JPH0795448B2 - Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery - Google Patents

Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery

Info

Publication number
JPH0795448B2
JPH0795448B2 JP62232800A JP23280087A JPH0795448B2 JP H0795448 B2 JPH0795448 B2 JP H0795448B2 JP 62232800 A JP62232800 A JP 62232800A JP 23280087 A JP23280087 A JP 23280087A JP H0795448 B2 JPH0795448 B2 JP H0795448B2
Authority
JP
Japan
Prior art keywords
type battery
circuit
flow type
charging
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62232800A
Other languages
Japanese (ja)
Other versions
JPS6476678A (en
Inventor
健三 山口
Original Assignee
健三 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健三 山口 filed Critical 健三 山口
Priority to JP62232800A priority Critical patent/JPH0795448B2/en
Publication of JPS6476678A publication Critical patent/JPS6476678A/en
Publication of JPH0795448B2 publication Critical patent/JPH0795448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04597Current of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶液流通型電池の充放電回路における電解液
流量制御方法に係り、特に、送液ポンプの消費電力を軽
減するのに好適な溶液流通型電池の充放電回路における
電解液流量制御方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for controlling an electrolyte solution flow rate in a charge / discharge circuit of a solution flow type battery, and is particularly suitable for reducing the power consumption of a liquid feed pump. The present invention relates to a method for controlling an electrolyte solution flow rate in a charge / discharge circuit of a solution flow type battery.

〔従来技術〕[Prior art]

従来より、溶液流通型電池(以下、単に電池ということ
がある)における電解液の流速は常に一定以上に保持す
ることが効果的であるとされており、実際、一定負荷で
の充放電においては有効であった。
Conventionally, it has been said that it is effective to always keep the flow rate of the electrolyte in a solution flow type battery (hereinafter, simply referred to as a battery) at a certain level or more. In fact, in charging and discharging at a certain load, It was effective.

一方、長時間停止したために自己放電して自力による再
起動ができなくなった電池に対しては、再起動用として
鉛蓄電池を併用する方法が提案されており、この従来技
術としては特公昭61−218076号公報があげられる。
On the other hand, for a battery that cannot be restarted by itself due to self-discharge due to a long stoppage, a method of using a lead storage battery together for restarting has been proposed. No. 218076 is cited.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、電解液の流速を常に一定以上に保持する
ことは、電池の充放電負荷の変動により必要以上の電解
液が流れる場合があり、ポンプ消費電力の損失を招くと
いう問題がある。また、自己放電した電池に再起動用と
して鉛蓄電池を併用することは操作が複雑になるととも
に、経済的にも得策とはいえない。
However, if the flow rate of the electrolytic solution is constantly maintained at a certain level or higher, there is a problem in that the electrolytic solution may flow more than necessary due to fluctuations in the charging / discharging load of the battery, resulting in loss of pump power consumption. In addition, the combined use of a lead storage battery for restarting a self-discharged battery complicates the operation and is not economically advantageous.

本発明の目的は、上位従来技術の問題点をなくし、送液
ポンプの消費電力損失をなくすとともに、再起動時の自
己起動いわゆるブラックスタートを可能にする溶液流通
型電池の充放電回路における電解液流量制御方法を提供
することにある。
An object of the present invention is to eliminate the problems of the prior art, eliminate the power consumption loss of the liquid feed pump, and enable self-starting at the time of restart, so-called black start, in the charge / discharge circuit of the solution flow type battery. It is to provide a flow rate control method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は、枠体内にそれぞれ支
持された正・負両電極を隔膜を介して積層した単セルを
複極仕切板を介して多数直列に積層した溶液流通型電池
と、該溶液流通型電池の前記正・負両電極に送液ポンプ
によって電解液を供給する電解液循環系統と、前記溶液
流通型電池に、電力を供給して蓄積する充電回路および
蓄積された電力を取り出して消費する負荷回路とを有す
る溶液流通型電池の充放電回路における電解液流量制御
方法であって、前記充電回路および負荷回路における電
圧および電流値を計測し、充電電流が流れていない場合
であって前記充電回路からの最大入力量に対する前記負
荷回路の消費電力量が30%以下のとき前記送液ポンプを
間歇運転することを特徴とするものである。
In order to achieve the above object, the present invention is a solution flow type battery in which a large number of single cells, in which positive and negative electrodes respectively supported in a frame are stacked via a diaphragm, are stacked in series via a bipolar partition plate, An electrolytic solution circulation system that supplies an electrolytic solution to both the positive and negative electrodes of the solution flow type battery by a liquid feed pump, a charging circuit that supplies and stores electric power to the solution flow type battery, and a stored electric power. A method of controlling an electrolyte solution flow rate in a charge / discharge circuit of a solution flow type battery having a load circuit to be taken out and consumed, wherein voltage and current values in the charging circuit and the load circuit are measured, and a charging current is not flowing. The liquid feed pump is intermittently operated when the power consumption of the load circuit with respect to the maximum input amount from the charging circuit is 30% or less.

電池の充放電回路における電圧および電流値を基に負荷
回路の消費電力量(以下、負荷容量という)を求め、充
電電流が流れていない場合であって、前記負荷容量が充
電回路からの最大入力量(以下、電池容量という)の30
%以下のとき、送液ポンプを間歇運転して電解液を間歇
通液させることにより、送液ポンプによる消費電力損失
が少なくなる。
The power consumption of the load circuit (hereinafter referred to as load capacity) is calculated based on the voltage and current values in the battery charge / discharge circuit, and when the charging current is not flowing, the load capacity is the maximum input from the charging circuit. 30 (hereinafter referred to as battery capacity)
When the ratio is less than or equal to%, by intermittently operating the liquid feeding pump to intermittently pass the electrolytic solution, the power consumption loss due to the liquid feeding pump is reduced.

本発明において、溶液流通型電池が充放電されることな
く長期間放置され、次の充電または放電時までそのまま
待機する、いわゆる自己放電中にも前記送液ポンプを間
歇運転することが好ましい。これによって、最小の保持
電力で、電池のブラックスタート能力が維持される。
In the present invention, it is preferable to intermittently operate the liquid delivery pump even during so-called self-discharge, in which the solution flow type battery is left for a long time without being charged / discharged and is kept waiting until the next charge or discharge. This maintains the black start capability of the battery with minimal holding power.

本発明においては、電池の充放電の有無にかかわらず、
送液ポンプの運転を停止させる電圧範囲を設定しておく
ことが好ましい。
In the present invention, regardless of whether the battery is charged or discharged,
It is preferable to set a voltage range in which the operation of the liquid feed pump is stopped.

本発明において、充電電流が流れていない場合であっ
て、負荷容量が電池容量の30%を超える場合には、放電
量が多くなるので、送液ポンプを連続的に運転する必要
がある。
In the present invention, when the charging current is not flowing and the load capacity exceeds 30% of the battery capacity, the discharge amount increases, so it is necessary to continuously operate the liquid feeding pump.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.

第1図は、本発明の一実施例を示す説明図である。図に
おいて、電池1にソーラパネル2と負荷3が並列に接続
されており、負荷3側の回路にはポンプ電流制御装置5
が接続されている。ソーラパネル2側の回路には電流計
A1および電圧系V1が、また負荷3側の回路には電流計A3
および電圧系V2が配置されており、電流計A2は上記両回
路に共通に配置されている。電流計A1〜3および電圧
計V1〜2はそれぞれリード線により前記ポンプ電流制
御装置5と接続されており、該ポンプ電流制御装置5と
送液ポンプ6とがやはりリード線により接続されてい
る。なお、4はそれぞれ前記電池1の入出力端子に接続
されたスイッチング素子、7は電解液貯槽、8電解液流
通管である。
FIG. 1 is an explanatory view showing an embodiment of the present invention. In the figure, a solar panel 2 and a load 3 are connected in parallel to a battery 1, and a pump current control device 5 is provided in a circuit on the load 3 side.
Are connected. The circuit on the solar panel 2 side has an ammeter
A 1 and voltage system V 1 , and ammeter A 3 for the circuit on the load 3 side
And the voltage system V 2 are arranged, and the ammeter A 2 is arranged commonly to both circuits. The ammeters A 1 to 3 and the voltmeters V 1 to 2 are connected to the pump current control device 5 by lead wires, respectively, and the pump current control device 5 and the liquid delivery pump 6 are also connected by lead wires. There is. In addition, 4 is a switching element connected to the input / output terminal of the battery 1, 7 is an electrolytic solution storage tank, and 8 is an electrolytic solution flow pipe.

このような構成において、電流計A1〜3および電圧計
1〜2における計測値がそれぞれポンプ電流制御装置
5に送られ、該ポンプ電流制御装置5において、電流計
A1とA3の検出値の差が求められ、その差が予め設定され
た値よりも小さいと判断されたとき、すなわち放電量が
充電量のある範囲以上のときはソーラパネル2により電
池1の充電が開始される。このとき、電流計A2の充電電
流値に応じて電解液の最適流量が得られるように送液ポ
ンプ6の回転数が制御される。また、前記ポンプ電流制
御装置5において、電流計A1の値およびA2の放電電流値
がそれぞれ予め別途設定された値より小さくなったと判
断されたとき、すなわち充放電量が共にある値よりも小
さいときは電圧計V2の計測値がある設定値よりも小さく
なるまで送液ポンプ6の運転が停止され電解液の流通が
止まる。さらに、前記電圧計V2の値が予め設定された値
より小さくなったことが検出されたとき、すなわち放電
または自己放電により電池15の電圧がある値よりも低く
なったときは送液ポンプ6が一時的に稼働され、前記電
池1内の電解液が更新される。
In such a configuration, the measurement values of the ammeters A 1 to 3 and the voltmeters V 1 to 2 are sent to the pump current control device 5, and the pump current control device 5 causes the ammeters to measure.
When the difference between the detected values of A 1 and A 3 is obtained and it is determined that the difference is smaller than a preset value, that is, when the discharge amount is above a certain range of the charge amount, the solar panel 2 causes the battery 1 Will start charging. At this time, the rotation speed of the liquid feed pump 6 is controlled so that the optimum flow rate of the electrolytic solution is obtained according to the charging current value of the ammeter A 2 . Further, in the pump current control device 5, when it is determined that the value of the ammeter A 1 and the discharge current value of A 2 are smaller than the preset values, that is, the charge / discharge amount is lower than a certain value. When it is smaller, the operation of the liquid supply pump 6 is stopped and the flow of the electrolytic solution is stopped until the measured value of the voltmeter V 2 becomes smaller than a certain set value. Further, when it is detected that the value of the voltmeter V 2 becomes smaller than a preset value, that is, when the voltage of the battery 15 becomes lower than a certain value due to discharge or self-discharge, the liquid delivery pump 6 Is temporarily operated, and the electrolytic solution in the battery 1 is updated.

本実施例によれば、充電電流が流れるときに、その電流
値に応じて送液ポンプ6の回転数が制御されるので、従
来法に較べ送液ポンプ6の消費電力を約40%軽減するこ
とができる。また充電電流が流れていない場合で、かつ
負荷容量が電池容量の30%程度以下であるときには、送
液ポンプ6を間欠運転することにより、送液ポンプ6の
消費電力を従来法の約1/30にすることができる。さら
に、電池1が長期間待機状態に入り自己放電するとき
は、電池電圧の下限値により送液ポンプ6が間欠運転さ
れるので、ブラックスタート能力を最小の保持電力で維
持することができる。この場合、送液ポンプ6の運転間
隔および運転時間は電池1の自己放電率により左右され
るが、通常4〜5時間に2〜3分で十分である。
According to this embodiment, when the charging current flows, the rotation speed of the liquid feed pump 6 is controlled according to the current value, so that the power consumption of the liquid feed pump 6 is reduced by about 40% compared to the conventional method. be able to. When the charging current is not flowing and the load capacity is about 30% or less of the battery capacity, the liquid feed pump 6 is intermittently operated to reduce the power consumption of the liquid feed pump 6 to about 1 / the conventional method. Can be 30. Furthermore, when the battery 1 is in a standby state for a long period of time and self-discharges, the liquid feed pump 6 is intermittently operated by the lower limit value of the battery voltage, so that the black start capability can be maintained with a minimum holding power. In this case, the operation interval and the operation time of the liquid feed pump 6 depend on the self-discharge rate of the battery 1, but 2 to 3 minutes is usually sufficient for 4 to 5 hours.

〔効果〕〔effect〕

本発明によれば、溶液流通型電池または電解槽における
送液ポンプの消費電力を大幅に節約できるとともに、長
時間待機後の再起動時にも他の電源を用いることなく、
自己再起動が可能となる。
According to the present invention, it is possible to significantly save the power consumption of the liquid feed pump in the solution flow type battery or the electrolytic cell, without using any other power source at the time of restarting after waiting for a long time,
It is possible to restart itself.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す説明図である。 1……電池、2……ソーラパネル、3……負荷、5……
ポンプ電流制御装置、6……送液ポンプ。
FIG. 1 is an explanatory view showing an embodiment of the present invention. 1 ... Battery, 2 ... Solar panel, 3 ... Load, 5 ...
Pump current controller, 6 ... Liquid feed pump.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】枠体内にそれぞれ支持された正・負両電極
を隔膜を介して積層した単セルを複極仕切板を介して多
数直列に積層した溶液流通型電池と、該溶液流通型電池
の前記正・負両電極に送液ポンプによって電解液を供給
する電解液循環系統と、前記溶液流通型電池に、電力を
供給して蓄積する充電回路および蓄積された電力を取り
出して消費する負荷回路とを有する溶液流通型電池の充
放電回路における電解液流量制御方法であって、前記充
電回路および負荷回路における電圧および電流値を計測
し、充電電流が流れていない場合であって前記充電回路
からの最大入力量に対する前記負荷回路の消費電力量が
30%以下のとき前記送液ポンプを間歇運転することを特
徴とする溶液流通型電池の充放電回路における電解液流
量制御方法。
1. A solution flow type battery in which a plurality of single cells, in which positive and negative electrodes supported respectively in a frame are stacked via a diaphragm, are stacked in series via a bipolar partition plate, and the solution flow type battery. An electrolytic solution circulation system that supplies an electrolytic solution to both the positive and negative electrodes by a solution pump, a charging circuit that supplies and stores electric power to the solution flow type battery, and a load that takes out and consumes the stored electric power. A method for controlling an electrolyte flow rate in a charging / discharging circuit of a solution flow type battery having a circuit, wherein voltage and current values in the charging circuit and the load circuit are measured, and a charging current is not flowing, the charging circuit The power consumption of the load circuit with respect to the maximum input amount from
A method for controlling a flow rate of an electrolytic solution in a charging / discharging circuit of a solution flow type battery, characterized in that the liquid sending pump is intermittently operated at 30% or less.
JP62232800A 1987-09-17 1987-09-17 Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery Expired - Lifetime JPH0795448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62232800A JPH0795448B2 (en) 1987-09-17 1987-09-17 Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62232800A JPH0795448B2 (en) 1987-09-17 1987-09-17 Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery

Publications (2)

Publication Number Publication Date
JPS6476678A JPS6476678A (en) 1989-03-22
JPH0795448B2 true JPH0795448B2 (en) 1995-10-11

Family

ID=16944957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62232800A Expired - Lifetime JPH0795448B2 (en) 1987-09-17 1987-09-17 Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery

Country Status (1)

Country Link
JP (1) JPH0795448B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810068B2 (en) * 2004-04-09 2011-11-09 株式会社リコー Fuel cell system and image forming apparatus
US8546006B2 (en) * 2010-09-08 2013-10-01 Trojan Battery Company System and method for delivering fluid to a battery
CN102290588A (en) * 2011-07-25 2011-12-21 中国东方电气集团有限公司 Flow cell system and control method and device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218076A (en) * 1985-03-25 1986-09-27 Agency Of Ind Science & Technol Electrolyte flow type battery system

Also Published As

Publication number Publication date
JPS6476678A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
EP0348983B1 (en) Method of charging and discharging battery and power source apparatus adopting the same
US4616170A (en) Arrangement and method for operating an electrochemical storage device
US9973832B2 (en) Sensor node and method of controlling sensor node
CN109037738B (en) Black start method of megawatt all-vanadium redox flow battery system device
JPH0582717B2 (en)
JP2003244854A (en) Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
JP2006114360A (en) Method for operating redox flow battery system
GB2514979A (en) Power supply control device for vehicle, and vehicle
JP2001292532A (en) Battery energy storage system
CN108859798B (en) Power generation system and power generation method for fuel cell vehicle
CN114865772B (en) Energy storage system and power supply method thereof
JPS6121516A (en) Fuel battery power generating system
JPH10336916A (en) Power supply system for emergency
JPH0795448B2 (en) Method for controlling electrolyte flow rate in charge / discharge circuit of solution flow type battery
JP3098977B2 (en) Redox flow battery and method of operating the same
JPH01278239A (en) Charge controller of auxiliary battery for fuel battery
JP2003331930A (en) Feeding system
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system
JPH08237884A (en) Photovoltaic power generating apparatus
JP2003111291A (en) Control method for charging secondary battery used in fuel battery power generating system
EP4340174A1 (en) Redox flow battery system
WO2023027643A2 (en) Flow battery charging initiation method, controller for flow battery system and flow battery system
JPH05326007A (en) Electrolyte flowing type battery apparatus
JPH084016B2 (en) Charge control system for lead-acid batteries
CN117879032A (en) Control method and power supply device of bidirectional direct current converter