WO2020203857A1 - Hydrogen generation system - Google Patents

Hydrogen generation system Download PDF

Info

Publication number
WO2020203857A1
WO2020203857A1 PCT/JP2020/014240 JP2020014240W WO2020203857A1 WO 2020203857 A1 WO2020203857 A1 WO 2020203857A1 JP 2020014240 W JP2020014240 W JP 2020014240W WO 2020203857 A1 WO2020203857 A1 WO 2020203857A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse current
electrode
hydrogen
relay
power generation
Prior art date
Application number
PCT/JP2020/014240
Other languages
French (fr)
Japanese (ja)
Inventor
振 王
孝司 松岡
高見 洋史
佐藤 康司
小島 宏一
直也 伊藤
拓 辻村
古谷 博秀
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Publication of WO2020203857A1 publication Critical patent/WO2020203857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a hydrogen generation system using renewable energy.
  • an electrochemical device using a solid polymer type ion exchange membrane has been devised as one of the devices for generating hydrogen.
  • oxygen and hydrogen are obtained by electrolysis of water by passing an electric current between the electrodes by a power source while supplying water to the anode.
  • a reverse current is generated in the electrochemical cell, which deteriorates the electrode (see Patent Document 1).
  • the output of a power generator that uses wind power or sunlight fluctuates frequently, and the output becomes zero depending on the windless weather or the weather.
  • a power generation device using wind power or solar power is used as a power source for an electrochemical device (for example, an electrolytic cell)
  • the electrochemical device frequently stops and starts repeatedly. Therefore, when renewable energy is used as a power source, it is necessary to suppress the deterioration of the electrodes due to the irregular stoppage of the electrochemical device.
  • the electrochemical device as described above is generally operated continuously using stable electric power such as energy obtained by thermal power generation. Therefore, the stop of the electrochemical device is mainly when the power supply is intentionally stopped, and it is relatively easy to take measures against the deterioration of the electrode due to the stop of the electrochemical device.
  • the problems in producing hydrogen by combining renewable energy and electrochemical equipment have not been fully investigated.
  • the present inventors have found that electrode deterioration due to a large number of interruptions in the supply of renewable energy. I came up with a technology that suppresses and further improves the durability of electrochemical equipment.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a new technique for suppressing deterioration of electrodes in an electrolytic cell that electrolyzes water using electric power derived from renewable energy. To do.
  • the hydrogen generation system of one embodiment of the present invention converts an electrolytic cell that generates hydrogen by electrolysis of water and an electric current derived from the input renewable energy into the electrolytic cell. It includes a DC power source that supplies I, and a reverse current suppression unit that suppresses the reverse current I'generated in the electrolytic cell when the power generation device that generates power derived from renewable energy is stopped.
  • the electrolytic cell has an oxygen-evolving electrode, a hydrogen-evolving electrode, and a solid polymer-type electrolyte membrane arranged between the oxygen-evolving electrode and the hydrogen-evolving electrode.
  • the reverse current suppression unit is provided in a path through which the reverse current I'can flow.
  • deterioration of electrodes in an electrolytic cell that electrolyzes water using electric power derived from renewable energy can be suppressed.
  • FIG. 3A is a diagram schematically showing a circuit configuration in which the hydrogen generation system is operating by input from the power generation device
  • FIG. 3B is a diagram in which the input from the power generation device becomes zero and the hydrogen generation system is operated. It is a figure which shows typically the circuit structure after the stop. It is a figure which shows the change of the potential and the current after electrolysis stop. It is a schematic diagram which shows the circuit structure of the hydrogen generation system provided with the reverse current suppression part which concerns on 1st Embodiment.
  • the hydrogen generation system of one aspect of the present invention includes an electrolytic cell that generates hydrogen by electrolysis of water, a DC power source that converts the input power derived from renewable energy and supplies an electrolytic current I to the electrolytic cell. It is provided with a reverse current suppression unit that suppresses the reverse current I'generated in the electrolytic cell when the power generation device that generates power derived from renewable energy is stopped.
  • the electrolytic cell has an oxygen-evolving electrode, a hydrogen-evolving electrode, and a solid polymer-type electrolyte membrane arranged between the oxygen-evolving electrode and the hydrogen-evolving electrode.
  • the reverse current suppression unit is provided in a path through which the reverse current I'can flow.
  • the reverse current can be suppressed without providing a device for disconnecting the input between the power generation device and the DC power supply.
  • a reverse current suppression unit may be provided between the electrolytic cell and the DC power supply, or a reverse current suppression unit may be provided inside the electrolytic cell or the DC power supply.
  • the electric capacity Q1 calculated from the reverse current I'generated in the electrolytic tank between the time when the power generation by the power generation device is stopped and the elapse of T seconds (T> 0), and the electricity of the hydrogen generation electrode and the oxygen generation electrode.
  • the electric capacity Q2 derived from the electrode having a small capacity satisfies the equation Q1 ⁇ Q2 (where Q1 is ⁇ I ′ ⁇ dt (0 ⁇ t ⁇ T)).
  • the reverse current suppression unit may include a relay that switches on / off of the path through which the reverse current I'flows, and a control unit that controls the on / off of the relay.
  • the control unit may operate the relay T seconds after the power generation by the power generation device is stopped to open the circuit.
  • the control unit may activate the relay to open the circuit when the power generation by the power generation device is stopped.
  • the reverse current suppression unit detects the voltage between the relay that switches the path through which the reverse current I'flows on / off, the control unit that controls the on / off of the relay, and the oxygen-evolving electrode and the hydrogen-generating electrode. It may have a voltage detection unit and a voltage detection unit. In the control unit, from the time when the power generation by the power generator is stopped until the potential of the oxygen generating electrode estimated from the voltage detected by the voltage detecting unit falls below the redox equilibrium potential of the catalyst of the oxygen generating electrode. In the meantime (before falling), the relay may be activated to open the circuit.
  • the control unit after the power generation by the power generation device is stopped, until the potential of the hydrogen generation electrode estimated from the voltage detected by the voltage detection unit exceeds the redox equilibrium potential of the catalyst of the hydrogen generation electrode. In the meantime (before exceeding), the relay may be activated to open the circuit. As a result, deterioration of the electrode due to reverse current can be suppressed.
  • the reverse current suppression unit includes a relay that switches on / off of the path through which the reverse current I'flows, a control unit that controls on / off of the relay, and a potential detection unit that detects the potential of the oxygen generating electrode. You may.
  • the control unit operates the relay until the potential of the oxygen-evolving electrode detected by the potential detection unit falls below (before) the redox equilibrium potential of the catalyst of the oxygen-evolving electrode to open the circuit. It may be.
  • the reverse current suppression unit may have a potential detection unit that detects the potential of the hydrogen generating electrode. In that case, the control unit operates the relay until the potential of the hydrogen generation electrode detected by the potential detection unit exceeds (before) the redox equilibrium potential of the catalyst of the hydrogen generation electrode. The circuit may be opened. As a result, deterioration of the electrode due to reverse current can be suppressed more reliably.
  • the potential of the oxygen-evolving electrode When the potential of the oxygen-evolving electrode is obtained from the voltage, it can be easily obtained by grasping the potential fluctuation of the hydrogen-evolving electrode using a reference electrode in advance.
  • Voltage anodic potential-cathode potential As shown in the above equation, the voltage is the difference between the oxygen generation electrode potential and the hydrogen generation electrode potential. Therefore, if the potential fluctuation of the hydrogen generation electrode is known, the oxygen generation electrode The potential change of is required.
  • the reverse current suppression unit may have a diode provided in the path.
  • the diode uses Q2 as the electric capacity derived from the electric capacity of the electrode with the smaller electric capacity among the hydrogen generating electrode and the oxygen generating electrode, and the reverse current generated in the electrolytic tank within T seconds after the power generation by the power generation device is stopped.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a hydrogen generation system.
  • the hydrogen generation system 10 includes an electrolytic tank 12 that generates hydrogen by electrolysis of water, a DC power supply 14 that extracts electric power derived from the input renewable energy as a direct current and supplies the electrolytic current I to the electrolytic tank 12. To be equipped.
  • a solar power generation device 16 or a wind power generation device 18 that generates power derived from renewable energy is connected to the DC power source 14 of the hydrogen generation system 10.
  • the DC power supply 14 may be a DC / DC converter, and is a regulated DC power supply (DC / DC converter) for taking out the DC current output from the solar power generation device 16 after adjusting the voltage to the voltage of the electrolytic tank. You may. Further, the DC power supply 14 may be an AC / DC converter, and the AC current output from the wind power generator 18 may be rectified and converted into a DC current, and then the DC current may be taken out.
  • DC / DC converter regulated DC power supply
  • FIG. 2 is a schematic view showing a schematic configuration of an electrolytic cell according to the first embodiment.
  • the electrolytic cell 12 according to the present embodiment is a solid polymer membrane (PEM: Polymer Electrolyte Membrane) type water electrolytic cell using an ion exchange membrane.
  • the electrolytic cell 12 has an anode 20 as an oxygen-evolving electrode, a cathode 22 as a hydrogen-generating electrode, and a solid polymer electrolyte membrane 24 arranged between the anode 20 and the cathode 22.
  • PEM Polymer Electrolyte Membrane
  • the anode 20 has an anode catalyst layer 20a, an anode gas diffusion layer 20b, and a separator 20c.
  • the cathode 22 has a cathode catalyst layer 22a, a cathode gas diffusion layer 22b, and a separator 22c.
  • the anode catalyst layer 20a according to the present embodiment contains iridium oxide (IrO 2 ) as a raw material. Further, the cathode catalyst layer 22a according to the present embodiment contains platinum (Pt) and carbon (C).
  • the above-mentioned catalyst contained in each catalyst layer is an example, and may be another metal or metal compound.
  • the solid polymer electrolyte membrane 24 is not particularly limited as long as it is a material that conducts protons (H + ), and examples thereof include a fluorine-based ion exchange membrane having a sulfonic acid group.
  • the separator 20c is formed with a flow path through which water and oxygen flow, and a conductive corrosion-resistant material is preferable.
  • the separator 22c is formed with a flow path through which hydrogen flows, and a conductive corrosion-resistant material is preferable.
  • FIG. 3A is a diagram schematically showing a circuit configuration in which the hydrogen generation system is operating by input from the power generation device
  • FIG. 3B is a diagram in which the input from the power generation device becomes zero and the hydrogen generation system is operated. It is a figure which shows typically the circuit structure after the stop.
  • the DC power supply 14 is a direct current or alternating current derived from renewable energy such as a photovoltaic power generation device 16 or a wind power generation device 18 (hereinafter, the case of alternating current will be described, but even if it is a direct current. (Good) is input, the voltage is converted by the transformer 26, rectified by the bridge type diode 28, smoothed by the smoothing electrolytic capacitor 30, and the electrolytic current I as a direct current is supplied from the output terminal 32 to the electrolytic tank 12. .. This enables electrolysis of water using renewable energy.
  • the causes of the reverse current I' are 1) the static electricity of the anode and the cathode in the electrolytic cell 12 is generated by charging the smoothing electrolytic capacitor 30 of the DC power supply 14 and 2) the reverse of the electrode reaction in normal water electrolysis. It is considered that the reaction proceeds and occurs when the smoothing electrolytic capacitor 30 is charged.
  • a discharge circuit of an electrolytic capacitor, a voltage measuring device, or the like may be built in, and a reverse current may occur through these circuits.
  • FIG. 4 is a diagram showing changes in potential and current after electrolysis is stopped.
  • the cell voltage (L3) before the electrolysis is stopped exceeds the theoretical operating voltage (electrolysis voltage including enthalpy change) of 1.48V for water electrolysis, but immediately after the electrolysis is stopped, the cell is caused by the reverse current due to the discharge of the electric double layer.
  • the voltage gradually drops from the theoretical operating voltage of 1.48V. After that, the cell voltage falls below the theoretical electrolytic voltage of water (electrolytic voltage not including the enthalpy change) of 1.23 V, and then the anodic potential (L1) gradually decreases due to the reverse reaction.
  • the anodic potential is 0.9 Vvs. Become NHE.
  • IrO 2 + 4H + + 4e of Ir contained in the anode catalyst layer 20a - ⁇ ⁇ respect Ir + 2H 2 O redox equilibrium potential in the reaction is a standard hydrogen electrode (NHE), be 0.926V (25 °C, vs.NHE) , The anode potential is below 0.926V.
  • NHE standard hydrogen electrode
  • the anode potential is below 0.926V.
  • the AC input to the DC power supply 14 is resumed and the supply of the electrolytic current I to the electrolytic cell 12 is resumed, the anode 20 again exceeds the theoretical operating voltage of 1.48 V.
  • the inventors of the present application have focused on a technique for suppressing the reverse current that causes a voltage change of the electrode in order to suppress such deterioration of the electrode.
  • Specific examples thereof include a reverse current suppression unit including a relay and a diode.
  • a relay will be described as an example.
  • FIG. 5 is a schematic diagram showing a circuit configuration of a hydrogen generation system including a reverse current suppression unit according to the first embodiment.
  • the hydrogen generation system 40 suppresses the reverse current I'generated in the electrolytic cell 12 when the power generation derived from the renewable energy is stopped and the electrolysis in the electrolytic cell 12 is stopped.
  • the suppression unit 34 is provided.
  • the reverse current suppression unit 34 includes a mechanical relay 36 that switches the path between the electrolytic cell 12 and the DC power supply 14 on / off, and a control unit 38 that controls the on / off of the mechanical relay 36. ..
  • the control unit 38 has a switch 38a for switching the energization of the coil 36a of the mechanical relay 36, and a power supply 38b for applying a voltage to the coil 36a.
  • the power source 38b for example, a DC power source having a voltage of 24 V may be used.
  • a solid state relay which is a non-contact relay, may be used instead of the mechanical relay 36, which is a contact relay.
  • the control unit 38 may have a processor, or may control the switch 38a according to an instruction from the processor.
  • the processor may be, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit). Also.
  • the control unit 38 may have a storage unit such as a memory, or may control the processor by a program stored in the storage unit.
  • the control unit 38 turns on the switch 38a and energizes the coil 36a, so that the switch 36b of the mechanical relay 36 is turned on and between the DC power supply 14 and the electrolytic cell 12. Path is conductive. As a result, the electrolytic current I is supplied from the DC power supply 14 to the electrolytic cell 12.
  • the reverse current suppression unit 34 is an anode acquired from the potential detection unit 42 that detects the operating (power generation) state information acquired from the photovoltaic power generation device 16 or the wind power generation device 18 or the potential of each electrode of the electrolytic cell 12. Based on the voltage information between the 20 and the cathode 22, the control unit 38 determines whether or not the electrode is likely to deteriorate. For example, in the power generation information acquired from the photovoltaic power generation device 16 and the wind power generation device 18, when it is confirmed that the power generation is stopped for a period exceeding a predetermined reference time, it may be determined that the electrodes are likely to deteriorate.
  • the electrode May be judged to be a situation in which is likely to deteriorate.
  • the potential detection unit 42 may be replaced with a voltage detection unit.
  • the control unit 38 determines that each electrode of the electrolytic cell 12 is likely to deteriorate, the switch 38a is turned off and the coil 36a is cut off to open the switch 36b. As a result, the reverse current I'from the electrolytic cell 12 to the DC power supply 14 is cut off.
  • the reverse current suppression unit 34 can suppress the reverse current I'even when the input from the power generation device that generates power derived from renewable energy to the DC power supply is not cut off. As a result, the reverse current I'can be suppressed without providing a device for disconnecting the input between the power generation device and the DC power supply 14.
  • the reverse current suppression unit 34 may be provided in a path through which the reverse current I'can flow in a closed circuit including the electrolytic cell 12 and the DC power supply 14.
  • the reverse current suppression unit 34 can be provided between the electrolytic cell 12 and the DC power supply 14, but also the reverse current suppression unit 34 can be provided inside the electrolytic cell 12 and the DC power supply 14.
  • FIG. 6 is a diagram showing changes in potential and current after electrolysis is stopped in the hydrogen generation system provided with the reverse current suppression unit according to the first embodiment.
  • the control unit 38 that has detected the state in which the power generation in the power generation device has stopped shuts off the reverse current I'by opening the switch 36b in the mechanical relay 36.
  • the anodic potential (L1) is maintained at 1.1 V or higher. Since the anodic potential is not lower than the above-mentioned redox equilibrium potential of 0.926V, deterioration of the catalyst can be suppressed.
  • the control unit 38 that has detected the state in which the power generation of the wind power generation device 18 has stopped can more reliably reduce the generation of the reverse current I'by immediately opening the mechanical relay 36.
  • most of the wind power generation devices 18 have a short stop time for power generation (for example, a stop of 3 minutes or less). Therefore, if the reverse current I'does not occur between the stop and restart of the power generation by the power generation device, or even if the reverse current I'occurs, the deterioration of the electrodes is not significantly affected, the control unit 38 generates wind power.
  • Mechanical relays have a mechanical life (life for the number of times of opening and closing when no load is connected) and an electrical life (life for the number of times of opening and closing when load power is applied), but for all outages of wind power generators.
  • the mechanical relay is opened and closed, the consumption of the mechanical life is significantly increased. Therefore, by reducing the opening and closing of the mechanical relay, it is possible to reduce the frequency of replacement and select an inexpensive mechanical relay.
  • the control unit 38 determines the potential of the anode 20 of the anode catalyst layer 20a after the power generation by the wind power generator 18 is stopped based on the voltage information between the anode 20 and the cathode 22 detected by the potential detection unit 42.
  • the mechanical relay 36 may be operated to open the circuit until it falls below the redox equilibrium potential (0.926 V) (before it falls). As a result, deterioration of the anode 20 due to the reverse current I'can be suppressed more reliably. Further, if the wind power generator 18 resumes power generation until the potential of the anode 20 falls below the redox equilibrium potential of the anode catalyst layer 20a (before it falls below), the on / off control of the mechanical relay 36 becomes unnecessary. , The life of the mechanical relay 36 is improved.
  • the control unit 38 operates the mechanical relay 36 T seconds after the power generation by the wind power generation device 18 is stopped (T> 0).
  • the circuit may be opened.
  • the value of T to be set in advance will be described. Assuming that the life of the electrolytic cell 12 is determined by the deterioration of the electrode, the number of stops of the power generation device that causes the deterioration of the electrode due to the reverse current I'is important. The life due to deterioration of the electrodes is based on, for example, a case where the voltage during electrolysis of the electrolytic cell 12 (in the case of a current density of 1 A / cm 2 ) increases by 20%.
  • FIG. 7 is a diagram showing the relationship between the number of times the wind power generator is stopped per day and the life of the electrolytic cell according to the embodiment. For example, if the number of stops is 120 times / day, the life of the electrolytic cell is 2.1 years, if the number of stops is 50 times / day, the life of the electrolytic cell is 5 years, and if the number of stops is 25 times / day, the life of the electrolytic cell is 10. If the number of stops is 12.5 times / day, the life of the electrolytic cell will be 20 years.
  • the stop counted as the number of stops is a stop having a length that affects the life of the electrolytic cell. For example, a stop of several seconds to several tens of seconds has a reverse current I that affects the deterioration of the electrode. 'Almost never occurs. In other words, if the reverse current I'that affects the deterioration of the electrodes does not occur, it is not always necessary to cut off the reverse current I'when the wind power generator is stopped for a short time.
  • FIG. 8 is a diagram showing the probability of the cumulative number of outages with respect to the outage time of the wind power generator (300 kW) of the Fukushima Renewable Energy Research Institute. In this wind power generator, outages of up to 600 seconds account for 93% of the total. In a wind power generator in such a usage environment, if an attempt is made to reduce the actual number of stops by about 58%, as shown in FIG. 8, a reverse current I'that affects the deterioration of the electrodes when stopped for up to 54 seconds. Should not occur. Further, in order to reduce the actual number of stops by about 79%, as shown in FIG. 8, it is sufficient that the reverse current I'that affects the deterioration of the electrode does not occur at the stop for up to 142 seconds.
  • the electric capacity Q1 ⁇ I' ⁇ dt (0 ⁇ t ⁇ T) calculated from the reverse current I ′ generated in the electrolytic cell 12 within T seconds after the power generation by the power generation device is stopped.
  • the reverse current I' can be easily measured with a DC ammeter, a clamp meter (overhead wire ammeter), or the like.
  • the DC ammeter When measuring reverse current with a DC ammeter, the DC ammeter must be fixedly installed between the electrolytic tank and the DC power supply, and must withstand the current during operation of the electrolytic tank and also measure weak reverse current. It is a high-cost device.
  • the device can be selected exclusively for the weak reverse current, so the reverse current can be measured inexpensively and accurately. , A more desirable form.
  • the electric capacity Q2 derived from the anode 20 can be obtained in advance by the following constant current measurement after the electrolytic cell is stopped.
  • the conditions for constant current measurement and the composition of the electrolytic cell are as follows.
  • Tripolar electrolytic cell cathode, anode, reference electrode (standard hydrogen electrode, NHE)
  • Cathode catalyst Platinum-supported carbon (Pt / C)
  • Anode catalyst Iridium oxide Electrode area: 25 cm 2 After performing the water electrolysis test at + 1 A / cm 2 for 3 hours, the electrolytic cell was temporarily stopped, and immediately after that, a reverse current was forcibly flowed at ⁇ 0.2 mA / cm 2 using an electrochemical measuring device. The anode potential from the reference electrode was measured, and the electric capacity up to the redox potential of the anode was measured.
  • FIGS. 9 (a) and 9 (b) are diagrams showing an example of the above-mentioned constant current measurement for measuring the electric capacity Q2 derived from the oxygen evolving electrode.
  • the redox potential of the anode-catalyzed iridium oxide used this time was 0.926 V vs. as described above.
  • NHE NHE potential ⁇ RHE potential because pH ⁇ 1).
  • the electric capacity Q2 was 1170 mC (46.8 mC / cm 2 ).
  • the electric capacity Q2 slightly changes depending on the current density of the reverse current.
  • the rated 1A / cm 2 since the current density is -0.2mA / cm 2, current density is 1/5000 of the rated.
  • the current density of the reverse current for accurately measuring the electric capacity Q2 is 1/100 or less, more preferably 1/10000 to 1/1000, with respect to the absolute value of the rated current of water electrolysis. When measured with a current value larger than 1/100, accurate electric capacity Q2 cannot be measured due to voltage loss due to ion transfer resistance or the like.
  • the control unit 38 operates the mechanical relay 36 T seconds after the input from the power generation device becomes zero to open the circuit. As a result, deterioration of the electrode due to the reverse current I'can be suppressed.
  • the electric capacity Q2 can be calculated by changing to the standard electrode potential for redox.
  • the standard electrode potential indicates the oxidation-reduction potential at 25 ° C., but when it is assumed that the electrolytic cell temperature at the time of stopping is high, it is desirable to correct the temperature by the Nernst equation.
  • the redox involved in this degradation mode is a redox reaction pair between 0V and 1.23V and a redox reaction pair between 0.1V and 1.1V at the assumed temperature. Especially effective in the case. Since the potentials of the anode and the cathode during the stoppage are 0 V or more and 1.23 V or less, there is no control effect on the redox reaction pair outside this range. Further, when there is a redox reaction pair at 0.1 V or more and 1.1 V or less, the amount of reduction in the number of times the relay is opened and closed is large, and the effect is more likely to be exhibited.
  • the electric capacity derived from the cathode (hydrogen generation electrode) and anode (oxygen generation electrode) of the electrolytic cell varies greatly depending on the catalyst type, catalyst carrier type, catalyst amount, and the like.
  • the cathode electric capacity is larger than the anode electric capacity, the anode potential decreases as described above, but when the cathode electric capacity is smaller than the anode electric capacity, the cathode potential increases. In this case as well, it is necessary to control so that the potential fluctuation across the redox equilibrium potential of the cathode catalyst does not occur, as in the case of the decrease in the anode potential.
  • FIG. 10 is a schematic diagram showing a circuit configuration of a hydrogen generation system including a reverse current suppression unit according to the second embodiment.
  • the hydrogen generation system 50 suppresses the reverse current I'generated in the electrolytic cell 12 when the power generation derived from the renewable energy is stopped and the electrolysis in the electrolytic cell 12 is stopped.
  • the suppression unit 34 is provided.
  • the reverse current suppression unit 34 is provided in the middle of the path between the electrolytic cell 12 and the DC power supply 14, and includes a diode 34a having a predetermined characteristic.
  • the diode 34a has an electric capacity derived from the electric capacity of the anode 20 Q2 (cathode electric capacity> anode electric capacity), and is generated in the electrolytic tank within T seconds after the power generation by the power generation device is stopped.
  • a short stop is dominant, so it is desirable to select a diode that suppresses these.
  • 93% stoppage is within 600 seconds, so by selecting a diode with T as 600 seconds, 93% It is possible to avoid deterioration due to the stoppage of.
  • a reverse bias current I R is selected very small diodes, can also avoid degradation due to stop more than a few hours, increasing the cost of the diode itself, cost advantage as a total is reduced.
  • FIG. 11 is a diagram showing changes in potential and current after electrolysis is stopped in the hydrogen generation system provided with the reverse current suppression unit according to the second embodiment.
  • the anodic potential is maintained at about 1.0 V without any particular control.
  • the reverse bias current I R can be suppressed and deterioration of the electrode is also due to the reverse current with the diode in a predetermined range.
  • the cathode electric capacity is smaller than the anode electric capacity, the cathode potential rises, but as in the case of the relay, the potential fluctuation across the oxidation-reduction equilibrium potential of the cathode catalyst is prevented from occurring at the cathode. It is necessary to control. In this case, it is possible to obtain the same effects as the anode by determining the reverse bias current I R the capacitance derived from the cathode as Q2.
  • the present invention has been described above with reference to each of the above-described embodiments, the present invention is not limited to the above-described embodiments, and the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Is also included in the present invention. Further, it is also possible to appropriately rearrange the combination and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment, and such modifications are added. Such embodiments may also be included in the scope of the present invention.
  • an example in which an alternating current derived from renewable energy is converted to direct current by a transformer, smoothed by a smoothing electrolytic capacitor, and then supplied to an electrolytic cell as an electrolytic current.
  • a direct current power source that supplies a direct current derived from renewable energy to an electrolytic cell as an electrolytic current after voltage conversion with a DC-DC converter and smoothing with a smoothing electrolytic capacitor may be used.
  • the present invention can be used for a hydrogen generation system using renewable energy.

Abstract

A hydrogen generation system 40 is provided with: an electrolysis vessel 12 in which hydrogen is generated by the electrolysis of water; a direct-current power supply 14 which can supply an electrolytic current to the electrolysis vessel 12 by utilizing, as a direct current, an electric power sourced from a renewable energy input from an electric power generation device capable of generating an electric power sourced from a renewable energy; and a reverse current inhibition section 34 which can inhibit a reverse current I' generated in the electrolysis vessel 12 when the generation of an electric power sourced from the renewable energy is halted. The electrolysis vessel 12 is equipped with an electrode for oxygen generation use, an electrode for hydrogen generation use, and a solid polymer electrolyte membrane arranged between the electrode for oxygen generation use and the electrode for hydrogen generation use. The reverse current inhibition section 34 is arranged on a pathway through which the reverse current I' can flow.

Description

水素発生システムHydrogen generation system
 本発明は、再生可能エネルギーを利用した水素発生システムに関する。 The present invention relates to a hydrogen generation system using renewable energy.
 従来、水素を発生する装置の一つとして、固体高分子形のイオン交換膜を用いた電気化学装置が考案されている。この電気化学装置では、陽極に水を供給しながら電源によって電極間に電流を流すことで、水の電気分解により酸素および水素が得られる。一方で、このような電気化学装置では、給電が停止すると電気化学セルに逆電流が発生し、これにより電極が劣化することが知られている(特許文献1参照)。 Conventionally, an electrochemical device using a solid polymer type ion exchange membrane has been devised as one of the devices for generating hydrogen. In this electrochemical device, oxygen and hydrogen are obtained by electrolysis of water by passing an electric current between the electrodes by a power source while supplying water to the anode. On the other hand, in such an electrochemical device, it is known that when the power supply is stopped, a reverse current is generated in the electrochemical cell, which deteriorates the electrode (see Patent Document 1).
特開平1-222082号公報Japanese Patent Application Laid-Open No. 1-222082
 近年、火力発電で得られるエネルギーに比べて生成過程での二酸化炭素排出量を抑制することができるエネルギーとして、風力や太陽光等で得られる再生可能エネルギーが注目されている。また、再生可能エネルギーを利用した水素の製造に前述の電気化学装置等を利用したシステムの開発が進められている。 In recent years, renewable energy obtained from wind power, solar power, etc. has been attracting attention as an energy that can suppress carbon dioxide emissions in the production process compared to the energy obtained from thermal power generation. In addition, the development of a system using the above-mentioned electrochemical device or the like for the production of hydrogen using renewable energy is underway.
 しかしながら、風力や太陽光を用いた発電装置は、出力が頻繁に変動し、無風時や天候によっては出力がゼロになる。このように、風力や太陽光を用いた発電装置を電気化学装置(例えば電解槽)の電源として利用する場合、電気化学装置が頻繁に停止と起動を繰り返すことになる。そのため、再生可能エネルギーを電源として利用した場合、不規則に発生する電気化学装置の停止による電極の劣化を抑制する必要がある。 However, the output of a power generator that uses wind power or sunlight fluctuates frequently, and the output becomes zero depending on the windless weather or the weather. In this way, when a power generation device using wind power or solar power is used as a power source for an electrochemical device (for example, an electrolytic cell), the electrochemical device frequently stops and starts repeatedly. Therefore, when renewable energy is used as a power source, it is necessary to suppress the deterioration of the electrodes due to the irregular stoppage of the electrochemical device.
 前述のような電気化学装置は、火力発電で得られるエネルギーのような安定した電力を用いて連続運転されることが一般的である。そのため、電気化学装置の停止は電源を意図的に停止した場合が主であり、電気化学装置の停止に伴う電極の劣化の対策は比較的容易である。一方、再生可能エネルギーと電気化学装置との組み合わせで水素を製造する場合の課題は十分に検討されてこなかった。本発明者らは、再生可能エネルギーと電気化学装置とを組み合わせた現実的な水素製造を実現すべく鋭意検討を重ねた結果、再生可能エネルギーの給電停止回数の多さに起因する電極の劣化を抑制して、電気化学装置の耐久性をより向上させる技術に想到した。 The electrochemical device as described above is generally operated continuously using stable electric power such as energy obtained by thermal power generation. Therefore, the stop of the electrochemical device is mainly when the power supply is intentionally stopped, and it is relatively easy to take measures against the deterioration of the electrode due to the stop of the electrochemical device. On the other hand, the problems in producing hydrogen by combining renewable energy and electrochemical equipment have not been fully investigated. As a result of diligent studies to realize realistic hydrogen production by combining renewable energy and an electrochemical device, the present inventors have found that electrode deterioration due to a large number of interruptions in the supply of renewable energy. I came up with a technology that suppresses and further improves the durability of electrochemical equipment.
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、再生可能エネルギー由来の電力を用いた水の電気分解を行う電解槽における電極の劣化を抑制する新たな技術を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a new technique for suppressing deterioration of electrodes in an electrolytic cell that electrolyzes water using electric power derived from renewable energy. To do.
 上記課題を解決するために、本発明のある態様の水素発生システムは、水の電気分解によって水素を発生する電解槽と、入力された再生可能エネルギー由来の電力を変換して電解槽に電解電流Iを供給する直流電源と、再生可能エネルギー由来の発電を行う発電装置が停止している場合に電解槽で生じる逆電流I’を抑制する逆電流抑制部と、を備える。電解槽は、酸素発生用電極と、水素発生用電極と、酸素発生用電極および水素発生用電極の間に配置されている固体高分子形電解質膜と、を有する。逆電流抑制部は、逆電流I’が流れうる経路に設けられている。 In order to solve the above problems, the hydrogen generation system of one embodiment of the present invention converts an electrolytic cell that generates hydrogen by electrolysis of water and an electric current derived from the input renewable energy into the electrolytic cell. It includes a DC power source that supplies I, and a reverse current suppression unit that suppresses the reverse current I'generated in the electrolytic cell when the power generation device that generates power derived from renewable energy is stopped. The electrolytic cell has an oxygen-evolving electrode, a hydrogen-evolving electrode, and a solid polymer-type electrolyte membrane arranged between the oxygen-evolving electrode and the hydrogen-evolving electrode. The reverse current suppression unit is provided in a path through which the reverse current I'can flow.
 本発明によれば、再生可能エネルギー由来の電力を用いた水の電気分解を行う電解槽における電極の劣化を抑制できる。 According to the present invention, deterioration of electrodes in an electrolytic cell that electrolyzes water using electric power derived from renewable energy can be suppressed.
水素発生システムの概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the hydrogen generation system. 第1の実施の形態に係る電解槽の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the electrolytic cell which concerns on 1st Embodiment. 図3(a)は、発電装置からの入力により水素発生システムが作動中の回路構成を模式的に示す図、図3(b)は、発電装置からの入力がゼロになり水素発生システムの作動が停止した後の回路構成を模式的に示す図である。FIG. 3A is a diagram schematically showing a circuit configuration in which the hydrogen generation system is operating by input from the power generation device, and FIG. 3B is a diagram in which the input from the power generation device becomes zero and the hydrogen generation system is operated. It is a figure which shows typically the circuit structure after the stop. 電解停止後の電位および電流の変化を示す図である。It is a figure which shows the change of the potential and the current after electrolysis stop. 第1の実施の形態に係る逆電流抑制部を備えた水素発生システムの回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure of the hydrogen generation system provided with the reverse current suppression part which concerns on 1st Embodiment. 第1の実施の形態に係る逆電流抑制部を備えた水素発生システムにおいて、電解停止後の電位および電流の変化を示す図である。It is a figure which shows the change of the potential and the current after electrolysis stop in the hydrogen generation system provided with the reverse current suppression part which concerns on 1st Embodiment. 実施例に係る風力発電機の1日当たりの停止回数と電解槽寿命との関係を示す図である。It is a figure which shows the relationship between the number of times of stopping of the wind power generator which concerns on Example, and the life of an electrolytic cell. 福島再生可能エネルギー研究所の風力発電機(300kW)の停止時間に対する累積停止回数の確率を示す図である。It is a figure which shows the probability of the cumulative number of stops with respect to the stop time of the wind power generator (300 kW) of Fukushima Renewable Energy Research Institute. 図9(a)、図(b)は、酸素発生用電極に由来する電気容量Q2を測定する定電流測定の一例を示す図である。9 (a) and 9 (b) are diagrams showing an example of constant current measurement for measuring the electric capacity Q2 derived from the oxygen evolving electrode. 第2の実施の形態に係る逆電流抑制部を備えた水素発生システムの回路構成を示す模式図である。It is a schematic diagram which shows the circuit structure of the hydrogen generation system provided with the reverse current suppression part which concerns on 2nd Embodiment. 第2の実施の形態に係る逆電流抑制部を備えた水素発生システムにおいて、電解停止後の電位および電流の変化を示す図である。It is a figure which shows the change of the potential and the current after electrolysis stop in the hydrogen generation system provided with the reverse current suppression part which concerns on 2nd Embodiment.
 はじめに、本発明の態様を列挙する。本発明のある態様の水素発生システムは、水の電気分解によって水素を発生する電解槽と、入力された再生可能エネルギー由来の電力を変換して電解槽に電解電流Iを供給する直流電源と、再生可能エネルギー由来の発電を行う発電装置が停止している場合に電解槽で生じる逆電流I’を抑制する逆電流抑制部と、を備える。電解槽は、酸素発生用電極と、水素発生用電極と、酸素発生用電極および水素発生用電極の間に配置されている固体高分子形電解質膜と、を有する。逆電流抑制部は、逆電流I’が流れうる経路に設けられている。 First, the aspects of the present invention are listed. The hydrogen generation system of one aspect of the present invention includes an electrolytic cell that generates hydrogen by electrolysis of water, a DC power source that converts the input power derived from renewable energy and supplies an electrolytic current I to the electrolytic cell. It is provided with a reverse current suppression unit that suppresses the reverse current I'generated in the electrolytic cell when the power generation device that generates power derived from renewable energy is stopped. The electrolytic cell has an oxygen-evolving electrode, a hydrogen-evolving electrode, and a solid polymer-type electrolyte membrane arranged between the oxygen-evolving electrode and the hydrogen-evolving electrode. The reverse current suppression unit is provided in a path through which the reverse current I'can flow.
 この態様によると、発電装置と直流電源との間に入力を切断する装置を設けなくても、逆電流を抑制できる。また、電解槽と直流電源との間に逆電流抑制部を設けたり、電解槽や直流電源の内部に逆電流抑制部を設けたりできる。 According to this aspect, the reverse current can be suppressed without providing a device for disconnecting the input between the power generation device and the DC power supply. Further, a reverse current suppression unit may be provided between the electrolytic cell and the DC power supply, or a reverse current suppression unit may be provided inside the electrolytic cell or the DC power supply.
 発電装置による発電が停止してからT秒(T>0)経過までの間に電解槽で生じる逆電流I’から算出される電気容量Q1と、水素発生用電極および酸素発生用電極のうち電気容量が小さい電極に由来する電気容量Q2と、が式Q1≦Q2(ただしQ1は∫I’・dt(0≦t≦T))を満たす。 The electric capacity Q1 calculated from the reverse current I'generated in the electrolytic tank between the time when the power generation by the power generation device is stopped and the elapse of T seconds (T> 0), and the electricity of the hydrogen generation electrode and the oxygen generation electrode. The electric capacity Q2 derived from the electrode having a small capacity satisfies the equation Q1 ≦ Q2 (where Q1 is ∫I ′ · dt (0 ≦ t ≦ T)).
 逆電流抑制部は、逆電流I’が流れる経路のオン/オフを切り替えるリレーと、リレーのオン/オフを制御する制御部と、を有してもよい。制御部は、発電装置による発電が停止してからT秒後にリレーを作動させて、回路を開にしてもよい。あるいは、制御部は、発電装置による発電が停止するとリレーを作動させて、回路を開にしてもよい。これにより、発電装置による発電が停止してからT秒経過までの間に発電装置が発電を再開した場合には、リレーのオン/オフ制御が不要となり、リレーの寿命が向上する。 The reverse current suppression unit may include a relay that switches on / off of the path through which the reverse current I'flows, and a control unit that controls the on / off of the relay. The control unit may operate the relay T seconds after the power generation by the power generation device is stopped to open the circuit. Alternatively, the control unit may activate the relay to open the circuit when the power generation by the power generation device is stopped. As a result, if the power generation device resumes power generation within T seconds after the power generation by the power generation device is stopped, the on / off control of the relay becomes unnecessary and the life of the relay is improved.
 逆電流抑制部は、逆電流I’が流れる経路のオン/オフを切り替えるリレーと、リレーのオン/オフを制御する制御部と、酸素発生用電極と水素発生用電極との間の電圧を検出する電圧検出部と、を有してもよい。制御部は、発電装置による発電が停止してから、電圧検出部により検出された電圧より推定される酸素発生用電極の電位が該酸素発生用電極が有する触媒の酸化還元平衡電位を下回るまでの間(下回る前)に、リレーを作動させて、回路を開にしてもよい。あるいは、制御部は、発電装置による発電が停止してから、電圧検出部により検出された電圧より推定される水素発生用電極の電位が水素発生用電極が有する触媒の酸化還元平衡電位を上回るまでの間(上回る前)に、リレーを作動させて、回路を開にしてもよい。これにより、逆電流による電極の劣化を抑制できる。 The reverse current suppression unit detects the voltage between the relay that switches the path through which the reverse current I'flows on / off, the control unit that controls the on / off of the relay, and the oxygen-evolving electrode and the hydrogen-generating electrode. It may have a voltage detection unit and a voltage detection unit. In the control unit, from the time when the power generation by the power generator is stopped until the potential of the oxygen generating electrode estimated from the voltage detected by the voltage detecting unit falls below the redox equilibrium potential of the catalyst of the oxygen generating electrode. In the meantime (before falling), the relay may be activated to open the circuit. Alternatively, in the control unit, after the power generation by the power generation device is stopped, until the potential of the hydrogen generation electrode estimated from the voltage detected by the voltage detection unit exceeds the redox equilibrium potential of the catalyst of the hydrogen generation electrode. In the meantime (before exceeding), the relay may be activated to open the circuit. As a result, deterioration of the electrode due to reverse current can be suppressed.
 逆電流抑制部は、逆電流I’が流れる経路のオン/オフを切り替えるリレーと、リレーのオン/オフを制御する制御部と、酸素発生用電極の電位を検出する電位検出部と、を有してもよい。制御部は、電位検出部により検出した酸素発生用電極の電位が該酸素発生用電極が有する触媒の酸化還元平衡電位を下回るまでの間(下回る前)に、リレーを作動させて、回路を開にしてもよい。あるいは、逆電流抑制部は、水素発生用電極の電位を検出する電位検出部を有してもよい。その場合、制御部は、電位検出部により検出した水素発生用電極の電位が該水素発生用電極が有する触媒の酸化還元平衡電位を上回るまでの間(上回る前)に、リレーを作動させて、回路を開にしてもよい。これにより、逆電流による電極の劣化をより確実に抑制できる。 The reverse current suppression unit includes a relay that switches on / off of the path through which the reverse current I'flows, a control unit that controls on / off of the relay, and a potential detection unit that detects the potential of the oxygen generating electrode. You may. The control unit operates the relay until the potential of the oxygen-evolving electrode detected by the potential detection unit falls below (before) the redox equilibrium potential of the catalyst of the oxygen-evolving electrode to open the circuit. It may be. Alternatively, the reverse current suppression unit may have a potential detection unit that detects the potential of the hydrogen generating electrode. In that case, the control unit operates the relay until the potential of the hydrogen generation electrode detected by the potential detection unit exceeds (before) the redox equilibrium potential of the catalyst of the hydrogen generation electrode. The circuit may be opened. As a result, deterioration of the electrode due to reverse current can be suppressed more reliably.
 電圧から酸素発生用電極の電位を求める時には、事前に参照極を用いて水素発生用電極の電位変動を把握することにより容易に求めることができる。
 電圧=陽極電位-陰極電位
 上述の式のように、電圧は酸素発生用電極電位と水素発生用電極電位の差であるため、水素発生用電極の電位変動が分かっている場合、酸素発生用電極の電位変化は求められる。
When the potential of the oxygen-evolving electrode is obtained from the voltage, it can be easily obtained by grasping the potential fluctuation of the hydrogen-evolving electrode using a reference electrode in advance.
Voltage = anodic potential-cathode potential As shown in the above equation, the voltage is the difference between the oxygen generation electrode potential and the hydrogen generation electrode potential. Therefore, if the potential fluctuation of the hydrogen generation electrode is known, the oxygen generation electrode The potential change of is required.
 逆電流抑制部は、経路に設けられたダイオードを有してもよい。ダイオードは、水素発生用電極および酸素発生用電極のうち電気容量が小さい電極の電気容量に由来する電気容量をQ2、発電装置による発電が停止してからT秒後までに電解槽で生じる逆電流I’の平均値をI”、該ダイオードの逆バイアス電流Iの平均値をI’(I’=∫I・dt/T(0≦t≦T))とすると、I’≦I”(I”=Q2/T)を満たすように構成されていてもよい。これにより、逆電流による電極の劣化を抑制できる。 The reverse current suppression unit may have a diode provided in the path. The diode uses Q2 as the electric capacity derived from the electric capacity of the electrode with the smaller electric capacity among the hydrogen generating electrode and the oxygen generating electrode, and the reverse current generated in the electrolytic tank within T seconds after the power generation by the power generation device is stopped. 'I "the average value of the average value of the reverse bias current I R of the diode I R' I (I R 'When = ∫I R · dt / T ( 0 ≦ t ≦ T)), I R' It may be configured to satisfy ≦ I ”(I” = Q2 / T), whereby deterioration of the electrode due to reverse current can be suppressed.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。また、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention. Further, an appropriate combination of the above-mentioned elements may be included in the scope of the invention for which protection by the patent is sought by the present patent application.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、同一の部材であっても、各図面間で縮尺等が若干相違する場合もあり得る。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限り、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。 Hereinafter, the present invention will be described based on a preferred embodiment with reference to the drawings. The embodiments are not limited to the invention, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the scale and shape of each part shown in each figure are set for convenience for ease of explanation, and are not limitedly interpreted unless otherwise specified. Further, even if the members are the same, the scale and the like may be slightly different between the drawings. In addition, when terms such as "first" and "second" are used in this specification or claims, they do not represent any order or importance unless otherwise specified, and have a certain structure and others. It is for distinguishing from the composition of.
 (第1の実施の形態)
 [水素発生システム]
 図1は、水素発生システムの概略構成を示す模式図である。水素発生システム10は、水の電気分解によって水素を発生する電解槽12と、入力された再生可能エネルギー由来の電力を直流電流として取り出して電解槽12に電解電流Iを供給する直流電源14と、を備える。水素発生システム10の直流電源14には、再生可能エネルギー由来の発電を行う太陽光発電装置16や風力発電装置18が接続されている。
(First Embodiment)
[Hydrogen generation system]
FIG. 1 is a schematic diagram showing a schematic configuration of a hydrogen generation system. The hydrogen generation system 10 includes an electrolytic tank 12 that generates hydrogen by electrolysis of water, a DC power supply 14 that extracts electric power derived from the input renewable energy as a direct current and supplies the electrolytic current I to the electrolytic tank 12. To be equipped. A solar power generation device 16 or a wind power generation device 18 that generates power derived from renewable energy is connected to the DC power source 14 of the hydrogen generation system 10.
 直流電源14は、DC/DCコンバータであってもよく、太陽光発電装置16から出力される直流電流を電解槽の電圧に合わせてから取り出すための直流安定化電源(DC/DCコンバータ)であってもよい。また、直流電源14は、AC/DCコンバータであってもよく、風力発電装置18から出力される交流電流を整流して直流電流に変換してから、直流電流を取り出してもよい。 The DC power supply 14 may be a DC / DC converter, and is a regulated DC power supply (DC / DC converter) for taking out the DC current output from the solar power generation device 16 after adjusting the voltage to the voltage of the electrolytic tank. You may. Further, the DC power supply 14 may be an AC / DC converter, and the AC current output from the wind power generator 18 may be rectified and converted into a DC current, and then the DC current may be taken out.
 図2は、第1の実施の形態に係る電解槽の概略構成を示す模式図である。本実施の形態に係る電解槽12は、イオン交換膜を利用する固体高分子膜(PEM:Polymer Electrolyte Membrane)型水電解槽である。電解槽12は、酸素発生用電極としての陽極20と、水素発生用電極としての陰極22と、陽極20および陰極22の間に配置されている固体高分子形電解質膜24と、を有する。 FIG. 2 is a schematic view showing a schematic configuration of an electrolytic cell according to the first embodiment. The electrolytic cell 12 according to the present embodiment is a solid polymer membrane (PEM: Polymer Electrolyte Membrane) type water electrolytic cell using an ion exchange membrane. The electrolytic cell 12 has an anode 20 as an oxygen-evolving electrode, a cathode 22 as a hydrogen-generating electrode, and a solid polymer electrolyte membrane 24 arranged between the anode 20 and the cathode 22.
 陽極20は、陽極触媒層20aと、陽極ガス拡散層20bと、セパレータ20cとを有する。陰極22は、陰極触媒層22aと、陰極ガス拡散層22bと、セパレータ22cとを有する。本実施の形態に係る陽極触媒層20aは、原料として酸化イリジウム(IrO)を含有している。また、本実施の形態に係る陰極触媒層22aは、プラチナ(Pt)とカーボン(C)を含有している。なお、各触媒層が含む前述の触媒は一例であり、他の金属や金属化合物であってもよい。 The anode 20 has an anode catalyst layer 20a, an anode gas diffusion layer 20b, and a separator 20c. The cathode 22 has a cathode catalyst layer 22a, a cathode gas diffusion layer 22b, and a separator 22c. The anode catalyst layer 20a according to the present embodiment contains iridium oxide (IrO 2 ) as a raw material. Further, the cathode catalyst layer 22a according to the present embodiment contains platinum (Pt) and carbon (C). The above-mentioned catalyst contained in each catalyst layer is an example, and may be another metal or metal compound.
 固体高分子形電解質膜24は、プロトン(H)が伝導する材料であれば特に限定されないが、例えば、スルホン酸基を有するフッ素系イオン交換膜が挙げられる。セパレータ20cは、水と酸素が流れる流路が形成されており、導電性の耐食材料が好ましい。セパレータ22cは、水素が流れる流路が形成されており、導電性の耐食材料が好ましい。 The solid polymer electrolyte membrane 24 is not particularly limited as long as it is a material that conducts protons (H + ), and examples thereof include a fluorine-based ion exchange membrane having a sulfonic acid group. The separator 20c is formed with a flow path through which water and oxygen flow, and a conductive corrosion-resistant material is preferable. The separator 22c is formed with a flow path through which hydrogen flows, and a conductive corrosion-resistant material is preferable.
 電解槽12における水の電解時の反応は以下の通りである。
 電解時の正極(陽極)反応:2HO→O+4H+4e
 電解時の負極(陰極)反応:4H+4e→2H
The reaction of water in the electrolytic cell 12 during electrolysis is as follows.
Electrolyte when the positive electrode (anode) reaction: 2H 2 O → O 2 + 4H + + 4e -
Negative electrode (cathode) reaction during electrolysis: 4H + + 4e - → 2H 2
 陽極20では、水が電気分解され、酸素とプロトンと電子が生じる。プロトンは固体高分子形電解質膜24を移動して陰極22に向かう。酸素はセパレータ20cに形成された流路を介して外部へ放出され、電子は直流電源14の正極に流入する。陰極22では、直流電源14の負極から供給された電子と、固体高分子形電解質膜24を移動したプロトンとの反応により水素が生成される。 At the anode 20, water is electrolyzed to generate oxygen, protons and electrons. Protons move through the polymer electrolyte membrane 24 toward the cathode 22. Oxygen is released to the outside through the flow path formed in the separator 20c, and electrons flow into the positive electrode of the DC power supply 14. At the cathode 22, hydrogen is generated by the reaction between the electrons supplied from the negative electrode of the DC power supply 14 and the protons that have moved through the solid polymer electrolyte membrane 24.
 [逆電流発生の原因]
 図3(a)は、発電装置からの入力により水素発生システムが作動中の回路構成を模式的に示す図、図3(b)は、発電装置からの入力がゼロになり水素発生システムの作動が停止した後の回路構成を模式的に示す図である。
[Cause of reverse current generation]
FIG. 3A is a diagram schematically showing a circuit configuration in which the hydrogen generation system is operating by input from the power generation device, and FIG. 3B is a diagram in which the input from the power generation device becomes zero and the hydrogen generation system is operated. It is a figure which shows typically the circuit structure after the stop.
 図3(a)に示すように、直流電源14は、太陽光発電装置16や風力発電装置18といった再生可能エネルギー由来の直流や交流(以下、交流の場合について説明するが、直流であってもよい。)が入力されると、トランス26により電圧変換し、ブリッジ形ダイオード28により整流し、平滑電解コンデンサ30により平滑化し、出力端子32から直流電流としての電解電流Iを電解槽12に供給する。これにより、再生可能エネルギーを利用した水の電気分解が可能となる。 As shown in FIG. 3A, the DC power supply 14 is a direct current or alternating current derived from renewable energy such as a photovoltaic power generation device 16 or a wind power generation device 18 (hereinafter, the case of alternating current will be described, but even if it is a direct current. (Good) is input, the voltage is converted by the transformer 26, rectified by the bridge type diode 28, smoothed by the smoothing electrolytic capacitor 30, and the electrolytic current I as a direct current is supplied from the output terminal 32 to the electrolytic tank 12. .. This enables electrolysis of water using renewable energy.
 一方、太陽光発電装置16や風力発電装置18といった再生可能エネルギーを利用した発電装置では、天候によって停止や起動が頻繁に繰り返される。そのため、図3(b)に示すように、発電が停止し、水素発生システム10に入力される交流が実質的にゼロになると、電解槽12から直流電源14に向けて流れる逆電流I’が発生する。 On the other hand, in a power generation device using renewable energy such as a solar power generation device 16 and a wind power generation device 18, stoppage and start-up are frequently repeated depending on the weather. Therefore, as shown in FIG. 3B, when the power generation is stopped and the alternating current input to the hydrogen generation system 10 becomes substantially zero, the reverse current I'flowing from the electrolytic cell 12 toward the DC power supply 14 is generated. appear.
 逆電流I’が発生する原因は、1)電解槽12における陽極および陰極の静電気が、直流電源14の平滑電解コンデンサ30を充電することで生じる、2)通常時の水電解における電極反応の逆反応が進行し、平滑電解コンデンサ30を充電することで生じる、と考えられる。その他にも、電源装置の仕様により、電解コンデンサの放電回路や電圧測定器などが内蔵されることがあり、これらの回路を通じた逆電流が起こることもある。 The causes of the reverse current I'are 1) the static electricity of the anode and the cathode in the electrolytic cell 12 is generated by charging the smoothing electrolytic capacitor 30 of the DC power supply 14 and 2) the reverse of the electrode reaction in normal water electrolysis. It is considered that the reaction proceeds and occurs when the smoothing electrolytic capacitor 30 is charged. In addition, depending on the specifications of the power supply device, a discharge circuit of an electrolytic capacitor, a voltage measuring device, or the like may be built in, and a reverse current may occur through these circuits.
 電解槽12における水の電解停止後の逆反応は以下の通りである。
 電解停止後の正極(陽極)反応:O+4H+4e→2H
 電解停止後の負極(陰極)反応:2H→4H+4e
The reverse reaction after the electrolysis of water in the electrolytic cell 12 is stopped is as follows.
Electrolysis stopped after the positive electrode (anode) reaction: O 2 + 4H + + 4e - → 2H 2 O
Negative electrode (cathode) reaction after the electrolytic Stop: 2H 2 → 4H + + 4e -
 図4は、電解停止後の電位および電流の変化を示す図である。電解停止前のセル電圧(L3)は、水電解の理論稼働電圧(エンタルピー変化を加味した電解電圧)1.48Vを上回っているが、電解停止直後は、電気二重層の放電による逆電流によってセル電圧が理論稼働電圧1.48Vから徐々に低下する。その後、セル電圧が水の理論電解電圧(エンタルピー変化を含まない電解電圧)1.23Vを下回り、その後逆反応により陽極電位(L1)も徐々に低下する。 FIG. 4 is a diagram showing changes in potential and current after electrolysis is stopped. The cell voltage (L3) before the electrolysis is stopped exceeds the theoretical operating voltage (electrolysis voltage including enthalpy change) of 1.48V for water electrolysis, but immediately after the electrolysis is stopped, the cell is caused by the reverse current due to the discharge of the electric double layer. The voltage gradually drops from the theoretical operating voltage of 1.48V. After that, the cell voltage falls below the theoretical electrolytic voltage of water (electrolytic voltage not including the enthalpy change) of 1.23 V, and then the anodic potential (L1) gradually decreases due to the reverse reaction.
 例えば、図4に示すグラフでは、電解停止してから約6分後に陽極電位が0.9Vvs.NHEになる。陽極触媒層20aに含まれるIrのIrO+4H+4e←→Ir+2HO反応における酸化還元平衡電位は標準水素電極(NHE)に対して、0.926V(25℃、vs.NHE)であり、陽極電位は0.926Vを下回っている。一方、直流電源14への交流の入力が再開し、電解槽12への電解電流Iの供給が再開すると、陽極20は理論稼働電圧1.48Vを再度上回る。このように、直流電源14への発電装置からの入力の停止や再開が繰り返されると、陽極が有する触媒の酸化還元平衡電位を跨ぐ電位変動が陽極で生じ、その結果、陽極触媒が劣化する。 For example, in the graph shown in FIG. 4, the anodic potential is 0.9 Vvs. Become NHE. IrO 2 + 4H + + 4e of Ir contained in the anode catalyst layer 20a - ← → respect Ir + 2H 2 O redox equilibrium potential in the reaction is a standard hydrogen electrode (NHE), be 0.926V (25 ℃, vs.NHE) , The anode potential is below 0.926V. On the other hand, when the AC input to the DC power supply 14 is resumed and the supply of the electrolytic current I to the electrolytic cell 12 is resumed, the anode 20 again exceeds the theoretical operating voltage of 1.48 V. When the input from the power generation device to the DC power supply 14 is repeatedly stopped and restarted in this way, a potential fluctuation across the redox equilibrium potential of the catalyst of the anode occurs at the anode, and as a result, the anode catalyst deteriorates.
 そこで、本願発明者らはこのような電極の劣化を抑制するために、電極の電圧変化を引き起こす逆電流を抑制する技術に着目した。具体的には、リレーやダイオードを含む逆電流抑制部が挙げられる。本実施の形態では、リレーを例に説明する。 Therefore, the inventors of the present application have focused on a technique for suppressing the reverse current that causes a voltage change of the electrode in order to suppress such deterioration of the electrode. Specific examples thereof include a reverse current suppression unit including a relay and a diode. In this embodiment, a relay will be described as an example.
 図5は、第1の実施の形態に係る逆電流抑制部を備えた水素発生システムの回路構成を示す模式図である。図5に示すように、水素発生システム40は、再生可能エネルギー由来の発電が停止し、電解槽12での電解が停止している場合に電解槽12で生じる逆電流I’を抑制する逆電流抑制部34を備える。 FIG. 5 is a schematic diagram showing a circuit configuration of a hydrogen generation system including a reverse current suppression unit according to the first embodiment. As shown in FIG. 5, the hydrogen generation system 40 suppresses the reverse current I'generated in the electrolytic cell 12 when the power generation derived from the renewable energy is stopped and the electrolysis in the electrolytic cell 12 is stopped. The suppression unit 34 is provided.
 逆電流抑制部34は、電解槽12と直流電源14との間の経路のオン/オフを切り替えるメカニカルリレー36と、メカニカルリレー36のオン/オフを制御する制御部38と、を有している。制御部38は、メカニカルリレー36のコイル36aへの通電を切り替えるスイッチ38aと、コイル36aへ電圧を印加するための電源38bと、を有する。電源38bとして、例えば、電圧24Vの直流電源を用いてもよい。なお、有接点リレーであるメカニカルリレー36の代わりに無接点リレーであるソリッドステートリレーを用いてもよい。 The reverse current suppression unit 34 includes a mechanical relay 36 that switches the path between the electrolytic cell 12 and the DC power supply 14 on / off, and a control unit 38 that controls the on / off of the mechanical relay 36. .. The control unit 38 has a switch 38a for switching the energization of the coil 36a of the mechanical relay 36, and a power supply 38b for applying a voltage to the coil 36a. As the power source 38b, for example, a DC power source having a voltage of 24 V may be used. A solid state relay, which is a non-contact relay, may be used instead of the mechanical relay 36, which is a contact relay.
 制御部38は、プロセッサを有してもよく、プロセッサからの指示によりスイッチ38aを制御してもよい。プロセッサは、例えば、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)であってもよい。また。制御部38は、メモリ等の記憶部を有してもよく、記憶部に記憶されたプログラムによりプロセッサを制御してもよい。 The control unit 38 may have a processor, or may control the switch 38a according to an instruction from the processor. The processor may be, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit). Also. The control unit 38 may have a storage unit such as a memory, or may control the processor by a program stored in the storage unit.
 逆電流抑制部34は、電解時において、制御部38がスイッチ38aをオンにし、コイル36aに通電することで、メカニカルリレー36のスイッチ36bがオンになり、直流電源14と電解槽12との間の経路が導通する。その結果、直流電源14から電解槽12へ電解電流Iが供給される。 In the reverse current suppression unit 34, during electrolysis, the control unit 38 turns on the switch 38a and energizes the coil 36a, so that the switch 36b of the mechanical relay 36 is turned on and between the DC power supply 14 and the electrolytic cell 12. Path is conductive. As a result, the electrolytic current I is supplied from the DC power supply 14 to the electrolytic cell 12.
 一方、逆電流抑制部34は、太陽光発電装置16や風力発電装置18から取得した稼働(発電)状態の情報、または電解槽12の各電極の電位を検出する電位検出部42から取得した陽極20と陰極22との電圧の情報に基づいて、制御部38が電極が劣化しやすい状況か否かを判断する。例えば、太陽光発電装置16及び風力発電装置18から取得した発電情報において、所定の基準時間を超える期間の発電の停止が確認されるときに、電極が劣化しやすい状況と判断してもよい。また、電位検出部42から取得した陽極20もしくは陰極22の電位が特定の電位を超えるとき、または、電解槽12から直流電源14への逆電流の電気量が所定の閾値を超えるときを、電極が劣化しやすい状況と判断してもよい。なお、電位検出部42は、電圧検出部に置き換えてもよい。制御部38は、電解槽12の各電極が劣化しやすい状況であると判断した場合、スイッチ38aをオフし、コイル36aの通電を遮断することで、スイッチ36bが開状態とする。その結果、電解槽12から直流電源14への逆電流I’が遮断される。 On the other hand, the reverse current suppression unit 34 is an anode acquired from the potential detection unit 42 that detects the operating (power generation) state information acquired from the photovoltaic power generation device 16 or the wind power generation device 18 or the potential of each electrode of the electrolytic cell 12. Based on the voltage information between the 20 and the cathode 22, the control unit 38 determines whether or not the electrode is likely to deteriorate. For example, in the power generation information acquired from the photovoltaic power generation device 16 and the wind power generation device 18, when it is confirmed that the power generation is stopped for a period exceeding a predetermined reference time, it may be determined that the electrodes are likely to deteriorate. Further, when the potential of the anode 20 or the cathode 22 acquired from the potential detection unit 42 exceeds a specific potential, or when the amount of electricity of the reverse current from the electrolytic cell 12 to the DC power supply 14 exceeds a predetermined threshold, the electrode May be judged to be a situation in which is likely to deteriorate. The potential detection unit 42 may be replaced with a voltage detection unit. When the control unit 38 determines that each electrode of the electrolytic cell 12 is likely to deteriorate, the switch 38a is turned off and the coil 36a is cut off to open the switch 36b. As a result, the reverse current I'from the electrolytic cell 12 to the DC power supply 14 is cut off.
 このように、逆電流抑制部34は、再生可能エネルギー由来の発電を行う発電装置から直流電源への入力が切断されていない状態でも逆電流I’を抑制できる。これにより、発電装置と直流電源14との間に入力を切断する装置を設けなくても、逆電流I’を抑制できる。 In this way, the reverse current suppression unit 34 can suppress the reverse current I'even when the input from the power generation device that generates power derived from renewable energy to the DC power supply is not cut off. As a result, the reverse current I'can be suppressed without providing a device for disconnecting the input between the power generation device and the DC power supply 14.
 また、本実施の形態に係る逆電流抑制部34は、電解槽12と直流電源14とを含む閉回路において逆電流I’が流れうる経路に設けられていればよい。これにより、電解槽12と直流電源14との間に逆電流抑制部34を設けるだけでなく、電解槽12や直流電源14の内部に逆電流抑制部34を設けたりできる。 Further, the reverse current suppression unit 34 according to the present embodiment may be provided in a path through which the reverse current I'can flow in a closed circuit including the electrolytic cell 12 and the DC power supply 14. As a result, not only the reverse current suppression unit 34 can be provided between the electrolytic cell 12 and the DC power supply 14, but also the reverse current suppression unit 34 can be provided inside the electrolytic cell 12 and the DC power supply 14.
 図6は、第1の実施の形態に係る逆電流抑制部を備えた水素発生システムにおいて、電解停止後の電位および電流の変化を示す図である。図5に示すように、発電装置における発電が停止した状態を検出した制御部38は、メカニカルリレー36におけるスイッチ36bを開状態とすることで逆電流I’を遮断する。この場合、図6に示すように、陽極電位(L1)は1.1V以上に維持される。陽極電位が上述の酸化還元平衡電位0.926Vを下回っていないので、触媒の劣化を抑制できる。 FIG. 6 is a diagram showing changes in potential and current after electrolysis is stopped in the hydrogen generation system provided with the reverse current suppression unit according to the first embodiment. As shown in FIG. 5, the control unit 38 that has detected the state in which the power generation in the power generation device has stopped shuts off the reverse current I'by opening the switch 36b in the mechanical relay 36. In this case, as shown in FIG. 6, the anodic potential (L1) is maintained at 1.1 V or higher. Since the anodic potential is not lower than the above-mentioned redox equilibrium potential of 0.926V, deterioration of the catalyst can be suppressed.
 また、風力発電装置18の場合、天候によっては発電の停止、再稼働が頻繁に繰り返されることが多い。したがって、風力発電装置18の発電が停止した状態を検出した制御部38は、すぐにメカニカルリレー36を開状態にすることで、より確実に逆電流I’の発生を低減できる。一方、風力発電装置18は、発電の停止時間が短い停止(例えば3分以下の停止)が大半である。そのため、発電装置による発電の停止から再稼働までの間に逆電流I’が生じない、あるいは逆電流I’が生じても電極の劣化に大きな影響を与えない場合、制御部38は、風力発電装置18の発電が停止した状態を検出しても即座にメカニカルリレー36を開状態とする必要がない。メカニカルリレーには、機械的寿命(負荷を接続しない時の開閉回数に対する寿命)と電気的寿命(負荷電力した時の開閉回数による寿命)が存在するが、風力発電装置のすべての停止に対してメカニカルリレーの開閉を行った場合には機械的寿命の消耗が著しく増加する。したがって、メカニカルリレーの開閉を減少させることで、交換頻度の減少や安価なメカニカルリレーの選定が可能となる。 Further, in the case of the wind power generation device 18, depending on the weather, power generation is often stopped and restarted frequently. Therefore, the control unit 38 that has detected the state in which the power generation of the wind power generation device 18 has stopped can more reliably reduce the generation of the reverse current I'by immediately opening the mechanical relay 36. On the other hand, most of the wind power generation devices 18 have a short stop time for power generation (for example, a stop of 3 minutes or less). Therefore, if the reverse current I'does not occur between the stop and restart of the power generation by the power generation device, or even if the reverse current I'occurs, the deterioration of the electrodes is not significantly affected, the control unit 38 generates wind power. It is not necessary to immediately open the mechanical relay 36 even if the state in which the power generation of the device 18 is stopped is detected. Mechanical relays have a mechanical life (life for the number of times of opening and closing when no load is connected) and an electrical life (life for the number of times of opening and closing when load power is applied), but for all outages of wind power generators. When the mechanical relay is opened and closed, the consumption of the mechanical life is significantly increased. Therefore, by reducing the opening and closing of the mechanical relay, it is possible to reduce the frequency of replacement and select an inexpensive mechanical relay.
 そこで、制御部38は、電位検出部42で検出した陽極20と陰極22との電圧の情報に基づいて、風力発電装置18による発電が停止してから、陽極20の電位が陽極触媒層20aの酸化還元平衡電位(0.926V)を下回るまでの間(下回る前)に、メカニカルリレー36を作動させて、回路を開にしてもよい。これにより、逆電流I’による陽極20の劣化をより確実に抑制できる。また、陽極20の電位が陽極触媒層20aの酸化還元平衡電位を下回るまでの間(下回る前)に風力発電装置18が発電を再開した場合には、メカニカルリレー36のオン/オフ制御が不要となり、メカニカルリレー36の寿命が向上する。 Therefore, the control unit 38 determines the potential of the anode 20 of the anode catalyst layer 20a after the power generation by the wind power generator 18 is stopped based on the voltage information between the anode 20 and the cathode 22 detected by the potential detection unit 42. The mechanical relay 36 may be operated to open the circuit until it falls below the redox equilibrium potential (0.926 V) (before it falls). As a result, deterioration of the anode 20 due to the reverse current I'can be suppressed more reliably. Further, if the wind power generator 18 resumes power generation until the potential of the anode 20 falls below the redox equilibrium potential of the anode catalyst layer 20a (before it falls below), the on / off control of the mechanical relay 36 becomes unnecessary. , The life of the mechanical relay 36 is improved.
 一方、電位検出部42を設けていない水素発生システム40の場合、制御部38は、風力発電装置18による発電が停止してからT秒後(T>0)にメカニカルリレー36を作動させて、回路を開にしてもよい。これにより、風力発電装置18による発電が停止してからT秒後までの間に風力発電装置18が発電を再開した場合には、メカニカルリレー36のオン/オフ制御が不要となり、メカニカルリレー36の寿命が向上する。 On the other hand, in the case of the hydrogen generation system 40 in which the potential detection unit 42 is not provided, the control unit 38 operates the mechanical relay 36 T seconds after the power generation by the wind power generation device 18 is stopped (T> 0). The circuit may be opened. As a result, if the wind power generation device 18 resumes power generation within T seconds after the power generation by the wind power generation device 18 is stopped, the on / off control of the mechanical relay 36 becomes unnecessary, and the mechanical relay 36 Life is improved.
 次に、予め設定するTの値について説明する。電解槽12の寿命が電極の劣化によって決まるとすると、逆電流I’による電極の劣化を引き起こす発電装置の停止回数が重要である。また、電極の劣化による寿命とは、例えば、電解槽12の電解時の電圧(電流密度1A/cmの場合)が20%上昇した場合を基準とする。 Next, the value of T to be set in advance will be described. Assuming that the life of the electrolytic cell 12 is determined by the deterioration of the electrode, the number of stops of the power generation device that causes the deterioration of the electrode due to the reverse current I'is important. The life due to deterioration of the electrodes is based on, for example, a case where the voltage during electrolysis of the electrolytic cell 12 (in the case of a current density of 1 A / cm 2 ) increases by 20%.
 一般的に、太陽光発電装置16よりも風力発電装置18の方が停止回数が多いため、以下の説明では風力発電装置18の停止回数に着目して説明する。図7は、実施例に係る風力発電機の1日当たりの停止回数と電解槽寿命との関係を示す図である。例えば、停止回数120回/日だと電解槽の寿命は2.1年、停止回数50回/日だと電解槽の寿命は5年、停止回数25回/日だと電解槽の寿命は10年、停止回数12.5回/日だと電解槽の寿命は20年となる。 In general, the wind power generation device 18 has a larger number of stops than the solar power generation device 16, so the following description will focus on the number of stops of the wind power generation device 18. FIG. 7 is a diagram showing the relationship between the number of times the wind power generator is stopped per day and the life of the electrolytic cell according to the embodiment. For example, if the number of stops is 120 times / day, the life of the electrolytic cell is 2.1 years, if the number of stops is 50 times / day, the life of the electrolytic cell is 5 years, and if the number of stops is 25 times / day, the life of the electrolytic cell is 10. If the number of stops is 12.5 times / day, the life of the electrolytic cell will be 20 years.
 ここで、停止回数としてカウントされる停止は、電解槽の寿命に影響する程度の長さの停止であり、例えば、数秒~数十秒程度の停止では電極の劣化に影響するほどの逆電流I’がほとんど生じない。換言すれば、電極の劣化に影響するほどの逆電流I’が生じないのであれば、短時間の風力発電機の停止においては、必ずしも逆電流I’を遮断する必要はないことになる。 Here, the stop counted as the number of stops is a stop having a length that affects the life of the electrolytic cell. For example, a stop of several seconds to several tens of seconds has a reverse current I that affects the deterioration of the electrode. 'Almost never occurs. In other words, if the reverse current I'that affects the deterioration of the electrodes does not occur, it is not always necessary to cut off the reverse current I'when the wind power generator is stopped for a short time.
 したがって、電極の劣化に影響するほどの逆電流I’が生じない程度の風力発電機の短時間の停止(発電が停止してからT秒後までの停止)は、停止回数にカウントしなくてもよいことになる。具体的には、発電が停止してからT秒後までの停止が70回/日であれば、実際に電解槽の寿命に影響を与える実質的な停止回数は120-70=50回/日(停止回数約58%削減)となり、電解槽の寿命は約5年に延びることになる。 Therefore, a short stop (stop until T seconds after the stop of power generation) of the wind power generator that does not generate a reverse current I'that affects the deterioration of the electrodes is not counted in the number of stops. Will also be good. Specifically, if the number of stops from the stop of power generation to T seconds later is 70 times / day, the actual number of stops that actually affects the life of the electrolytic cell is 120-70 = 50 times / day. (The number of stops is reduced by about 58%), and the life of the electrolytic cell is extended to about 5 years.
 同様に、発電が停止してからT秒後までの停止が95回/日であれば、実際に電解槽の寿命に影響を与える実質的な停止回数は120-95=25回/日(停止回数約79%削減)となり、電解槽の寿命は約10年に延びることになる。また、発電が停止してからT秒後までの停止が107.5回/日であれば、実際に電解槽の寿命に影響を与える実質的な停止回数は120-107.5=12.5回/日(停止回数約90%削減)となり、電解槽の寿命は約20年に延びることになる。 Similarly, if the number of stops from the stop of power generation to T seconds later is 95 times / day, the actual number of stops that actually affects the life of the electrolytic cell is 120-95 = 25 times / day (stops). The number of times is reduced by about 79%), and the life of the electrolytic cell is extended to about 10 years. Further, if the number of stops from the stop of power generation to T seconds later is 107.5 times / day, the actual number of stops that actually affects the life of the electrolytic cell is 120-107.5 = 12.5. The number of times / day is reduced (the number of stops is reduced by about 90%), and the life of the electrolytic cell is extended to about 20 years.
 図8は、福島再生可能エネルギー研究所の風力発電機(300kW)の停止時間に対する累積停止回数の確率を示す図である。この風力発電機では、600秒までの停止が全体の93%を占めている。このような使用環境における風力発電機において、実質的な停止回数を約58%削減しようとすると、図8に示すように、54秒までの停止において電極の劣化に影響するほどの逆電流I’が生じなければよい。また、実質的な停止回数を約79%削減しようとすると、図8に示すように、142秒までの停止において電極の劣化に影響するほどの逆電流I’が生じなければよい。 FIG. 8 is a diagram showing the probability of the cumulative number of outages with respect to the outage time of the wind power generator (300 kW) of the Fukushima Renewable Energy Research Institute. In this wind power generator, outages of up to 600 seconds account for 93% of the total. In a wind power generator in such a usage environment, if an attempt is made to reduce the actual number of stops by about 58%, as shown in FIG. 8, a reverse current I'that affects the deterioration of the electrodes when stopped for up to 54 seconds. Should not occur. Further, in order to reduce the actual number of stops by about 79%, as shown in FIG. 8, it is sufficient that the reverse current I'that affects the deterioration of the electrode does not occur at the stop for up to 142 seconds.
 [電極の劣化に影響を与えるT(発電が停止してからの時間)の計測]
 発電装置による発電が停止してからT秒後までに電解槽12で生じる逆電流I’から算出される電気容量Q1=∫I’・dt(0≦t≦T)である。逆電流I’は直流電流計やクランプメーター(架線電流計)等により容易に測定することができる。直流電流計で逆電流を測定する場合、直流電流計は電解槽-直流電源装置間に固定設置する必要があり、電解槽稼働中の電流にも耐え、かつ微弱な逆電流も測定する必要があり、高コストな装置となる。一方、回路中への設置の必要のないクランプメーター(架線電流計)では、微弱な逆電流のみに特化して装置を選定することができるため、安価かつ正確に逆電流を測定することができ、より望ましい形態といえる。陽極20に由来する電気容量Q2は、下記のような電解槽停止後の定電流測定により事前に求めておくことができる。定電流測定の条件および電解槽構成は以下の通りである。
[Measurement of T (time since power generation stopped) that affects electrode deterioration]
The electric capacity Q1 = ∫I' · dt (0 ≦ t ≦ T) calculated from the reverse current I ′ generated in the electrolytic cell 12 within T seconds after the power generation by the power generation device is stopped. The reverse current I'can be easily measured with a DC ammeter, a clamp meter (overhead wire ammeter), or the like. When measuring reverse current with a DC ammeter, the DC ammeter must be fixedly installed between the electrolytic tank and the DC power supply, and must withstand the current during operation of the electrolytic tank and also measure weak reverse current. It is a high-cost device. On the other hand, with a clamp meter (overhead ammeter) that does not need to be installed in the circuit, the device can be selected exclusively for the weak reverse current, so the reverse current can be measured inexpensively and accurately. , A more desirable form. The electric capacity Q2 derived from the anode 20 can be obtained in advance by the following constant current measurement after the electrolytic cell is stopped. The conditions for constant current measurement and the composition of the electrolytic cell are as follows.
 セル温度:25℃
 電流密度:-0.2mA/cm(通常の電解と逆方向の電流)
 三極式電解槽:陰極、陽極、参照極(標準水素電極、NHE)
 陰極触媒:白金担持カーボン(Pt/C)
 陽極触媒:酸化イリジウム
 電極面積:25cm
+1A/cmで水電解試験を3時間行った後に、電解槽を一旦停止させ、直後に電気化学測定装置を用いて強制的に逆電流を-0.2mA/cm流した。参照極からの陽極電位を測定し、陽極の酸化還元電位までの電気容量を測定した。
Cell temperature: 25 ° C
Current density: -0.2mA / cm 2 (current in the opposite direction to normal electrolysis)
Tripolar electrolytic cell: cathode, anode, reference electrode (standard hydrogen electrode, NHE)
Cathode catalyst: Platinum-supported carbon (Pt / C)
Anode catalyst: Iridium oxide Electrode area: 25 cm 2
After performing the water electrolysis test at + 1 A / cm 2 for 3 hours, the electrolytic cell was temporarily stopped, and immediately after that, a reverse current was forcibly flowed at −0.2 mA / cm 2 using an electrochemical measuring device. The anode potential from the reference electrode was measured, and the electric capacity up to the redox potential of the anode was measured.
 図9(a)、図9(b)は、酸素発生用電極に由来する電気容量Q2を測定する上述の定電流測定の一例を示す図である。今回利用した陽極触媒酸化イリジウムの酸化還元電位は上述したように0.926V vs.NHE(pH≒1のため、NHE電位≒RHE電位)である。本実施例では、電気容量Q2は1170mC(46.8mC/cm)であった。 9 (a) and 9 (b) are diagrams showing an example of the above-mentioned constant current measurement for measuring the electric capacity Q2 derived from the oxygen evolving electrode. The redox potential of the anode-catalyzed iridium oxide used this time was 0.926 V vs. as described above. NHE (NHE potential ≈ RHE potential because pH ≈ 1). In this example, the electric capacity Q2 was 1170 mC (46.8 mC / cm 2 ).
 電気容量Q2は、逆電流の電流密度によって若干変化する。今回の試験では、定格1A/cmに対して、電流密度が-0.2mA/cmのため、電流密度は定格の1/5000である。電気容量Q2を正確に測定するための逆電流の電流密度は、水電解の定格電流の絶対値に対して、1/100以下であり、より好ましくは1/10000から1/1000である。1/100よりも大きな電流値で測定した場合、イオン移動抵抗等による電圧ロスにより正確な電気容量Q2を測定することができない。 The electric capacity Q2 slightly changes depending on the current density of the reverse current. In this test, the rated 1A / cm 2, since the current density is -0.2mA / cm 2, current density is 1/5000 of the rated. The current density of the reverse current for accurately measuring the electric capacity Q2 is 1/100 or less, more preferably 1/10000 to 1/1000, with respect to the absolute value of the rated current of water electrolysis. When measured with a current value larger than 1/100, accurate electric capacity Q2 cannot be measured due to voltage loss due to ion transfer resistance or the like.
 上述のように算出した電気容量Q1、Q2が、Q1≦Q2を満たしている場合、電極の劣化に影響する程の逆電流I’は生じていないことになる。その場合、制御部38は、発電装置からの入力がゼロになってからT秒経過後にメカニカルリレー36を作動させて、回路を開にする。これにより、逆電流I’による電極の劣化を抑制できる。 When the electric capacities Q1 and Q2 calculated as described above satisfy Q1 ≦ Q2, the reverse current I ′ that affects the deterioration of the electrode does not occur. In that case, the control unit 38 operates the mechanical relay 36 T seconds after the input from the power generation device becomes zero to open the circuit. As a result, deterioration of the electrode due to the reverse current I'can be suppressed.
 本実施例では、酸化イリジウムを触媒として用いたため、酸化還元の標準電極電位(E)に0.926V(vs.NHE)を用いたが、他の触媒を用いた時は、それぞれの触媒の酸化還元に対する標準電極電位に変更することで電気容量Q2を算出することができる。代表的な触媒の標準電極電位は下記の通りである。
 RuO+4H+4e → Ru+2HO   E=0.68V
 PtO+2H+2e → Pt+HO   E=0.98V
 NiO+2HO+2H+2e → 2Ni(OH) E=1.032V
In this example, since iridium oxide was used as a catalyst, 0.926V (vs. NHE) was used as the standard electrode potential (E 0 ) for redox, but when other catalysts were used, the respective catalysts were used. The electric capacity Q2 can be calculated by changing to the standard electrode potential for redox. The standard electrode potential of a typical catalyst is as follows.
RuO 2 + 4H + + 4e → Ru + 2H 2 O E 0 = 0.68V
PtO + 2H + + 2e → Pt + H 2 O E 0 = 0.98V
NiO 2 + 2H 2 O + 2H + + 2e → 2Ni (OH) 2 E 0 = 1.032V
 標準電極電位は、25℃における酸化還元電位を示すが、停止時の電解槽温度が高いことが想定されるときは、ネルンスト式により温度補正を行うことが望ましい。また、この劣化モードに関与する酸化還元は、想定される温度において、0Vから1.23Vの間にある酸化還元反応対であり、0.1Vから1.1Vの間に酸化還元反応対がある場合、特に有効である。停止中の陽極、陰極の電位は、0V以上、1.23V以下となるため、この範囲外の酸化還元反応対に対しては制御の効果がない。また、0.1V以上、1.1V以下に酸化還元反応対がある場合、リレーの開閉回数の削減量が多く、より効果を発現しやすい。 The standard electrode potential indicates the oxidation-reduction potential at 25 ° C., but when it is assumed that the electrolytic cell temperature at the time of stopping is high, it is desirable to correct the temperature by the Nernst equation. The redox involved in this degradation mode is a redox reaction pair between 0V and 1.23V and a redox reaction pair between 0.1V and 1.1V at the assumed temperature. Especially effective in the case. Since the potentials of the anode and the cathode during the stoppage are 0 V or more and 1.23 V or less, there is no control effect on the redox reaction pair outside this range. Further, when there is a redox reaction pair at 0.1 V or more and 1.1 V or less, the amount of reduction in the number of times the relay is opened and closed is large, and the effect is more likely to be exhibited.
 以上の説明では、停止時に発生する逆電流による陽極電位の低下について述べた。電解槽の陰極(水素発生用電極)、陽極(酸素発生用電極)に由来する電気容量は、触媒種、触媒担体種、触媒量などによって大きく異なる。陰極電気容量が陽極電気容量に比べて大きい場合は上述したように陽極電位の低下が起こるが、陰極電気容量が陽極電気容量に比べて小さい時には、陰極電位が上昇することになる。この場合も、陽極電位の低下と同様に、陰極触媒の酸化還元平衡電位を跨ぐ電位変動が生じないように制御することが必要である。すなわち、陰極(水素発生用電極)が有する触媒の酸化還元平衡電位を上回るまでの間(上回る前)に、リレーを作動させて、回路を開にする必要がある。これにより、陰極の劣化抑制とリレーの開閉回数の削減を両立することができる。 In the above explanation, the decrease in anodic potential due to the reverse current generated at the time of stopping was described. The electric capacity derived from the cathode (hydrogen generation electrode) and anode (oxygen generation electrode) of the electrolytic cell varies greatly depending on the catalyst type, catalyst carrier type, catalyst amount, and the like. When the cathode electric capacity is larger than the anode electric capacity, the anode potential decreases as described above, but when the cathode electric capacity is smaller than the anode electric capacity, the cathode potential increases. In this case as well, it is necessary to control so that the potential fluctuation across the redox equilibrium potential of the cathode catalyst does not occur, as in the case of the decrease in the anode potential. That is, it is necessary to operate the relay to open the circuit until the redox equilibrium potential of the catalyst of the cathode (hydrogen generation electrode) is exceeded (before it is exceeded). As a result, it is possible to suppress deterioration of the cathode and reduce the number of times the relay is opened and closed.
 (第2の実施の形態)
 本実施の形態では逆電流抑制部としてダイオードが用いられている。図10は、第2の実施の形態に係る逆電流抑制部を備えた水素発生システムの回路構成を示す模式図である。図10に示すように、水素発生システム50は、再生可能エネルギー由来の発電が停止し、電解槽12での電解が停止している場合に電解槽12で生じる逆電流I’を抑制する逆電流抑制部34を備える。逆電流抑制部34は、電解槽12と直流電源14との経路の途中に設けられており、所定の特性を有するダイオード34aを含んでいる。
(Second Embodiment)
In this embodiment, a diode is used as the reverse current suppression unit. FIG. 10 is a schematic diagram showing a circuit configuration of a hydrogen generation system including a reverse current suppression unit according to the second embodiment. As shown in FIG. 10, the hydrogen generation system 50 suppresses the reverse current I'generated in the electrolytic cell 12 when the power generation derived from the renewable energy is stopped and the electrolysis in the electrolytic cell 12 is stopped. The suppression unit 34 is provided. The reverse current suppression unit 34 is provided in the middle of the path between the electrolytic cell 12 and the DC power supply 14, and includes a diode 34a having a predetermined characteristic.
 ここで、ダイオード34aの特性として逆バイアス電流Iに着目する。本実施の形態に係るダイオード34aは、陽極20の電気容量に由来する電気容量をQ2(陰極電気容量>陽極電気容量)、発電装置による発電が停止してからT秒後までに電解槽で生じる逆電流I’の平均値をI” 、ダイオードの逆バイアス電流Iの平均値をI’(I’=∫I・dt/T(0≦t≦T))とすると、I’≦I”(I”=Q2/T)を満たすように構成されている。 Here, attention is focused on the reverse bias current I R as characteristic of the diode 34a. The diode 34a according to the present embodiment has an electric capacity derived from the electric capacity of the anode 20 Q2 (cathode electric capacity> anode electric capacity), and is generated in the electrolytic tank within T seconds after the power generation by the power generation device is stopped. 'the mean value of I ", the average value of the reverse bias current I R of the diode I R' reverse current I When (I R '= ∫I R · dt / T (0 ≦ t ≦ T)), I R It is configured to satisfy'≤I" (I "= Q2 / T).
 前述したように、再生可能エネルギーを電源とする場合、短時間の停止が支配的となるため、これらを抑制するダイオードを選定することが望ましい。例えば、図8に示した福島再生可能エネルギー研究所の風力発電機(300kW)では、93%の停止が600秒以内であることから、Tを600秒としたダイオードを選定することで、93%の停止による劣化を回避することができる。なお、逆バイアス電流Iが極めて小さいダイオードを選定することで、数時間以上の停止による劣化を回避することもできるが、ダイオード自体のコストを増加させ、トータルとしてのコスト優位性が低下する。 As described above, when renewable energy is used as a power source, a short stop is dominant, so it is desirable to select a diode that suppresses these. For example, in the wind power generator (300 kW) of the Fukushima Renewable Energy Research Institute shown in FIG. 8, 93% stoppage is within 600 seconds, so by selecting a diode with T as 600 seconds, 93% It is possible to avoid deterioration due to the stoppage of. Incidentally, a reverse bias current I R is selected very small diodes, can also avoid degradation due to stop more than a few hours, increasing the cost of the diode itself, cost advantage as a total is reduced.
 図11は、第2の実施の形態に係る逆電流抑制部を備えた水素発生システムにおいて、電解停止後の電位および電流の変化を示す図である。図11に示すように、発電装置における発電が停止し、電解槽12における電解も停止した場合、特に何らの制御をしなくても陽極電位は1.0V程度に維持される。これにより、逆バイアス電流Iが所定の範囲にあるダイオードを用いても逆電流による電極の劣化を抑制できる。 FIG. 11 is a diagram showing changes in potential and current after electrolysis is stopped in the hydrogen generation system provided with the reverse current suppression unit according to the second embodiment. As shown in FIG. 11, when the power generation in the power generation device is stopped and the electrolysis in the electrolytic cell 12 is also stopped, the anodic potential is maintained at about 1.0 V without any particular control. Thus, the reverse bias current I R can be suppressed and deterioration of the electrode is also due to the reverse current with the diode in a predetermined range.
 また、陰極電気容量が陽極電気容量に比べて小さい時には、陰極電位が上昇することになるが、リレーの場合と同様に、陰極触媒の酸化還元平衡電位を跨ぐ電位変動が陰極で生じないように制御することが必要である。この場合、陰極に由来する電気容量をQ2として逆バイアス電流Iを定めることで陽極の場合と同様の効果を得ることができる。 Further, when the cathode electric capacity is smaller than the anode electric capacity, the cathode potential rises, but as in the case of the relay, the potential fluctuation across the oxidation-reduction equilibrium potential of the cathode catalyst is prevented from occurring at the cathode. It is necessary to control. In this case, it is possible to obtain the same effects as the anode by determining the reverse bias current I R the capacitance derived from the cathode as Q2.
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 Although the present invention has been described above with reference to each of the above-described embodiments, the present invention is not limited to the above-described embodiments, and the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Is also included in the present invention. Further, it is also possible to appropriately rearrange the combination and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiment, and such modifications are added. Such embodiments may also be included in the scope of the present invention.
 上述の各実施の形態に係る水素発生システムでは、再生可能エネルギー由来の交流をトランスで直流に変換し平滑電解コンデンサにより平滑化した後、電解電流として電解槽に供給する直流電源を用いた例を説明したが、必ずしもこの例に限らない。例えば、再生可能エネルギー由来の直流をDC-DCコンバータで電圧変換し平滑電解コンデンサにより平滑化した後、電解電流として電解槽に供給する直流電源を用いてもよい。 In the hydrogen generation system according to each of the above-described embodiments, an example is used in which an alternating current derived from renewable energy is converted to direct current by a transformer, smoothed by a smoothing electrolytic capacitor, and then supplied to an electrolytic cell as an electrolytic current. Although explained, it is not necessarily limited to this example. For example, a direct current power source that supplies a direct current derived from renewable energy to an electrolytic cell as an electrolytic current after voltage conversion with a DC-DC converter and smoothing with a smoothing electrolytic capacitor may be used.
 本発明は、再生可能エネルギーを利用した水素発生システムに利用できる。 The present invention can be used for a hydrogen generation system using renewable energy.
 10 水素発生システム、 12 電解槽、 14 直流電源、 16 太陽光発電装置、 18 風力発電装置、 20 陽極、 20a 陽極触媒層、 20b 陽極ガス拡散層、 20c セパレータ、 22 陰極、 22a 陰極触媒層、 22b 陰極ガス拡散層、 22c セパレータ、 24 固体高分子形電解質膜、 34 逆電流抑制部、 34a ダイオード、 36 メカニカルリレー、 38 制御部、 40 水素発生システム、 42 電位検出部、 50 水素発生システム。 10 Hydrogen generation system, 12 Electrolyte tank, 14 DC power supply, 16 Solar power generation device, 18 Wind power generation device, 20 Anode, 20a Anode catalyst layer, 20b Anode gas diffusion layer, 20c Separator, 22 Cathode, 22a Cathode catalyst layer, 22b Cathode gas diffusion layer, 22c separator, 24 solid polymer electrolyte membrane, 34 reverse current suppression unit, 34a diode, 36 mechanical relay, 38 control unit, 40 hydrogen generation system, 42 potential detection unit, 50 hydrogen generation system.

Claims (9)

  1.  水の電気分解によって水素を発生する電解槽と、
     再生可能エネルギー由来の発電を行う発電装置から入力された再生可能エネルギー由来の電力を直流電流として、前記電解槽に電解電流Iを供給する直流電源と、
     前記発電装置が停止している場合に前記電解槽で生じる逆電流I’を抑制する逆電流抑制部と、を備え、
     前記電解槽は、酸素発生用電極と、水素発生用電極と、前記酸素発生用電極および前記水素発生用電極の間に配置されている固体高分子形電解質膜と、を有し、
     前記逆電流抑制部は、前記逆電流I’が流れうる経路に設けられていることを特徴とする水素発生システム。
    An electrolytic cell that generates hydrogen by electrolysis of water,
    A DC power source that supplies an electrolytic current I to the electrolytic cell using the power derived from the renewable energy input from the power generation device that generates power derived from the renewable energy as a direct current.
    A reverse current suppression unit that suppresses the reverse current I'generated in the electrolytic cell when the power generation device is stopped is provided.
    The electrolytic cell has an oxygen-evolving electrode, a hydrogen-evolving electrode, and a solid polymer-type electrolyte membrane arranged between the oxygen-evolving electrode and the hydrogen-generating electrode.
    The hydrogen generation system is characterized in that the reverse current suppression unit is provided in a path through which the reverse current I'can flow.
  2.  前記発電装置による発電が停止してからT秒(T>0)経過までの間に前記電解槽で生じる前記逆電流I’から算出される電気容量Q1を∫I’・dt(0≦t≦T)としたとき、前記水素発生用電極および前記酸素発生用電極のうち電気容量が小さい電極に由来する電気容量Q2と前記電気容量Q1とが式Q1≦Q2を満たすことを特徴とする請求項1に記載の水素発生システム。 The electric capacity Q1 calculated from the reverse current I'generated in the electrolytic tank between the time when the power generation by the power generation device is stopped and the elapse of T seconds (T> 0) is ∫I' · dt (0 ≦ t ≦). T), the electric capacity Q2 derived from the electrode for generating hydrogen and the electrode for generating oxygen having a small electric capacity and the electric capacity Q1 satisfy the formula Q1 ≦ Q2. The hydrogen generation system according to 1.
  3.  前記逆電流抑制部は、前記逆電流I’が流れる経路のオン/オフを切り替えるリレーと、前記リレーのオン/オフを制御する制御部と、を有し、
     前記制御部は、前記発電装置による発電が停止してからT秒後に前記リレーを作動させて、回路を開にすることを特徴とする請求項2に記載の水素発生システム。
    The reverse current suppression unit includes a relay that switches on / off of the path through which the reverse current I'flows, and a control unit that controls on / off of the relay.
    The hydrogen generation system according to claim 2, wherein the control unit operates the relay T seconds after the power generation by the power generation device is stopped to open the circuit.
  4.  前記逆電流抑制部は、前記逆電流I’が流れる経路のオン/オフを切り替えるリレーと、前記リレーのオン/オフを制御する制御部と、を有し、
     前記制御部は、前記発電装置による発電が停止すると前記リレーを作動させて、回路を開にすることを特徴とする請求項2に記載の水素発生システム。
    The reverse current suppression unit includes a relay that switches on / off of the path through which the reverse current I'flows, and a control unit that controls on / off of the relay.
    The hydrogen generation system according to claim 2, wherein the control unit operates the relay to open the circuit when the power generation by the power generation device is stopped.
  5.  前記逆電流抑制部は、前記逆電流I’が流れる経路のオン/オフを切り替えるリレーと、前記リレーのオン/オフを制御する制御部と、前記酸素発生用電極と前記水素発生用電極との間の電圧を検出する電圧検出部と、を有し、
     前記制御部は、前記発電装置による発電が停止してから、前記電圧より推定される前記酸素発生用電極の電位が前記酸素発生用電極が有する触媒の酸化還元平衡電位を下回る前に、前記リレーを作動させて、回路を開にする請求項1または2に記載の水素発生システム。
    The reverse current suppressing unit includes a relay that switches on / off of the path through which the reverse current I'flows, a control unit that controls on / off of the relay, and an oxygen generating electrode and a hydrogen generating electrode. It has a voltage detector that detects the voltage between them, and
    The control unit performs the relay after the power generation by the power generation device is stopped and before the potential of the oxygen generating electrode estimated from the voltage falls below the redox equilibrium potential of the catalyst of the oxygen generating electrode. The hydrogen evolution system according to claim 1 or 2, wherein the circuit is opened by activating.
  6.  前記逆電流抑制部は、前記逆電流I’が流れる経路のオン/オフを切り替えるリレーと、前記リレーのオン/オフを制御する制御部と、前記酸素発生用電極と前記水素発生用電極との間の電圧を検出する電圧検出部と、を有し、
     前記制御部は、前記発電装置による発電が停止してから、前記電圧より推定される前記水素発生用電極の電位が前記水素発生用電極が有する触媒の酸化還元平衡電位を上回る前に、前記リレーを作動させて、回路を開にする請求項1または2に記載の水素発生システム。
    The reverse current suppressing unit includes a relay that switches on / off of the path through which the reverse current I'flows, a control unit that controls on / off of the relay, and an oxygen generating electrode and a hydrogen generating electrode. It has a voltage detector that detects the voltage between them, and
    The control unit performs the relay after the power generation by the power generation device is stopped and before the potential of the hydrogen generation electrode estimated from the voltage exceeds the redox equilibrium potential of the catalyst of the hydrogen generation electrode. The hydrogen generation system according to claim 1 or 2, wherein the hydrogen generation system is operated to open a circuit.
  7.  前記逆電流抑制部は、前記逆電流I’が流れる経路のオン/オフを切り替えるリレーと、前記リレーのオン/オフを制御する制御部と、前記酸素発生用電極の電位を検出する電位検出部と、を有し、
     前記制御部は、前記電位検出部により検出した前記酸素発生用電極の電位が該酸素発生用電極が有する触媒の酸化還元平衡電位を下回る前に、前記リレーを作動させて、回路を開にすることを特徴とする請求項1または2に記載の水素発生システム。
    The reverse current suppression unit includes a relay that switches on / off of the path through which the reverse current I'flows, a control unit that controls on / off of the relay, and a potential detection unit that detects the potential of the oxygen generating electrode. And have
    The control unit operates the relay to open the circuit before the potential of the oxygen-evolving electrode detected by the potential detection unit falls below the redox equilibrium potential of the catalyst of the oxygen-evolving electrode. The hydrogen evolution system according to claim 1 or 2, characterized in that.
  8.  前記逆電流抑制部は、前記逆電流I’が流れる経路のオン/オフを切り替えるリレーと、前記リレーのオン/オフを制御する制御部と、前記水素発生用電極の電位を検出する電位検出部と、を有し、
     前記制御部は、前記電位検出部により検出した前記水素発生用電極の電位が該水素発生用電極が有する触媒の酸化還元平衡電位を上回る前に、前記リレーを作動させて、回路を開にすることを特徴とする請求項1または2に記載の水素発生システム。
    The reverse current suppression unit includes a relay that switches on / off of the path through which the reverse current I'flows, a control unit that controls on / off of the relay, and a potential detection unit that detects the potential of the hydrogen generating electrode. And have
    The control unit operates the relay to open the circuit before the potential of the hydrogen generation electrode detected by the potential detection unit exceeds the redox equilibrium potential of the catalyst possessed by the hydrogen generation electrode. The hydrogen generation system according to claim 1 or 2, characterized in that.
  9.  前記逆電流抑制部は、前記経路に設けられたダイオードを有し、
     前記ダイオードは、前記水素発生用電極および前記酸素発生用電極のうち電気容量が小さい電極に由来する電気容量をQ2、前記発電装置による発電が停止してからT秒後までに前記電解槽で生じる前記逆電流I’の平均値をI”、前記ダイオードの逆バイアス電流Iの平均値をI’(I’=∫I・dt/T(0≦t≦T))とすると、I’≦I”(I”=Q2/T)を満たすように構成されていることを特徴とする請求項2に記載の水素発生システム。
    The reverse current suppression unit has a diode provided in the path and has a diode.
    The diode has an electric capacity derived from the electrode having a smaller electric capacity among the hydrogen generating electrode and the oxygen generating electrode Q2, and is generated in the electrolytic tank within T seconds after the power generation by the power generating device is stopped. 'I "the average value of the average value of the reverse bias current I R of the diode I R' wherein reverse current I When (I R '= ∫I R · dt / T (0 ≦ t ≦ T)), I R '≦ I "(I " = Q2 / T) hydrogen generation system according to claim 2, characterized in that it is configured to satisfy.
PCT/JP2020/014240 2019-03-29 2020-03-27 Hydrogen generation system WO2020203857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067656A JP7229476B2 (en) 2019-03-29 2019-03-29 Hydrogen generation system
JP2019-067656 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203857A1 true WO2020203857A1 (en) 2020-10-08

Family

ID=72668887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014240 WO2020203857A1 (en) 2019-03-29 2020-03-27 Hydrogen generation system

Country Status (2)

Country Link
JP (1) JP7229476B2 (en)
WO (1) WO2020203857A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210578A1 (en) 2021-03-30 2022-10-06 三井金属鉱業株式会社 Method for producing hydrogen gas, method for stopping operation of apparatus for producing hydrogen gas, and hydrogen gas production apparatus
EP4170068A1 (en) * 2021-10-13 2023-04-26 Kabushiki Kaisha Toshiba Water electrolyzer and control method of water electrolysis cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222082A (en) * 1988-03-02 1989-09-05 Japan Storage Battery Co Ltd Electrochemical device using ion exchange membrane as electrolyte
JP2015129345A (en) * 2014-11-07 2015-07-16 旭化成株式会社 Electric insulation method for electrolysis system
JP2019019379A (en) * 2017-07-18 2019-02-07 Jxtgエネルギー株式会社 Electro-chemical device
JP2019099905A (en) * 2017-11-30 2019-06-24 株式会社豊田中央研究所 Electrolysis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222082A (en) * 1988-03-02 1989-09-05 Japan Storage Battery Co Ltd Electrochemical device using ion exchange membrane as electrolyte
JP2015129345A (en) * 2014-11-07 2015-07-16 旭化成株式会社 Electric insulation method for electrolysis system
JP2019019379A (en) * 2017-07-18 2019-02-07 Jxtgエネルギー株式会社 Electro-chemical device
JP2019099905A (en) * 2017-11-30 2019-06-24 株式会社豊田中央研究所 Electrolysis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210578A1 (en) 2021-03-30 2022-10-06 三井金属鉱業株式会社 Method for producing hydrogen gas, method for stopping operation of apparatus for producing hydrogen gas, and hydrogen gas production apparatus
EP4170068A1 (en) * 2021-10-13 2023-04-26 Kabushiki Kaisha Toshiba Water electrolyzer and control method of water electrolysis cell

Also Published As

Publication number Publication date
JP7229476B2 (en) 2023-02-28
JP2020164942A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
KR101926010B1 (en) A power converter system using new-renewable energy
CA2763171C (en) Systems and methods for independently controlling the operation of fuel cell stacks and fuel cell systems incorporating the same
JP7429919B2 (en) Hydrogen generation system, hydrogen generation system control device, and hydrogen generation system control method
JP2006108124A (en) Technique for controlling efficiency of fuel cell system
WO2020203857A1 (en) Hydrogen generation system
JP2012160336A (en) Fuel cell system and method of operating the same
JP2022527649A (en) Electrolytic system with controlled thermal profile
US20200119421A1 (en) Eco-friendly energy storage system for frequency regulation
JP2019173082A (en) Hydrogen production system
CN113906167B (en) Control method of hydrogen generation system and hydrogen generation system
CN113897618A (en) Water electrolysis system
JP4629319B2 (en) Power supply
JP2023552870A (en) Control system and method for controlling a microgrid
JP2020012195A (en) Water electrolysis system and water electrolysis method
KR102063753B1 (en) Energy storage system via iodine compound redox couples
KR100711894B1 (en) Fuel Cell and Fuel Cell Battery Carging Contrl Method
WO2021131416A1 (en) Organic hydride generation system, control device for organic hydride generation system, and control method for organic hydride generation system
KR100673756B1 (en) Method for controlling operation of fuel cell hybrid system
WO2022219850A1 (en) Deterioration determination support device, water electrolysis device, and deterioration determination support method
WO2023189143A1 (en) Control device for water electrolysis cell, water electrolysis system, and method for controlling water electrolysis cell
JP2015115968A (en) Power storage system, power conditioner, and control method of power storage system
US11271229B2 (en) Method of controlling measurement of cell voltage of fuel cell and apparatus for executing the same
JP2010168608A (en) Hydrogen production apparatus, hydrogen production method using the same and energy system
TWI726516B (en) Flow battery system and control method of the same
FI130541B (en) A system for an electrochemical process and a method for preventing degradation of electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783745

Country of ref document: EP

Kind code of ref document: A1