power supply system
JPS5828175A (en) Fuel cell
KR20170022735A (en) Energy Storage System and managing method for the same
CN218876912U (en) Suspension control power supply circuit based on hydrogen fuel cell
JP2003111291A (en) Control method for charging secondary battery used in fuel battery power generating system
CN215258095U (en) Tap control box and tap
JPS6377304A (en) Controller for electric vehicle
CN218352192U (en) Rechargeable battery device and electronic equipment
CN220043009U (en) Automatic-isolation vehicle-mounted battery self-starting system
WO2022264501A1 (en) Redox flow battery system
CN211405583U (en) Power supply for metering instrument
CN217486378U (en) Power-consumption-free power supply starting control circuit
CN219123979U (en) Direct-current booster circuit for preventing sudden power-off scene
JPH0795448B2 (en) Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery
CN214626426U (en) Automatic dormancy protection control device of lithium cell group